Принцип дополнительности бора кратко

Обновлено: 02.07.2024

В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке — вторая костяшка завалит третью, третья четвертую и так далее. Это — волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч — это частица, а звук — это волна, и всё ясно.

Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.

Теперь давайте проведем несложный эксперимент для иллюстрации вышесказанного. Предположим, у нас есть замкнутая камера с двумя тонкими горизонтальными прорезями — одна выше средней линии, другая ниже. Теперь представим, что на эти прорези направлен параллельный пучок световых лучей. Естественно предположить, что частицы света будут проходить через оба отверстия прямо, и на задней стенке камеры (на экране) будут наблюдаться две отчетливые световые полосы напротив каждой из прорезей, а посередине между ними свет попадать не должен.

Однако на практике мы наблюдаем совершенно иную картину. Согласно принципу Гюйгенса, каждая из прорезей играет роль независимого источника вторичных световых волн, и на экране на средней линии между двумя прорезями мы, напротив, должны наблюдать максимум амплитуды их колебаний. В частности, звуковые волны, исходящие из двух стереодинамиков, как раз и дают пик громкости на линии равного удаления между ними. То же самое касается и двух равноудаленных источников световых волн, проецируемых на экран. Иными словами, пик амплитуды волны приходится как раз на ту пространственную зону, куда, согласно корпускулярной теории, должно попадать минимальное число частиц.

Принцип дополнительности — простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу — они именно дополняют одно другое, что и отражено в названии принципа.

В 1927 году Борсформулировал принципиальное положение квантовой механики – принцип дополнительности,согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др.

Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга.

В соответствии с принципом дополнительности волновое и корпускулярное описания микропроцессов не исключают и не заменяют, а дополняют друг друга. Для формирования представления о микрообъекте необходим синтез этих двух описаний.

В 1927 году Борсформулировал принципиальное положение квантовой механики – принцип дополнительности,согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др.

Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга.

В соответствии с принципом дополнительности волновое и корпускулярное описания микропроцессов не исключают и не заменяют, а дополняют друг друга. Для формирования представления о микрообъекте необходим синтез этих двух описаний.

методологич. принцип, выдвинутый дат. физиком Н. Бором в связи с интерпретацией квантовой механики. Он формулируется так: в процессе познания для воспроизведения целостности объекта необходимо применять взаимоисключающие, "дополнительные" классы понятий, каждый из к-рых применим в своих особых условиях. Д. п. часто отождествлялся с соотношением неопределенности Гейзенберга. Такое рассмотрение имело, напр., основание в том, что при определенности координаты микрочастицы имеет место неопределенность импульса, и наоборот. Тем самым открывалась возможность использовать эти две характеристики микрообъекта как взаимоисключающие. Однако содержание Д. п. значительно шире, и к этому принципу Бор подошел независимо от соотношения неопределенностей еще на ранних этапах развития квантовой физики. Для объяснения устойчивости атомов и особенностей их излучения Бор ввел свои известные постулаты. Благодаря им удалось непоследовательно соединить в одной модели классич. и квантовые представления о движении электрона. Но применение классич. представлений к области малых квантовых чисел (типично квантовым явлениям) не давало адекватных результатов. Необходимо было философски осмыслить данную ситуацию. Бор выдвигает идею новой формы связи классических и квантовых понятий. Новая идея, получившая в дальнейшем название "дополнительности", устанавливала эту связь, механически перенося старые понятия на новую область, в результате чего классические понятия "дополнялись" квантовыми. В последующем развитии квантовой теории возникли, казалось, непреодолимые гносеологические трудности (о физической природе микрочастиц, о возможности соединения в одной картине их взаимоисключающих сторон). Одной из попыток разрешения этих трудностей и явилась детальная разработка Бором Д. п. Свое название "Complementarity" эта идея получила в период формулировки основных принципов квантовой механики. Осенью 1927 на международном конгрессе физиков в Комо (Швейцария) Бор говорил, что "при описании атомных явлений квантовый постулат выдвигает перед нами задачу развития некоторой теорий „дополнительности“" ("Atomic theory and the description of nature", Camb., 1934, p. 55). Ее осн. требование – необходимость применения взаимоисключающих неадекватных (классич.) понятий в виде "дополнительных пар" для анализа противоречивых свойств квантовых объектов. Бор указывал в докладе "Свет и жизнь" (1932): "Пространственная непрерывность нашей картины распространения света и атомизм световых эффектов являются дополнительными аспектами в. том смысле, что они одинаково объясняют важные черты световых явлений, которые никогда не могут быть приведены в непосредственное противоречие друг с другом, так как их глубокий анализ в терминах механики требует взаимоисключающих экспериментальных устройств" ("Atomic physics and human knowledge", Ν. Υ., [1958], p. 5). Правильно вскрывая противоречивую природу света, противоположность волновых и корпускулярных свойств, Бор, однако, не видел возможности их внутреннего единства и выдвинул мысль о двух эквивалентных аспектах описания: л и б о корпускула, л и б о волна с последующим в н е ш н и м соположением обоих аспектов (физич. картины микроявлений), что и составляет методологич. суть Д. п. В этом наглядно сказывается непоследовательность филос. позиции Бора. В 30–40-х гг. Бор дал позитивистскую интерпретацию Д. п., выдвинув представление, что Д. п. служит для того, "чтобы символизировать фундаментальное ограничение объективного существования явления независимо от средств наблюдения" (там же, р. 7), и выступив с требованием "радикального пересмотра взглядов на проблему физической реальности" ("Квантово-механическое описание физической реальности", в журн.: "Успехи физ. наук", т. 16, вып. 4, 1936, с. 448). Гейзенберг усматривает прямую связь Д. п. с соотношением неопределенностей. Это приводит его к противопоставлению категорий пространства и времени категории причинности: "Пространственно-временное описание процессов, с одной стороны, и классический закон причинности – с другой, представляют дополнительные, исключающие друг друга черты физических процессов" ("Физические принципы квантовой теории", М.–Л., 1932, с. 51). В последующем Бор придает Д. п. всеобъемлющий характер, выходящий далеко за пределы физич. явлений. "Цельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур, представляют черты целостности, отображение которых требует типично дополнительного способа описания" ("Квантовая физика и философия", в журн.: "Успехи физ. наук", т. 67, вып. 1, 1959, с. 42). В работах ряда ученых, разделявших крайне позитивистские взгляды (П. Иордан, Ф. Франк, Г. Рейхенбах и др.), Д. п. использовался для пропаганды "краха причинности", "свободы воли" электрона и пр. Ошибочно абсолютизируя роль измерит. прибора, трактуя ее как "неконтролируемое взаимодействие", "приготовление субъектом физической реальности", они не смогли научно объяснить специфику познания микромира. Невозможность одноврем. определения координаты и импульса обусловлена, по их мнению, не противоречивой, корпускулярно-волновой природой микрообъектов, а использованием двух взаимоисключающих классов приборов: одного – для определения пространственно-временных характеристик, другого – импульсно-энергетических. Т.о., специфика процесса познания микроявлений объясняется ими не особенностями познаваемого объекта, а, наоборот, его природа рассматривается как следствие специфики познания. Среди понятий или ситуаций, требующих "дополнительного способа описания", указываются, напр., такие, как разум и инстинкт, свобода воли и детерминизм в психологии; понятие и звуковой фон в лингвистике; механицизм и витализм в биологии; личная свобода и социальное равенство в социологии; правосудие и милосердие в юриспруденции и др. При конкретном анализе этих противоречий с позиции Д. п. иногда обнаруживается внешнее сходство с диалектикой. На этом основании в зап. лит-ре, в частности в швейцарском журнале "Dialectika", стало модным отождествление диалектич. противоположностей с "дополнительностями" (взаимоисключающими сторонами познаваемого объекта) и, соответственно, диалектики с методом "дополнительности". Это отождествление необоснованно. Д. п. предполагает механистический разрыв противоположностей, а затем их внешнее рядоположение, в то время как для диалектики характерны не только взаимоисключение, но и объективная взаимосвязь, взаимопроникновение противо-положностей. Концепция "дополнительности" была подвергнута критическому анализу со стороны ряда советских и зарубежных ученых: П. Ланжевена, С. И. Вавилова, В. А. Фока, Луи де Бройля, Д. И. Блохинцева, М. Э. Омельяновского, И. В. Кузнецова, С. Г. Суворова, Л. Яноши и др. Этот критический анализ способствовал расчищению пути для дальнейшего развития физической теории. Тем не менее нек-рые рациональные выводы из методологической концепции Бора, в к-рой стихийно отразились элементы диалектики, могут в силу этого оказаться полезными при разрешении некоторых трудностей в развитии современной физики, напр. в построении теории "элементарных" частиц.

Таким образом, методологическая роль Д. п. изменяется с развитием квантовой физики, его значение уменьшается в ходе развития физической теории. Концепция, выдвинутая Бором, сыграла положительную вспомогательную роль на ранних этапах построения и интерпретации квантовой теории. Однако последующая абсолютизация "дополнительного способа описания" и неправомерное возведение его в ранг метода исследования не соответствовали требованиям адекватного, все более углубляющегося познания. Рациональный смысл идеи "дополнительности" и ее первоначальное значение оказались утраченными, когда с ней стали связывать агностицизм, различные субъективистские взгляды на физическую реальность, на проблему причинности и т.п. Но объективное содержание исследований Бора и выводы, логически следующие из них, в известной мере способствовали обогащению научных представлений о диалектическом характере процессов природы. Они показывают необходимость сознательного применения адекватного метода познания – аналога диалектических процессов действительности.

Лит.: Блохинцев Д. И., Основы квантовой механики, 2 изд., М.–Л., 1949; его же, Критика философских воззрений так называемой "копенгагенской школы" в физике, в сб.: Философские вопросы современной физики, М., 1952; Александров А. Д., Против идеализма и путаницы в понимании квантовой механики, "Вестн. ЛГУ", 1949, No 4; Кузнецов И. В., Вернер Гейзенберг и его философские позиции в физике, в кн.: Гейзенберг В., Философские проблемы атомной физики, пер. Η. Φ. Овчинникова, М., 1953; Омельяновский М. Э., Философские вопросы квантовой механики, М., 1956; Φок В. Α., Критика взглядов Бора на квантовую механику, в сб.: Философские вопросы современной физики. Под редакцией И. Кузнецова и М. Омельяновского, М., 1958; Сачков Ю. В., О материалистическом истолковании квантовой механики, М., 1959; Философские вопросы современной физики. Сб. [Под редакцией И. В. Кузнецова и М. Э. Омельяновского], М., 1959; Проблема причинности в современной физике. [Под редакцией И. В. Кузнецова и др.], М., I960.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960—1970 .

ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП-ОДИН из важнейших методологических и эвристических принципов современной науки. Предложен Н. Бором (1927) при интерпретации квантовой механики: для полного описания квантово-механических объектов нужны два взаимоисключающих (“дополнительных”) класса понятий, каждый из которых применим в особых условиях, а их совокупность необходима для воспроизведения целостности этих объектов. Физический смысл принципа дополнительности заключается в том, что квантовая теория связана с признанием принципиальной ограниченности классических физических понятий применительно к атомным и субатомныы явлениям. Однако, как указывал Бор, “интерпретация эмпирического материала в существенном покоится именно на применении классических понятий”

Принцип дополнительности применим к проблеме “корпускулярно-волнового дуализма”, которая возникает при сопоставлении объяснений квантовых явлений, основанных на идеях волновой механики (Э. Шредингер) и матричной механики ' (В. Гейзенберг). Первый тип объяснения, использующий аппарат дифференциальных уравнений, является аналитическим; он подчеркивает непрерывность движений микрообъекгов, описываемых в виде обобщений классических законов физики. Второй тип основан на алгебраическом подходе, для которого существен акцент на дискретности микрообъекгов, понимаемых как частицы, несмотря на невозможность их описания в “классических” пространственно-временных терминах. Согласно принципу дополнительности, непрерывность и дискретность принимаются как равно адекватные характеристики реальности микромира, они несводимы к некой “третьей” физической характеристике, которая “связала” бы их в противоречивом единстве; сосуществование этих характеристик подходит под формулу “либо одно, либо другое”, а выбор из них зависит от теоретических или экспериментальных проблем, возникающих перед исследователем (Дж. Холтон).

Бор полагал, что принцип дополнительности применим не только в физике, но имеет более широкую методологическую значимость. Ситуация, связанная с интерпретацией квантовой механики, ' “имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающими из разделения субъекта и объекта” (там же, с. 53). Такого рода аналогии Бор усматривал в психологии и, в частности, опирался на идеи У. Джеймса о специфике интроспективного наблюдения за непрерывным ходом мышления: подобное наблюдение воздействует на наблюдаемый процесс, изменяя его; поэтому для описания мыслительных феноменов, устанавливаемых интроспекцией, требуются взаимоисключающие классы понятий, что соответствует ситуации описания объектов микрофизики. Другая аналогия, на которую Бор указывал в биологии, связана с дополнительностью между физико-химической природой жизненных процессов и их функциональными аспектами, между детерминистическим и телеологическим подходами. Он обращал также внимание на применимость принципа дополнительности к пониманию взаимодействия культур и общественных укладов. В то же время Бор предупреждал против абсолютизации принципа дополнительности в качестве некоей метафизической догмы.

Тупиковыми можно считать такие интерпретации принципа дополнительности, когда он трактуется как гносеологический “образ” некоей “внутренне присущей” объектам микромира противоречивости, отображаемой в парадоксальных описаниях (“диалектических противоречиях”) типа “микрообъекг является и волной, и частицей”, “электрон обладает и не обладает волновыми свойствами” и т. п. Разработка методологического содержания принципа дополнительности—одно из наиболее перспективных направлений в философии и методологии науки. В его рамках рассматриваются применения принципа дополнительности в исследованиях соотношений между нормативными и дескриптивными моделями развития науки, между моральными нормами и нравственным самоопределением человеческой субъективности, между “критериальными” и “критикорефлексивньми” моделями научной рациональности.

Лит.: Гейзенберг В. Физика и философия. М., 1963; Кузнецов ?. Г. Принцип дополнительности. М., 1968; Методологические принципы физики. История и современность. М., 1975; Холтон Дж. Тематический анализ науки. М., 1981; Алексеев И. С. Деятельност. ная концепция познания и реальности.— Избр. труды по методологии и истории физики. М., 1995; Исторические типы научной рациональности, т. 1—2. М., 1997.

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .

Представляя раздел теоретической физики, квантовая механика описывает физические явления, где действие по величине равнозначно постоянной Планка. Основополагающие принципы этого раздела физики это:

  • принцип неопределенности В. Гейзенберга);
  • принцип дополнительности Н. Бора.

Принцип неопределенности Гейзенберга

В квантовой механике принцип неопределенности Гейзенберга заключается в следующем: чем точнее будут измерения одной характеристики частицы, тем менее точным окажется измерение второй.

Соотношение неопределенностей задает нижний предел произведения среднеквадратичных отклонений для пары квантовых наблюдаемых. Принцип неопределенности открыт В. Гейзенбергом в 1927 г., представляя следствие принципа корпускулярно-волнового дуализма.

Соотношения неопределенностей справедливы не только в отношении идеальных измерений фон Неймана, но и для неидеальных измерений. Согласно этому принципу, у частицы не могут в одно и то же время точно измеряться скорость и положение. Принцип неопределенности применяется также в ситуации, когда не реализуется ни одна из двух крайних ситуаций: полностью неопределенная пространственная координата и импульс.

В качестве примера можно рассмотреть частицу с некоторым значением энергии. Эта частица находится в коробке с отражающими стенками, при этом она не характеризуется:

  • определенным значением импульса (с учетом его направления);
  • каким-либо определенным состоянием;
  • пространственной координатой (волновая функция частицы делокализуется в пределах всего пространства коробки).

Соотношения неопределенностей не ограничивают точность единожды произведенного измерения для любой величины (для многомерных величин предусматривается в общем случае лишь одна компонента). Соотношение неопределенностей для свободной частицы, например, не препятствует точным измерениям ее импульса, но при этом точное измерение ее координаты становится невозможным. Такое ограничение называется стандартным квантовым пределом для координаты.

Готовые работы на аналогичную тему

В математическом смысле соотношение неопределенностей в квантовой механике представляет прямое следствие свойства преобразования Фурье. Говорится о существовании точной количественной аналогии между соотношениями неопределенности Гейзенберга и свойствами сигналов или волн.

Если рассматривать переменный во времени сигнал (например, волну), то с целью точного определения частоты важно наблюдать за ним некоторое время. При этом теряется точность определения самого времени. Звук, таким образом, не может одновременно иметь:

  • точное значение времени фиксации (как очень короткий импульс);
  • точное значение частоты (как непрерывный чистый тон).

Частота волны и временное положение математически полностью аналогичны квантовому механическому импульсу частицы и координате. Если наличествует несколько идентичных копий системы в рассматриваемом состоянии, то в таком случае измеренные значения импульса и координаты будут подчиняться определенному порядку распределению вероятности (фундаментальный постулат квантовой механики). При измерении величины среднеквадратического отклонения импульса и также координаты, получаем следующую формулу:

Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ

Для трехмерного осциллятора принцип неопределенности выражает формула:

Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ

Принцип дополнительности Бора

Принцип дополнительности представляет собой один из важнейших эвристических и методологических принципов в квантовой механике. Сформулирован Н. Бором в 1927 г.

Согласно такому принципу, при полном описании квантово-механических явлений требуется применение двух дополнительных (взаимоисключающих) наборов классических понятий, совокупность которых позволяет получить исчерпывающую информацию о таких явлениях, как о целостных. Дополнительными в квантовой механике считаются энергетически-импульсная и пространственно-временная картины.

Принцип дополнительности положен в основу копенгагенской интерпретации механики квантов и анализа измерительного процесса характеристик микрообъектов. Согласно данной интерпретации, позаимствованные из классической физики, динамические характеристики микрочастицы (энергия, импульс и др.) вовсе не свойственны частице как самой по себе.

Смысл и определенные значения тех или иных характеристик электрона раскрываются в непосредственной взаимосвязи с классическими объектами. Для этих объектов такие величины одновременно могут иметь некоторое значение (условно подобный классический объект называется измерительным прибором). Роль вышеозначенного принципа дополнительности в физике оказалась настолько значимой, что Паули даже предложил назвать квантовую механик теорией дополнительности (как аналогия с теорией относительности).

Обобщение принципа дополнительности

Н. Бор предложил обобщение принципа дополнительности, придав ему гносеологический глубокий смысл. Так, всякое глубокое явление природы, к примеру, физическая система или атомный объект, не поддается однозначному определению с помощью слов нашего языка, поэтому требует для своего определения как минимум двух взаимоисключающих дополнительных понятий.

Физическая картина явления, например, и его математическое описание являются дополняющими друг друга. Физическая картина явления не придает важное значение деталям и достаточно далека от математической точности, в то время как точное математическое описание явления, напротив, затрудняет его ясное понимание.

Наука и искусство представляют два дополнительных способа исследования окружающего мира. Наука основывается на опыте и логике, а искусство - на прозрении и интуиции. Они не только не противоречат, но и дополняют друг друга.

Применение обобщающего принципа дополнительности способствовало формированию со временем концепции дополнительности, охватывающей такие сферы, как физика, психология, биология, культурология и гуманитарное знание в целом.

Читайте также: