Принцип работы экг кратко

Обновлено: 04.07.2024

Основным методом диагностики в кардиологии является электрокардиография (ЭКГ). При работе сердца возникают электрические импульсы. Их регистрация дает возможность выявить патологии, нарушения в работе сердечной мышцы и сердечно-сосудистой системы на различных стадиях: от нарушений процесса кровоснабжения до выявления расположения инфаркта миокарда.

ЭКГ является одной из самых безопасных и доступных методик. Применяется как при плановых медицинских осмотрах, так и для диагностики патологий и вторичных изменений в сердце при заболеваниях других систем и органов. Подходит для обследования детей, беременных женщин, пациентов в тяжелом состоянии.

Применение:

Процедура электрокардиографии дает возможность выявить различные заболевания сердечно-сосудистой системы. ЭКГ применяется для получения следующих данных:

  • Определение источника, оценка частоты, диагностика нарушений сердечного ритма, уточнение вида аритмии;
  • Выявление ишемии (недостаточное кровоснабжение сердца);
  • Подтверждение наличия инфаркта, его оценка, локализация;
  • Определение состояния сердечной мышцы;
  • Выявление гипертрофии желудочков.

Диагностический потенциал метода не имеет аналогов. Совместно с другими необходимыми обследованиями позволяет в короткие сроки поставить точный диагноз, подобрать эффективное лечение, в том числе оперативное.

Показания

Электрокардиография может назначаться врачом или проводиться по инициативе пациента. Следует обратиться к специалисту при наличии следующих симптомов:

  • Головокружение, обмороки, одышка;
  • Не однократно возникающая внезапная слабость;
  • Не связанное с физическими нагрузками и эмоциональным состоянием учащенное сердцебиение;
  • Наличие болей в области груди.

Регулярно проходить процедуру ЭКГ рекомендуется:

  • людям, возраст которых более 40-45 лет;
  • тем, кто перенес острое инфекционное заболевание;
  • людям, которые подвержены таким факторам риска, как употребление алкоголя и курение.

Прямые показания:

  • Диагностированные случаи или подозрения на аритмию, гипертонию, инфаркт, ишемию, инсульт и другие заболевания сердечно-сосудистой системы;
  • Нарушение обмена веществ;
  • Нарушения функций щитовидной железы;
  • Сахарный диабет;
  • Хронические заболевания дыхательной системы;
  • Подготовка к госпитализации, операции.

Во время беременности процедуру необходимо проходить при постановке на учет, а также при наличии неблагоприятных симптомов (обмороки, головокружение, скачки давления, боли в груди).

Противопоказания

Процедура не имеет противопоказаний и ограничений. Исследование могут проходить дети, беременные и кормящие женщины. Кроме того проводится обследование плода (КТГ). ЭКГ не рекомендуется людям с деформацией грудной клетки, воспалительными заболеваниями кожи грудного отдела. Им назначают трансэзофагеальное обследование.

Подготовка

Особой подготовки к прохождению электрокардиографии не требуется. Перед началом процедуры необходимо восстановить дыхание, расслабиться 10-15 минут.

Как проводится ЭКГ

Безболезненное обследование не вызывает неприятных ощущений, длится около 10 минут.Пациент находится в положении лежа на удобной кушетке. Специалист закрепляет необходимое количество электродов на руках, ногах, груди. Специальный прибор электрокардиограф регистрирует показания. В режиме реального времени данные выводятся на монитор компьютера. Прибор распечатывает электрокардиограмму на особой ленте. Электрокардиограмма отображает работу сердца в виде кривой линии. Эта линия не хаотична, имеет определенные интервалы, зубцы, сегменты, которые в свою очередь показывают определенные этапы работы сердца. Запись состоит из 12 кривых. Шесть из них получены с грудных электродов (грудные отведения V1, V2, V3, V4, V5, V6), а остальные - с электродов, прикрепленных к рукам и ногам (три стандартных - I, II, III, три усиленных - aVL, aVR, aVF).

Результаты

Врач проводит анализ полученных данных, выявляет нарушения. В течение 10-15 минут пациенту выдают заключение, при необходимости назначают дополнительную диагностику.

Норма показаний

Частота сердцебиения (ЧСС): 60-80 уд/мин, ритм: синусовый, электрическая ось сердца (ЭОС): 30-70 градусов. Во время беременности этот показатель может меняться и значение 70-90 градусов не является отклонением.
Многие современные клиники имеют возможность проводить ЭКГ на дому, что крайне важно при необходимости срочного обследования людей, имеющих заболевания сердечно-сосудистой системы.
В некоторых случаях стандартной процедуры ЭКГ бывает не достаточно для записи моментов приступа аритмии, болей в сердце, так как исследование длится не долго. Тогда пациенту назначают холтеровское мониторирование ЭКГ. Небольшой прибор располагают на теле, и он от 1 до 3 дней ведет запись, в то время как человек занимается привычными делами. Данный вид обследования дает более точную и полную информацию о работе сердечной мышцы в различных условиях: при физических и эмоциональных нагрузках, в спокойном состоянии, во время сна.
Пройти обследование можно в любой больнице, поликлинике, медицинском центре.

В современной функциональной диагностике применяются различные методы исследования. В клинической практике широко используется метод электрокардиографии (ЭКГ). Метод ЭКГ отражает процессы возбуждения в сердечной мышце – возникновение и распространение возбуждения.

Для измерения и графической регистрации биоэлектрических потенциалов сердца при диагностике состояния сердечно-сосудистой системы человека применяются различные электрокардиографы. Электрокардиографы бывают стационарные и портативные.

Цель работы – изучить физические основы электрокардиографии.

Работа посвящена решению следующих задач:

1. Изучить литературу по теме работы.

2. Изучить способы отведения электрической активности сердца.

Обзор литературы. Автором изучены основные источники литературы по проблеме, проведен обзор учебной литературы [1 – 3].

Существуют различные способы отведения электрической активности сердца, которые отличаются друг от друга расположением электродов на поверхности тела.

Клетки сердца, приходя в состояние возбуждения, становятся источником тока и вызывают возникновение поля в окружающей сердце среде [3].

Электрокардиограмма представляет собой периодически повторяющуюся кривую биопотенциалов сердца. Она отражает протекание процесса возбуждения сердца, возникшего в синусно-предсердном узле и распространяющегося по всему сердцу, регистрируемая с помощью электрокардиографа.

Отдельные ее элементы – зубцы и интервалы – получили специальные наименования: зубцы Р, Q, R, S, Т интервалы Р, PQ, QRS, QT, RR; сегменты PQ, ST, TP, характеризующие возникновение и распространение возбуждения по предсердиям (Р), межжелудочковой перегородке (Q), постепенное возбуждение желудочков (R), максимальное возбуждения желудочков (S), реполяризацию желудочков (S) сердца.

Форма и размер зубцов электрокардиограммы зависит от положения электродов на поверхности тела. Существует биполярное и униполярное отведения.

Физиолог Виллем Эйнтховен предложил использовать стандартные биполярные отведения: отведение I – между правой и левой руками; отведение II – между правой рукой и левой ногой; отведение III – между левой рукой и левой ногой.

При записи ЭКГ в стандартных отведениях конечности рассматриваются как проводники электрического тока. Следовательно, можно сказать, что потенциалы записываются в точках прикрепления конечностей.

Электрическое поле сердца является результатом наложения электрических полей множества сердечных клеток. Мембранный потенциал покоящейся клетки не вызывает появления потенциала в любой точке тела.

Клетка, несущая импульс, может быть поделена на две части: покоящуюся и активную. Покоящаяся часть имеет неизменный мембранный потенциал. Активная часть имеет потенциал, равный величине потенциала действия. Переход между двумя частями происходит в какой-либо точке.

Каждая из возбужденных сердечных клеток представляет собой диполь, который имеет элементарный дипольный момент определенной величины и направления. В любой момент возбуждения, дипольные моменты отдельных клеток суммируются, формируя суммарный дипольный момент всего сердца. Суммарный дипольный момент сердца является результатом наложения дипольных моментов клеток. Поэтому сердце можно рассматривать как дипольный электрический генератор.

Направление суммарного дипольного момента сердца называют электрической осью сердца. Этот дипольный момент определяет величину разности электрических потенциалов, записанную на поверхности тела. Электрический потенциал, измеренный в любой точке, отдалённой от источника, зависит главным образом от величины суммарного дипольного момента сердца и угла между его направлением и осью отведения ЭКГ (рис. 1).

sucho-1.tif

Рис. 1. ЭКГ, записанная в соответствующих отведениях

Анализ ЭКГ основан на оценке наличия зубцов, их последовательности, направления, формы, амплитуды, измерении длительности зубцов и интервалов, положении относительно изолинии и расчете других показателей. По результатам этой оценки делают заключение о частоте сердечных сокращений, источнике и правильности ритма, наличии или отсутствии признаков ишемии миокарда, наличии или отсутствии признаков гипертрофии миокарда, направлении электрической оси сердца и других показателях функции сердца.

Для правильного измерения и трактовки показателей ЭКГ важно, чтобы она была качественно записана в стандартных условиях: отсутствие шумов и смещения уровня записи от горизонтального, соблюдение требования стандартизации.

Электрокардиограф является усилителем биопотенциалов и для установки на нем стандартного коэффициента усиления подбирают такой его уровень, когда подача на вход прибора калибровочного сигнала в 1 мВ, приводит к отклонению записи от нулевой или изоэлектрической линии на 10 мм. Соблюдение стандарта усиления позволяет сравнивать ЭКГ, записанные на любых типах приборов, и выражать амплитуду зубцов ЭКГ в миллиметрах или милливольтах. Для правильного измерения длительности зубцов и интервалов ЭКГ запись должна производиться при стандартной скорости движения диаграммной бумаги, пишущего устройства или скорости развертки на экране монитора. Большинство современных электрокардиографов даст возможность регистрировать ЭКГ при трех стандартных скоростях: 25, 50 и 100 мм/с.

По электрокардиограмме можно судить о месте возникновения возбуждения в сердце, последовательности охвата отделов сердца возбуждением, скорости проведения возбуждения. Следовательно, можно судить о возбудимости и проводимости сердца, но не о сократимости.

sucho-2.tif

Прибор регистрирует электрокардиограммы на термочувствительной диаграммной ленте при помощи теплового пера и имеет автоматический и ручной режимы работы измерения и регистрации кардиографических отведений.

Прибор состоит из следующих частей: усилительно-регистрирующего блока со встроенной аккумуляторной батареей; сетевого блока питания; кабеля пациента с 10 электродами.

Биоэлектрические потенциалы сердца, снятые с помощью электродов, через кабель пациента поступают на входы изолированного усилителя биопотенциалов.

Аналоговые сигналы подаются на формирователь электрокардиосигнала и усиливаются до величины, обеспечивающей работу регистрирующего узла – гальванометра-преобразователя, который представляет собой поляризованный электромагнитный преобразователь электрического сигнала во вращательное движение оси ротора, на котором закреплено тепловое пишущее перо.

Переключение режимов работы прибора производится с помощью клавиатуры и контролируется при помощи светодиодных индикаторов. Электропривод лентопротяжного механизма содержит электродвигатель постоянного тока и датчик скорости. Питание прибора осуществляется от сети переменного тока и от встроенной аккумуляторной батареи. Сетевой блок обеспечивает гальваническую развязку прибора от сети и понижение напряжения питания до сверхнизкого безопасного уровня при помощи сетевого трансформатора. Сетевой блок одновременно служит зарядным устройством для встроенной аккумуляторной батареи.

К достоинствам прибора относятся: возможность применения в медицинских учреждениях и при оказании медицинской помощи на дому, простое и понятное управление, ручной и автоматический режимы регистрации ЭКГ, фильтр полезного сигнала, световая индикация аварийных ситуаций, универсальное питание, относительно низкая цена.

К недостаткам прибора относятся: отсутствие цифрового дисплея, отсутствие памяти для сохранения данных кардиограмм.

sucho-3.tif

Данный прибор регистрирует электрокардиограммы на термореактивной бумажной ленте при помощи термопечатающего механизма и имеет автоматический и ручной режимы работы. В автоматическом режиме производится синхронная регистрация 12 кардиографических отведений. Прибор состоит из следующих частей: усилительно-регистрирующего блока со встроенной аккумуляторной батареей; сетевого блока питания; кабеля пациента с 10 электродами.

Переключение режимов работы прибора производится с помощью клавиатуры и контролируется на жидкокристаллическом индикаторе.

В приборе имеется звуковая сигнализация сердечного ритма и аварийных ситуаций.

Питание прибора осуществляется от сети переменного тока и от встроенной аккумуляторной батареи. Сетевой блок обеспечивает гальваническую развязку прибора от сети и понижение напряжения питания до сверхнизкого безопасного уровня при помощи сетевого трансформатора. Сетевой блок одновременного служит зарядным устройством для встроенной аккумуляторной батареи.

К достоинствам прибора относятся: возможность применения в медицинских учреждениях и при оказании медицинской помощи на дому, цифровая индикация частоты сердечных сокращений пациента и параметров регистрации ЭКГ на дисплее, уменьшенные габариты и вес по сравнению с предшественниками, цифровой фильтр, ручной и автоматический режимы регистрации ЭКГ, звуковая сигнализация сердечного ритма и аварийных ситуаций, универсальное питание, современный дизайн, относительно низкая цена.

К недостаткам прибора относится отсутствие памяти для сохранения данных кардиограмм.

Выводы

Принцип работы электрокардиографа основан на регистрации электрической активности сердца. Колебания разности потенциалов, которые возникают при возбуждении сердечной мышцы, фиксируются наложенными на тело пациента электродами и передаются на вход прибора. Сигнал проходит через усилители, которые пропорционально увеличивают его до 700 раз. Постоянно меняющиеся величины и направления получаемого сигнала отображаются на бумаге или экране электрокардиографа в виде кривой линии – графической электрокардиограмме. С помощью регистрации этих биопотенциалов прибор визуализирует работу сердца.

Электрокардиография (ЭКГ). Принципы ЭКГ

Электрокардиография (ЭКГ) — результат технических и электрофизиологических достижений, накопленных за последние два столетия. Первые демонстрации электрической активности сердца прошли во второй половине XIX в. В 1887 г. Waller A.D. выполнил прямую регистрацию электрических потенциалов сердца.

Изобретение Einthoven W. в 1901 г. струнного гальванометра дало техническую возможность для прямого метода регистрации электрической активности сердца. К 1910 г. применение струнного гальванометра перешло из исследовательской лаборатории клиническую практику.

Последующие достижения специалистов по ЭКГ привели к созданию аппарата для обнаружения, диагностики и контроля лечения фактически всех видов заболеваний сердца. Недавние исследования расширили значение ЭКГ для определения размеров и тяжести ишемии миокарда, локализации очага и путей возникновения тахиаритмий, контроля терапии у больных с сердечной недостаточностью и определения оценки состояния больных с генетическими заболеваниями, провоцирующими аритмии.

В США ежегодно ре гистрируют около 20 млн ЭКГ, что позволяет рассматривать ЭКГ как самый распространенный метод обследования пациентов наравне с наиболее востребованными лабораторными анализами, используемыми в сердечно-сосудистой практике.

экг

ЭКГ — это конечный совокупный результат сложной серии физиологических и технических процессов. Сначала образуются траycмембранные ионные токи вследствие движения ионов через клеточные мембраны и между соседними клетками. Эти токи синхронизируются чередованием возбуждения и восстановления сердечной мышцы, создают внутри и вокруг сердца изменяющееся на протяжении сердечного цикла электрическое поле.
Электрическое поле сердца распространяется через многочисленные экстракардиальные структуры, включая легкие, кровь и скелетные мышцы, которые его искажают.

Эти токи, достигнув поверхности тела, улавливаются электродами, расположенными в специальных точках на коже конечностей и тела; конфигурация токов образует ЭКГ-отведения. Потенциалы на выходе этих отведений усиливаются, фильтруются и с помощью различных технических устройств визуализируются и виде ЭКГ-кривой. Этот' процесс завершается интерпретацией записи ЭКГ с применением диагностических критериев.

Каждый из этих этапов влияет на окончательный результат клиническое ЭКГ-заключение. Оно детально рассматривается в этой главе с целью обеспечения читателя базовыми знаниями для анализа распространенных нарушений, диагностируемых в клинической практике, и в качестве основы дальнейших исследований.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

В 1906 г. известный голландский ученый Виллем Эйнтховен впервые записал четкий электрический сигнал сердца с поверхности тела человека при помощи сконструированного им же прибора.

Еще в 1893 г. В.Эйнтховен предложил этот сигнал называть электрокардиограммой (сокращенно ЭКГ), а прибор – электрокардиографом. Позже им же была разработана система наложения электродов на конечности пациента (система отведений ЭКГ), были введены обозначения основных фрагментов электрокардиографического сигнала (комплекса) и показаны соответствия фрагментов ЭКГ различным заболеваниям сердца.

С этого момента началось активное внедрение электрокардиографии в медицине как диагностического метода состояния сердечно-сосудистой системы. В 1911 г. по предложению В. Эйнтховена английской компанией CSIC была разработана настольная модель аппарата. В сороковых годах прошлого столетия стало ясно, что для детального изучения ЭКГ системы отведений по В.Эйнтховену недостаточно. В 1942 г. американский кардиолог Э.Гольдбергер получил с тех же наложенных на конечности электродов еще три отведения, которые были названы усиленными по Гольдбергеру. В 1946 г. американским кардиологом Ф.Вильсоном были предложены грудные отведения ЭКГ. Так сформировалась современная система 12 общепринятых отведений, которая повсеместно используется в настоящее время.

Физические принципы электрокардиографии

Для понимания сути электрокардиограммы вспомним сначала знакомое нам из школьных уроков по биологии строение сердца.

Из приведенной схемы видно, что сердце представляет собой два пульсирующих двухкамерных насоса, обеспечивающих циркуляцию венозной и артериальной крови по двум кругам кровообращения. Перекачка крови обеспечивается за счет периодического изменения объемов предсердий и желудочков (камер). Изменение объемов камер происходит благодаря волнообразному сокращению и расслаблению (релаксации) мышечных тканей, окружающих предсердия и желудочки. Сокращение мышечных тканей вызывается возбуждением окончаний нервных волокон, буквально опутывающих все сердце.

При отсутствии заболеваний сердечно-сосудистой системы SA узел нервных волокон сердца (рисунок ниже) генерирует импульсы возбуждения (от 60 до 80 импульсов в минуту), которые распространяясь по нервным волокнам к мышцам, вызывают их сокращение.

В связи с тем, что длины нервных волокон различны, импульсы возбуждения мышечных тканей по-разному задерживаются относительно сигнала SA узла. В результате происходит весьма сложное перемещение окружающих камеры сердца тканей, изгоняющих кровь сначала из предсердий в желудочки, а затем из желудочков в кровеносную систему. Цикл работы сердца от возбуждения SA узла до окончания возбуждения всех нервных окончаний называется систолой. Цикл от окончания систолы до следующего возбуждения SA узла называется диастолой.

В связи с тем, что импульсы возбуждения являются импульсами электрических потенциалов, они проецируются на поверхность тела. Следовательно, между двумя разнесенными на достаточное расстояние точками на поверхности тела при помощи специального прибора (дифференциального милливольтметра) могут быть измерены разности потенциалов. Измеряемая разность потенциалов изменяется во времени в соответствии с распространением волн возбуждения по нервным волокнам во время систолы. График в координатах мВ, сек измеряемой разности потенциалов и является электрокардиограммой.

Очевидно, что проекции волн возбуждения систолического цикла на разные участки поверхности тела отличаются друг от друга, поэтому будут отличаться и ЭКГ, снятые с разных точек. В связи с этим диагностически достоверной ЭКГ является та, которая снята с определенных точек по правилам, установленным В.Эйнтховеном, Э.Гольдбергером и Ф.Вильсоном.

Функции сердца и их нарушения

Как было показано, с технической точки зрения, сердце является сложным биологическим электромеханическим устройством, которое содержит: автогенератор (SA узел), линии передачи информации (нервные волокна), возбуждающие механизмы (нервные окончания) и исполнительный механизм (мышечные ткани или сам насос перекачки крови). Следовательно, работоспособность сердца характеризуется следующими функциями:

  • автоматизмом;
  • проводимостью;
  • сократимостью.

Автоматизм определяет возможность самогенерации сокращений сердца без воздействия внешних факторов.

Проводимость – это способность к проведению импульсов возбуждения от SA узла к мышечным тканям.

Сократимость характеризует способность мышечных тканей сердца выполнять работу при получении импульса возбуждения.

Имеется еще одна функция, не вытекающая из рассмотренной электромеханической модели сердца. Эта функция возбудимости. Возбудимость определяется как способность (чувствительность) сердца к выполнению систолического цикла под влиянием внешних импульсов. При постоянной возбудимости могли бы возникать условия наложения систолических циклов (текущего от воздействия импульса SA узла и случайного внешнего). Для устранения подобных коллизий в сердце предусмотрен механизм снижения порога возбудимости в момент развившегося систолического цикла до прогнозируемого начала следующего. К моменту ожидаемого следующего импульса SА узла порог возбудимости восстанавливается.

Все известные болезни сердца вызывают нарушения одной или нескольких рассмотренных четырех функций. Нарушения этих функций (за исключением сократимости) вызывают изменения ЭКГ. Поэтому ЭКГ диагностика позволяет выявлять заболевания сердца, не относящиеся к нарушению только функции сократимости. С учетом того, что большинство болезней, нарушающих сократимость, сказывается на состоянии других функций, электрокардиография является эффективным диагностическим средством состояния сердечно-сосудистой системы.

Общий принцип диагностики в медицине

Диагностика заболеваний в медицине осуществляется по принципу: от симптома – к синдрому, от синдрома – к диагнозу. Предположим, мы находимся в лесу в пасмурную погоду, и необходимо определить направление на Юг. Смотрим на сосны и видим, куда сконцентрированы их кроны. Направление концентрации крон – это симптом направления на Юг. Однако на южном направлении может располагаться более высокий лес, затеняющий тот, где мы находимся. Поэтому кроны могут сгуститься в ином направлении, например на Юго-запад. Симптом – это один из признаков объекта (в нашем случае, направления на Юг). Он неоднозначно отображает объект в силу не всех известных факторов. Далее видим муравейник. Его расположение относительно дерева – еще одно свидетельство направления на Юг. Это другой симптом. Муравейник по разным причинам также может быть не точно на Юге. Вышло солнце из-за облаков. По нему, зная время суток, можно приблизительно определить искомое направление. Еще один симптом. Сопоставив все три симптома, можно более точно определить путь на Юг. Это уже синдром. Однако, чтобы совсем точно выйти в нужном направлении, требуется компас. Направление его стрелки есть диагноз. Компас является инструментальным средством определения направления. Если его нет, то путь прокладывается ориентировочно в результате выявленного по нескольким симптомам синдрому.

В медицине сначала выявляются симптомы – это жалобы пациента, например, загрудинные боли слева. Данный симптом является признаком разных заболеваний. Чтобы найти причину жалобы пациента, необходимо установить другие симптомы. Например, есть ли у пациента одышка при подъеме по лестнице. Наличие одышки нацеливает доктора на синдром – нарушения сердечно-сосудистой системы. Другими словами, некоторое количество симптомов (загрудинная боль слева и одышка) позволяют предположить синдром (нарушения сердечно-сосудистой системы).

Путь к диагнозу требует выполнения дополнительных инструментальных исследований, результаты которых могут как опровергнуть, так и уточнить предполагаемый синдром до окончательного описания причины жалобы пациента – диагноза, выявляющего патологические изменения исследуемого органа.

Диагностика заболеваний сердца по ЭКГ

В 50-х годах прошлого столетия медицинской общественностью была повсеместно принята система съема ЭКГ в 12 общепринятых отведениях. Начали массово выпускаться электрокардиографы, позволяющие регистрировать такие ЭКГ. Электрокардиография стала стандартным методом исследования сердечно-сосудистой системы. В настоящее время известно огромное количество статей, монографий, атласов, в которых описаны проявления тех или иных нарушений функций сердца на ЭКГ. Расшифровка или интерпретация ЭКГ, или выявление нарушений функций сердца по изменениям ЭКГ является обратной задачей. Это весьма сложный процесс, так как нарушений может быть несколько, каждое из них вносит свои изменения с возможными наложениями, которые затрудняют правильную интерпретацию.

Любое изменение ЭКГ является симптомом того или иного нарушения функций сердца. В результате интерпретации на основе выявленных симптомов формируются синдромы тех или иных нарушений или патологий. Для постановки диагноза необходимы дополнительные исследования. Поэтому расшифровка ЭКГ называется синдромальной диагностикой, которая проводится врачом электрокардиологом. Окончательный диагноз устанавливается врачом кардиологом на основании расшифрованной ЭКГ и других исследований, им же назначенных.

Понятно, что никакая расшифровка ЭКГ не была бы возможной без количественного ее описания. Впервые обозначения основных фрагментов ЭКГ в систолической фазе, которые используются и в настоящее время, были предложены В.Эйнтховеном.

На рисунке показаны три волны (P, T, U) и три зубца (Q, R, S). График ЭКГ в одном систолическом цикле называется PQRST или кардио, или предсердно-желудочковым комплексом. Количественными параметрами, описывающими ЭКГ, являются амплитуды и длительности волн и зубцов, интервалы между волнами и зубцами, полярности и формы волн Р и Т. Всего 19 параметров. На ЭКГ не всегда присутствуют все фрагменты, поэтому количество параметров может быть меньшим. Кроме этого, важным параметром ЭКГ для оценки функции автоматизма или ритма сердца являются интервалы между соседними диастолическими циклами – интервалы RR.

Общее количество параметров, описывающих ЭКГ, как показано ниже, может достигать 154.

Отображение значений количественных параметров, описывающих ЭКГ

Отображение значений количественных параметров, описывающих ЭКГ.

Интерпретируя ЭКГ, врач-кардиолог измеряет параметры кардиокомплексов и интервалов RR и затем, используя решающие правила, которым он обучен, описывает выявленные синдромы (если они имеются). Таким образом, заключение врача по ЭКГ выполняется по оценке сердечного ритма и форме предсердно-желудочкового комплекса.

ЭКГ в покое используется:

  • в поликлиниках при обращениях пациентов с подозрениями на сердечно-сосудистые заболевания;
  • во врачебно-физкультурных диспансерах для решения вопросов о допуске и возможности продолжения занятий спортом;
  • при профилактических обследованиях различных групп населения с целью выявления нарушений в работе сердечно-сосудистой системы на ранних стадиях;
  • при оказании скорой и неотложной помощи;
  • при приеме и во время лечения в стационарах.

Ошибки при расшифровке ЭКГ в покое

Несмотря на высокую диагностическую эффективность при исследовании ЭКГ в покое возможны ошибочные заключения. Ошибки могут быть двух видов:

  • пропуск синдрома, соответствующего реальным нарушениям (ошибка первого рода) – гиподиагностика;
  • обнаружение синдрома несуществующего нарушения (ошибка второго рода) – гипердиагностика.

Гиподиагностические ошибки наиболее опасны с точки зрения последствий, связанных с не назначенным лечением существующего заболевания. Гипердиагностические ошибки не опасны, но из-за них неоправданно выполняются дополнительные исследования и напрасно теряется время как пациента, так и врачей.

Имеются два фактора возникновения ошибочных заключений. Прежде всего, не всегда сердечно-сосудистые заболевания проявляются на ЭКГ. По разным физиологическим причинам возникший инфаркт миокарда, например, в 5 случаях из 100 не вызывает ожидаемых изменений параметров кардиокомплекса. Известны случаи маскировки форм ЭКГ одних нарушений другими – более выраженными. В результате большого накопленного опыта использования электрокардиографии установлены вероятности ошибок обнаружения различных групп сердечно-сосудистых нарушений, вызванных ограничением самого метода исследования ЭКГ в покое.

Электрокардиологи также ошибаются при расшифровке ЭКГ. Чем ниже квалификация специалиста, тем чаще могут возникать врачебные ошибки.

Другие электрокардиографические исследования

Кроме ЭКГ в покое в настоящее время используются другие исследования. К ним относятся:

  • холтеровское мониторирование ЭКГ;
  • длительный телеметрический мониторинг ЭКГ;
  • телеметрический мониторинг ЭКГ по событиям;
  • исследование ЭКГ под нагрузкой;
  • мониторинг состояния сердечно-сосудистой системы во время хирургического лечения, при реанимации и интенсивной терапии.

Длительный телеметрический мониторинг ЭКГ выполняется для группы пациентов, находящихся на лечении в стационаре, для выявления тех же нарушений деятельности сердца, что и при холтеровском мониторировании. Разница лишь в том, что снимаемые с пациентов ЭКГ передаются при помощи располагаемых на теле передатчиков в центр наблюдения, а не записываются в память регистрирующего устройства. Данное исследование позволяет медицинскому персоналу постоянно контролировать состояние сердечно-сосудистой системы наблюдаемых лиц и принимать экстренные меры при выявлении опасных состояний. Длительный телеметрический мониторинг применяется только в специализированных клиниках. Группа пациентов при этом должна находиться в зоне видимости приемника центра наблюдения.

Телеметрический мониторинг ЭКГ по событиям удаленного от врача пациента применяется для тех же целей, что и холтеровское мониторирование, но в тех случаях, когда нарушения сердечно-сосудистой системы проявляются еще реже. Отличие метода состоит в том, что пациент имеет при себе регистратор ЭКГ с передающим устройством. Передатчик ЭКГ, как правило, работает через телефонную сеть. В современных приборах используется мобильная связь. Пациент при появлении симптома болезни накладывает на себя электроды (чаще всего на конечности), включает регистратор и передает снимаемую ЭКГ в удаленный центр. Врач удаленного центра расшифровывает ЭКГ и устно по телефону дает свои рекомендации.

Исследование ЭКГ под нагрузкой, или нагрузочная проба, используется в тех случаях, когда расшифровка ЭКГ в покое не выявляет нарушений деятельности сердца, но имеются подозрения, что возможны тревожные состояния при совершении пациентом некоторой физической работы. Во время нагрузочной пробы пациент, преодолевая, как правило, нарастающее сопротивление велоэргометра или беговой дорожки, тратит дозированное количество энергии. По анализу изменений параметров кардиокомплексов и ритма сердца в соответствии с количеством затраченной пациентом энергии выявляются нарушения сердечно-сосудистой системы, возникающие под действием нагрузки. Данное исследование в ряде случаев весьма информативно, однако оно не безопасно с точки зрения возможности развития внезапных острых состояний, угрожающих жизни пациента.

Мониторинг состояния сердечно-сосудистой системы во время хирургического лечения, а также при реанимации и интенсивной терапии применяется для выявления угрожающих состояний сердечно-сосудистой системы пациентов, находящихся под действием общей анестезии или в тяжелом состоянии.

Таким образом, исследование ЭКГ в покое является первичным тестом состояния сердечно-сосудистой системы. По результатам интерпретации ЭКГ в покое назначаются другие исследования, в том числе рассмотренные выше исследования ЭКГ, позволяющие правильно установить диагноз.

Читайте также: