Принцип работы газового термометра кратко

Обновлено: 04.07.2024

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:

  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические
Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на батарейках. Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют Г. т. постоянного объёма (рис.), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение температуры газа в баллоне пропорционально изменению давления. Г. т. измеряют температуры в интервале от Газовый термометр2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой температуры 3·10 -3 — 2·10 -2 град. Г. т. такой высокой точности — сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию (См. Сорбция) и десорбцию газа стенками баллона; диффузию (См. Диффузия) газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

Температурная шкала Г. т. совпадает С термодинамической температурной шкалой, и Г. т. применяется в качестве первичного термометрического прибора (см. Температурные шкалы). При помощи Г. т. определены температуры постоянных точек (реперных точек) Международной практической температурной шкалы (См. Международная практическая температурная шкала).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Газовый термометр" в других словарях:

ГАЗОВЫЙ ТЕРМОМЕТР — прибор для измерения темп ры Т, действие к рого основано на зависимости давления р или объёма V идеального газа от темп ры: pV RT (R газовая постоянная). На измерениях темп ры Г. т. построены совр. температурные шкалы. Г. т. применяется как… … Физическая энциклопедия

Газовый термометр — Газовый термометр прибор для измерения температуры, основанный на законе Шарля. Принцип работы В конце XVIII в. Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём… … Википедия

ГАЗОВЫЙ ТЕРМОМЕТР — прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Заполненный гелием, азотом или водородом баллон, соединенный при помощи капилляра с манометром, помещают в среду, температуру… … Большой Энциклопедический словарь

ГАЗОВЫЙ ТЕРМОМЕТР — прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема (рис. Г 4), в котором изменение температуры газа в баллоне… … Металлургический словарь

газовый термометр — dujinis termometras statusas T sritis Standartizacija ir metrologija apibrėžtis Termometras, kurio veikimas pagrįstas idealiųjų dujų slėgio arba tūrio priklausomybe nuo temperatūros. atitikmenys: angl. gas thermometer; gas expansion thermometer… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

газовый термометр — dujinis termometras statusas T sritis fizika atitikmenys: angl. gas thermometer; gas expansion thermometer vok. Gasthermometer, n rus. газовый термометр, m; газонаполненный термометр, m pranc. thermomètre à gaz, m … Fizikos terminų žodynas

газовый термометр — прибор для измерения температуры, действие которого основано на зависимости давления или объёма газа от температуры. Заполненный гелием, азотом или водородом баллон, соединённый при помощи капилляра с манометром, помещают в среду, температуру… … Энциклопедический словарь

Газовый термометр — прибор для измерения температуры, действие которого основано на зависимости давления или объема газа от температуры. Чаще всего применяют газовый термометр постоянного объема, в котором изменение температуры газа в баллоне пропорционально… … Энциклопедический словарь по металлургии

ГАЗОВЫЙ ТЕРМОМЕТР — прибор для измерения темп ры, действие к рого осн. на зависимости давления или объёма идеального газа от темп ры. Чаще всего применяют Г. т. пост. объёма (см. рис. при ст. Термометр), в к ром изменение темп ры газа в баллоне пропорционально… … Большой энциклопедический политехнический словарь


Газовый термометр: 1 – баллон, заполненный газом; 2 – соединительная трубка; 3 – устройство для измерения давления.

ГА́ЗОВЫЙ ТЕРМО́МЕТР, при­бор для из­ме­ре­ния темп-ры, дей­ст­вие ко­то­ро­го ос­но­ва­но на за­ви­си­мо­сти дав­ле­ния $p$ или объ­ё­ма $V$ иде­аль­но­го га­за от темп-ры: $pV=RT$ ($R$ – га­зо­вая по­сто­ян­ная). Ча­ще все­го при­ме­ня­ют Г. т. по­сто­ян­но­го объ­ё­ма (рис.), ко­то­рый пред­став­ля­ет со­бой за­пол­нен­ный га­зом (ге­ли­ем, азо­том или во­до­ро­дом) бал­лон 1 не­из­мен­но­го объ­ё­ма, со­еди­нён­ный тон­кой труб­кой 2 с уст­рой­ст­вом 3 для из­ме­ре­ния дав­ле­ния. В та­ком Г. т. из­ме­не­ние темп-ры га­за в бал­ло­не про­пор­цио­наль­но из­ме­не­нию дав­ле­ния. Г. т. из­ме­ря­ют темп-ры в ин­тер­ва­ле от ок. 2 К до 1300 К. Пре­дель­но дос­ти­жи­мая точ­ность Г. т. в за­ви­си­мо­сти от из­ме­ряе­мой темп-ры 3·10 –3 – 2·10 –2 К. Г. т. та­кой вы­со­кой точ­но­сти – слож­ное уст­рой­ст­во; при из­ме­ре­нии темп-ры с его по­мо­щью учи­ты­ва­ют­ся не­иде­аль­ность га­за, за­пол­няю­ще­го при­бор, из­ме­не­ние объ­ё­ма бал­ло­на с из­ме­не­ни­ем темп-ры, на­ли­чие в га­зе при­ме­сей (осо­бен­но кон­ден­си­рую­щих­ся), сорб­ция и де­сорб­ция га­за стен­ка­ми бал­ло­на, диф­фу­зия га­за сквозь стен­ки, а так­же рас­пре­де­ле­ние темп-ры вдоль со­еди­ни­тель­ной труб­ки. Г. т. при­ме­ня­ет­ся в ка­че­ст­ве пер­вич­но­го тер­мо­мет­рич. при­бо­ра (см. Тем­пе­ра­тур­ные шка­лы ). При по­мо­щи Г. т. оп­ре­де­ле­ны темп-ры по­сто­ян­ных (ре­пер­ных) то­чек Ме­ж­ду­на­род­ной прак­ти­че­ской тем­пе­ра­тур­ной шка­лы.

Чтобы избавиться от указанной трудности, рассмотрим случай, когда термометрическим веществом служит газ. Ясно, что использовать его точно таким же способом, как жидкость, невозможно. Газ целиком заполняет весь содержащий его сосуд. Он не образует свободной поверхности или поверхности раздела. Его объем равен объему сосуда, в котором он находится. Однако при увеличении степени нагретости газ будет расширяться, т. е. увеличивать свой объем, если сосуд имеет упругие стенки, так что давление газа может оставаться постоянным. Наоборот, если объем сохраняется постоянным, то давление газа растет с увеличением степени нагретости. Такие эмпирические наблюдения, выполненные французскими физиками Ж. А. Ц. Шарлем (1787) Ж. Л. Гей-Люссаком (1802), стали основой газовых законов, которые мы обсудим в следующей главе. Сейчас мы просто констатируем, что давление газа при постоянном объеме увеличивается при повышении температуры.

В приборе, изображенном на рис. 2.3, на стеклянной трубке выгравирована линия (указанная стрелкой); она определяет объем газа, давление которого меняется с изменением температуры окружающей жидкости. Наблюдаемой термометрической величиной является давление, соответствующее данному объему при различных температурах, т. е. давление, которое требуется для поддержания мениска (границы раздела газ — жидкость) на выгравированной отметке. Давление измеряется весом столба жидкости в манометре, представляющем собой U-образную трубку, наполненную жидкостью. (Подробнее об измерении давления с помощью манометров говорится в приложении I.) На рис. 2.3 газовый термометр изображен только схематично. В действительности газовый термометр — это чрезвычайно сложно устроенный и сложный в обращении прибор. Нужно учесть изменение объема самой колбы при изменении температуры, вклад, вносимый в общее давление парами жидкости, используемой для определения объема, изменение плотности жидкости с температурой и т. д.

Рис. 2.3. Газовый термометр с постоянным объемом. Точный (хотя и громоздкий) прибор, с помощью которого можно определять абсолютную температуру.

Тем не менее, несмотря на практические сложности, принцип остается простым.

Ясно, что давление, показываемое манометром, будет выше, когда резервуар содержит кипящую воду, чем когда он содержит смесь воды со льдом. Ясно также, что можно произвольно определить отношение температур через отношение давлений:

Теперь примем, что можно изменять количество газа в колбе, так что давление в точке замерзания может иметь любое наперед заданное значение. Мы обнаружим, что отношение давлений в точке кипения и в точке замерзания, будет в какой-то степени зависеть от количества газа в колбе, т. е. от давления в точке замерзания. Затратив достаточно много времени, мы найдем закономерность, установленную рядом добросовестных исследователей, а именно оказывается, что с уменьшением начального давления отношение давлений для различных газов сходится к одному и тому же значению. Построив зависимости этого отношения от давления (которое определяется количеством газа в колбе) для различных газов, мы получим график, представленный на рис. 2.4.

При стремлении к нулю, т. е. при экстраполяции значений к вертикальной оси, для всех газов получается точно одно и то же предельное значение равное 1,36609 ± 0,00004. Это обстоятельство, которое подтверждается для всех исследованных газов, означает, что отношение температур имеет одно и то же значение независимо от химического состава газа. Таким образом, теперь мы можем определить температурную шкалу, воспользовавшись условием, что для двух температур имеет место соотношение

Это соотношение полностью не определяет шкалу, поскольку мы имеем две неизвестные величины и только одно соотношение между ними. Введем также условие

Это условие устанавливает такую же величину градуса, как в шкале Цельсия, в которой Решив совместно уравнения (2) и (3), нетрудно найти, что .

Для любой другой температуры соответствующей давлению можно написать

Другими словами, чтобы найти температуру тела в газовой термометрической шкале, нужно определить давление p, газа данного объема, которое установится после того, как газ будет находиться в контакте с телом в течение времени, достаточного для достижения теплового равновесия (практически это означает, что давление должно перестать меняться во времени).

Рис. 2.4. Результаты измерений, выполненных с помощью газового термометра с постоянным объемом. В пределе очень низкого давления (плотности) все газы дают одно и то же экстраполированное значение отношения

Кроме того, нужно определить давление р, того же самого количества газа, заключенного в том же объеме и находящегося в тепловом равновесии со смесью льда и воды. Температуру Т тогда можно найти, умножив отношение давлений на 273,16. Чтобы иметь точный результат, необходимо взять предельное значение этого отношения при уменьшении количества газа в данном объеме.

Читайте также: