Представление школы моргана о строении и функции гена

Обновлено: 04.07.2024

Современное представление о строении и функции гена формировалось в русле нового направления, которое Дж.Уотсон назвал молекулярной биологией гена (1978)

Важным этапом в изучении структурно – функциональной организации гена были работы С. Бензера в конце 1950-хх годов. Они доказали, что ген представляет собой нуклеотидную последовательность, которая может изменятся в результате рекомбинаций и мутаций. Единицу рекомбинации С.Бензер назвал реконом, а еденицу мутации – мутоном. Экспериментально установлено, что мутон и рекон соответствуют одной паре нуклеотидов. Единицу генетической функции С. Бензер назвал цистроном.

В последние годы стало известно, что ген имеет сложное внутренее строение, а отдельные его части обладают разными функциями. В гене можно выделить последовательность нуклеотидов гена, которая определяет строение полипептида. Эта последовательность называется цистроном.

Цистрон – это последовательность нуклеотидов ДНК, которая определяет отдельную генетическую функцию полипептидной цепи. Ген может быть представлен одним или несколькими цистронами. Сложные гены содержащие в себе несколько цистронов называются полицистронными.

Дальнейшее развитие теории гена связано с выявлением различий в организации генетического материала у организмов далеких друг от друга в таксономическом отношении, которыми являются про- и эукариоты.

Структура генов прокариот

У прокариот, типичными представителями которых являются бактерии, большинство генов представлены непрерывными информативными участками ДНК, вся информация которых используется при синтезе полипептида. У бактерий гены занимают 80-90% ДНК. Главная особенность генов прокариот – это их объединение в группы или опероны.

Оперон – это группа следующих подряд структурных генов, находящихся под контролем одного регуляторного участка ДНК. Все сцепленые гены оперона кодируют ферменты одного метаболического пути (например, расщепление лактозы). Такая общая молекула иРНК называется полицистронной. Только некоторые гены прокариот транскрибируются индивидуально. Их РНК называется моноцистронной.

Организация по типу оперона позволяет бактериям быстро переключать метаболизм с одного субстрата на другой. Бактерии не синтезируют ферменты определенного метаболического пути в отсутствии необходимого субстрата, но способны начать их синтезировать при появлении субстрата.

Структура генов эукариот

Большинство генов эукариот (в отличии от генов прокариот) имеют характерную особенность: содержат не только кодирующие структуру полипептида участки – экзоны, но и некодирующие – интроны. Интроны и экзоны чередуются между собой, что придает гену прерывистую (мозаичную) структуру. Количество интронов в генах варьиирует от 2-х до десятков. Роль интронов до конца неясна. Полагают, что они учавствуют в процессах рекомбинации генетического материала, а также в процессах регуляции экспресии (реализации генетической информации) гена.

Рис 8.1. Структура эукариотического гена

1 – энхансеры; 2 – сайленсеры; 3 – промотор; 4 – экзоны; 5 – интроны; 6 – участки экзонов, кодирующие нетранслируемые области.

Промотор – участок ДНК для связывания с РНК – полимеразой и образование комплекса ДНК-РНК полимеразы для запуска синтеза РНК.

Энхансеры - усилители транскрипции.

Сайленсеры – ослабители транскрипции.

В настоящее время ген (цистрон) рассматривается как функционально неделимая единица наследственного мастерства, определяющая развитие какого – либо признака или свойства организма. С позиции молекулярной генетики ген представляет собой участок ДНК (у некоторых вирусов РНК), который несет информацию о первичной структуре полипептида, молекулы транспортной и рибосомальной РНК.

Структура генов вирусов

Вирусы имеют структуру гена, отражающую генетическую структуру клетки - хозяина. Так, гены бактериофагов собраны в опероны и не имеют интронов, а вирусы эукариот имеют интроны.

  1. Понятие о гене.
  2. Эффект положения гена в хромосоме.
  3. Один ген – один фермент.
  4. Делимость гена.

Современное представление о строении и функции гена формировалось в русле нового направления, которое Дж.Уотсон назвал молекулярной биологией гена (1978)

Важным этапом в изучении структурно – функциональной организации гена были работы С. Бензера в конце 1950-хх годов. Они доказали, что ген представляет собой нуклеотидную последовательность, которая может изменятся в результате рекомбинаций и мутаций. Единицу рекомбинации С.Бензер назвал реконом, а еденицу мутации – мутоном. Экспериментально установлено, что мутон и рекон соответствуют одной паре нуклеотидов. Единицу генетической функции С. Бензер назвал цистроном.

В последние годы стало известно, что ген имеет сложное внутренее строение, а отдельные его части обладают разными функциями. В гене можно выделить последовательность нуклеотидов гена, которая определяет строение полипептида. Эта последовательность называется цистроном.

Цистрон – это последовательность нуклеотидов ДНК, которая определяет отдельную генетическую функцию полипептидной цепи. Ген может быть представлен одним или несколькими цистронами. Сложные гены содержащие в себе несколько цистронов называются полицистронными.

Дальнейшее развитие теории гена связано с выявлением различий в организации генетического материала у организмов далеких друг от друга в таксономическом отношении, которыми являются про- и эукариоты.

Структура генов прокариот

У прокариот, типичными представителями которых являются бактерии, большинство генов представлены непрерывными информативными участками ДНК, вся информация которых используется при синтезе полипептида. У бактерий гены занимают 80-90% ДНК. Главная особенность генов прокариот – это их объединение в группы или опероны.

Оперон – это группа следующих подряд структурных генов, находящихся под контролем одного регуляторного участка ДНК. Все сцепленые гены оперона кодируют ферменты одного метаболического пути (например, расщепление лактозы). Такая общая молекула иРНК называется полицистронной. Только некоторые гены прокариот транскрибируются индивидуально. Их РНК называется моноцистронной.

Организация по типу оперона позволяет бактериям быстро переключать метаболизм с одного субстрата на другой. Бактерии не синтезируют ферменты определенного метаболического пути в отсутствии необходимого субстрата, но способны начать их синтезировать при появлении субстрата.

Структура генов эукариот

Большинство генов эукариот (в отличии от генов прокариот) имеют характерную особенность: содержат не только кодирующие структуру полипептида участки – экзоны, но и некодирующие – интроны. Интроны и экзоны чередуются между собой, что придает гену прерывистую (мозаичную) структуру. Количество интронов в генах варьиирует от 2-х до десятков. Роль интронов до конца неясна. Полагают, что они учавствуют в процессах рекомбинации генетического материала, а также в процессах регуляции экспресии (реализации генетической информации) гена.

Рис 8.1. Структура эукариотического гена

1 – энхансеры; 2 – сайленсеры; 3 – промотор; 4 – экзоны; 5 – интроны; 6 – участки экзонов, кодирующие нетранслируемые области.

Промотор – участок ДНК для связывания с РНК – полимеразой и образование комплекса ДНК-РНК полимеразы для запуска синтеза РНК.

Энхансеры - усилители транскрипции.

Сайленсеры – ослабители транскрипции.

В настоящее время ген (цистрон) рассматривается как функционально неделимая единица наследственного мастерства, определяющая развитие какого – либо признака или свойства организма. С позиции молекулярной генетики ген представляет собой участок ДНК (у некоторых вирусов РНК), который несет информацию о первичной структуре полипептида, молекулы транспортной и рибосомальной РНК.

Структура генов вирусов

Вирусы имеют структуру гена, отражающую генетическую структуру клетки - хозяина. Так, гены бактериофагов собраны в опероны и не имеют интронов, а вирусы эукариот имеют интроны.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

В 1902 г. У. Сеттон, а впоследствии Т. Морган сопоставили менделевские законы наследственности с закономерностями поведения хромосом и обнаружили параллелизм между характером наследования генов и распределением хромосом в мейозе. На основании этого они сформулировали хромосомную теорию наследственности.

В целом представления школы Т. Х. Моргана можно кратко представить следующим образом:

ген имеет основные свойства хромосом (способность к редупликации, к закономерному распределению в митозе и мейозе),

занимает определенный участок (локус) хромосомы,

является единицей мутации (т. е. изменяется как целое),

единицей рекомбинации (т. е. кроссинговера никогда не наблюдали в пределах гена),

единицей функции (т. е. все мутации одного гена нарушают одну и ту же функцию).

Ген может существовать в двух или нескольких аллельных состояниях. Аллели оказывают различное действие на развитие и фенотипическое выражение признака.

Аллелями называют различные состояния одного гена. Как известно, в результате мутирования ген может находиться более чем в двух различных состояниях (явление множественного аллелизма).

Поэтому при получении серии мутаций с похожим фенотипом для определения того, затронула мутация один и тот же ген или разные, Морган предложил два теста: функциональный и рекомбинационный.

Функциональный критерий основывается на том, что при скрещивании двух мутантов возникает дигетерозигота, имеющая дикий фенотип в силу доминирования нормальных аллелей каждого из генов (мутации комплементарны друг другу). Если скрещиваемые мутанты несут в дигетерозиготе аллельные мутации, то в компаунде дикий тип не появляется, так как оба аллеля одного и того же гена в разных хромосомах имеют мутационные изменения, или, по-другому, мутации не комплементарны. При этом мутации не должны разделяться кроссинговером. (схемка. )

Например, при скрещивании двух мутантных норок, белой и пастелевой, все гибриды имеют коричневую окраску, т. е. дикий фенотип. При скрещивании белой норки с другой мутантной формой — платиновой — все гибриды имеют платиновую окраску, т. е. мутантный фенотип. Следовательно, в первом случае наблюдается комплементарность, т.е. неаллельность; а во втором — отсутствие комплементарности, т.е. аллельность.

В основу рекомбинационного теста было положено представление, что только мутации в разных генах способны рекомбинировать между собой. Исследователи школы Моргана считали мутации аллельными, если соблюдались функциональный (гетерозигота — мутантный фенотип) и рекомбинационный, (рекомбинаций нет) критерии. В связи с изменением представлений о структуре гена уточнялись и критерии аллелизма.

Один и тот же ген может изменяться в несколько состояний; иногда таких соетояний бывает несколько десятков и даже сотен. Ген А может мутировать в состояние а1, а2, а3, … аn. Ряд состояний одного и того же гена называют серией множественных аллелей, а само явление — множественным аллелизмом,

Изучение серий множественных аллелей показало, что любая аллель такой серии может возникать мутационно непосредственно от аллели дикого типа или любого другого члена данной серии, а каждый из членов серии, по-видимому, имеет свою характерную частоту мутирования.

Наследование членов серии множественных аллелей подчиняется менделевским закономерностям. При этом, в отличие от генов, для которых известно только два состояния, сочетание двух разных членов серии множественных аллелей в гетерозиготе называют компаундом.

Серии множественных аллелей обнаружены у крупного рогатого скота, кроликов, мышей, морских свинок, дрозофилы, а также у кукурузы, табака, гороха и др. У человека известна серия аллелей: IA, IB, I0 которая определяет полиморфизм по группам крови:

Существование серии множественных аллелей локуса, определяющего самостерильность у растений, является тем механизмом, который в ряде случаев обеспечивает перекрестное оплодотворение. Так, было показано, что у табака, клевера и других растений на рыльцах прорастает только пыльца, несущая аллель, отличную от аллелей, имеющихся в генотипе рыльца по локусу самостерильности.

Распространенность множественного аллелизма среди животных, растений и микроорганизмов и наличие его у человека могла быть обусловлена тем, что это явление увеличивает резерв мутационной изменчивости, а потому имеет приспособительное значение в эволюции.

Современная концепция гена сконцентрировала в себе результаты вековых исследований, которые позволили наполнить менделевский наследственный фактор конкретным материальным содержанием. Термин “ген” был предложен датским генетиком В. Иогансеном в 1909 г. Методами классической генетики, в первую очередь работами Т. Моргана и его школы, было установлено, что ген является дискретной единицей наследственности, которая передается от родителей к потомству. Эта единица была в значительной степени абстрактной, т.к. физическая природа гена была неизвестна, так же как и принцип его работы. Не вызывало сомнений, что гены связаны с хромосомами, но является ли ген участком хромосомы или он каким-то образом ассоциирован с ней, на этот вопрос не мог точно ответить даже Т. Морган — автор хромосомной теории наследственности. Однако это не помешало ему и его коллегам установить важнейшие закономерности наследования и сформулировать основные генетические теории.

Один из основных постулатов классической генетики — это неделимость гена, т.е. ген рассматривался как наименьшая структурная и функциональная частица наследственности. Он является единицей мутации, рекомбинации и функции. В этих положениях отражены основные критерии аллелизма, на основании которых мутации со сходным фенотипическим эффектом могут быть отнесены к одному гену. Это — функциональный и рекомбинационный критерии. Функциональный критерий основан на том, что при наличии в гомологичных хромосомах гибрида двух мутаций, полученных от разных родителей и затрагивающих один и тот же ген, не может проявиться признак дикого типа. Этим взаимодействие разных аллелей одного гена в гибридном генотипе отличается от взаимодействия неаллельных генов, контролирующих один и тот же признак. В последнем случае гены комплементарны и в гетерозиготном состоянии обеспечивают возврат к дикому типу (см. выше лекцию “Взаимодействие генов”). Рекомбинационный критерий гласит: если мутации не рекомбинируют (внутри гена нет кроссинговера), то они аллельны. В работах школы Моргана эти критерии, по сути дела, совпадали.

В конце 20-х — начале 30-х гг. учеными А.С. Серебровским и Н.П. Дубининым были выполнены исследования, которые привели к отказу от представления о неделимости гена. Ими была описана серия индуцированных мутаций гена scute (sc), нарушающих формирование щетинок у дрозофилы. С помощью генетического анализа было установлено, что за редукцию разных групп щетинок отвечают разные участки одного и того же гена. Если у родителей эти участки не совпадают, то у гибрида создается частичная гетерозиготность (т.е. гетерозиготность по внутригенным мутациям) и мутации не проявляются. В этом случае у гибридов представлены все группы щетинок.

Частичная гетерозиготность по мутациям внутри одного гена,
приводящая к проявлению признака дикого типа.
a, b, c, d, e, f — рецессивные аллельные мутации, вызывающие редукцию разных групп щетинок,
+ — участки ДНК дикого типа.

Из результатов экспериментов был сделан важный вывод о делимости гена. Ген состоит из более мелких субъединиц, названных центрами, которые являются единицами мутации. Эти исследования были первым прорывом в область сложной структуры гена.

С 40-х гг. ХХ в., когда были установлены генетические функции ДНК, началось наполнение понятия “ген” конкретным содержанием. Однако впервые гипотеза о молекулярной природе генов и хромосом была высказана в 30-е гг. Н.К. Кольцовым и получила дальнейшее развитие в работах выдающихся ученых того времени: Н.В. Тимофеева-Ресовского, М. Дельбрюка, К. Циммера. Они разработали модель гена с позиций квантовой физики, рассматривая ген как макромолекулу с определенным чувствительным объемом, в которой при поглощении энергии происходят структурные перестройки. В результате перестроек образуются изомеры. Изомеры соответствуют аллельным генам, а переходы из одной изомерной формы в другую — мутациям. Эта модель не в полной мере выдержала проверку временем. Гены действительно оказались макромолекулами, но не белками, как предполагал Кольцов и авторы модели, а участками ДНК. Но главное значение этой модели в том, что она направила внимание ученых на раскрытие тайны строения гена, что вскоре дало положительный результат.

Большой вклад в понимание структуры и функции гена внесли Дж. Бидл и Э. Тейтум, которые впервые связали функцию гена с выработкой клеточных белков. В 1939 г. они исследовали биохимические мутанты плесневого грибка Neurospora crassa и показали, что ауксотрофные мутации (неспособность к синтезу определенных веществ) являются результатом нарушения какого-либо звена в цепи метаболизма, которое катализировалось специфическим ферментом. При этом аллельные мутации всегда затрагивали одно и то же звено. Авторы сформулировали принцип “один ген — один фермент”, согласно которому каждый ген контролирует синтез какого-либо фермента.

Позже появились работы с дрозофилой. В них доказывалась возможность рекомбинации мутаций, которые в соответствии с функциональным критерием должны были считаться аллельными (К. Оливер, М. Грин и К. Грин, Э. Льюис). Противоречие между двумя тестами породило термин “псевдоаллелизм“. Оно послужило причиной первого кризиса теории гена, выходу из которого во многом способствовала разработка нового теста на аллелизм.

Этот тест под названием цис-транс-теста был предложен Э. Льюисом. В его основу положено представление о том, что эффект от присутствия двух разных мутаций в гомологичных хромосомах гибрида зависит от их положения на хромосоме. В цис-положении мутации находятся в одной хромосоме, в транс-положении — в разных. И аллельные и неаллельные мутации в цис-положении не проявляются, т.к. они перекрываются неизмененными участками в другой гомологичной хромосоме, и поэтому гибрид несет признак дикого типа. В транс-положении, если мутации неаллельны, то они комплементируют, и гибрид также относится к дикому типу. Если же мутации аллельны, т.е. затрагивают один и тот же ген, то у гибрида при транс-положении мутаций будет мутантный фенотип. По появлению гибрида с мутантным фенотипом от скрещивания двух мутантных по одному и тому же признаку форм делают вывод о принадлежности этих мутаций к одному гену.

Окончательно убедили генетиков в сложной структуре гена результаты экспериментов С. Бензера, в которых он использовал цис-транс-тест при исследовании 2000 мутаций, затрагивающих область rII фага Т4. Мутации в этом локусе обусловливают неспособность этого фага к размножению в клетках штамма К E. coli, в геноме которых присутствует ДНК фага λ. На основе рекомбинационного критерия Бензер установил, что в состав локуса rII входит два гена — А и В, в пределах которых возникает большое количество спонтанных мутаций. Те из них, которые при объединении в одном геноме всегда комплементируют (т.е. восстанавливают способность фага к размножению), он относил к разным генам, а некомплементирующие, дающие мутантный фенотип (т.е. неспособный к размножению) — к одному. По наблюдавшейся в опыте крайне низкой частоте комплементации двух мутаций Бензер сделал вывод о возможности кроссинговера и, следовательно, рекомбинации мутаций внутри гена. Частоту рекомбинации между двумя мутациями при совместном заражении E. coli двумя мутантными штаммами Т4 Бензер использовал для картирования мутаций.

Участок хромосомы, в пределах которого обнаруживается цис-транс-эффект, Бензер предложил называть цистроном. Цистрон — это единица функции, а, следовательно, он аналогичен гену. Минимальная частота рекомбинации, полученная в опытах Бензера, равнялась 0,02%, что соответствовало расстоянию в две нуклеотидные пары. Эта единица рекомбинации была названа реконом. Единицу мутации Бензер назвал мутоном (его минимальный размер — 1 нуклеотид).

Результаты экспериментов С. Бензера показали относительность моргановских критериев аллелизма, в первую очередь рекомбинационного критерия. Исследования, проведенные на других объектах (вирусах, бактериях, грибах, водорослях, дрозофиле и высших растениях), выявили общую закономерность: в пределах одного гена может находиться множество мутаций, локализованных в разных местах гена, и внутри гена может происходить рекомбинация. Таким образом, современная концепция гена базируется на положении о сложном строении и делимости генов.

Большинство генов содержит информацию о первичной структуре специфических белков. Однако существуют гены, которые не имеют конечного белкового продукта. Они транскрибируются, но не транслируются. К ним относятся гены, кодирующие структуру двух форм РНК (рРНК и тРНК). Среди генов, кодирующих структуру белков, многие входят в систему регуляции, т.е. их белковые продукты регулируют функции других генов.

Структурная и функциональная организация генетических единиц в клетке получила название генома. У эукариот геном — это генный комплекс гаплоидного набора хромосом.

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":

В 1902 г. У. Сеттон, а впоследствии Т. Морган сопоставили менделевские законы наследственности с закономерностями поведения хромосом и обнаружили параллелизм между характером наследования генов и распределением хромосом в мейозе. На основании этого они сформулировали хромосомную теорию наследственности.

В целом представления школы Т. Х. Моргана можно кратко представить следующим образом:

ген имеет основные свойства хромосом (способность к редупликации, к закономерному распределению в митозе и мейозе),

занимает определенный участок (локус) хромосомы,

является единицей мутации (т. е. изменяется как целое),

единицей рекомбинации (т. е. кроссинговера никогда не наблюдали в пределах гена),

единицей функции (т. е. все мутации одного гена нарушают одну и ту же функцию).

Ген может существовать в двух или нескольких аллельных состояниях. Аллели оказывают различное действие на развитие и фенотипическое выражение признака.

Аллелями называют различные состояния одного гена. Как известно, в результате мутирования ген может находиться более чем в двух различных состояниях (явление множественного аллелизма).

Поэтому при получении серии мутаций с похожим фенотипом для определения того, затронула мутация один и тот же ген или разные, Морган предложил два теста: функциональный и рекомбинационный.

Функциональный критерий основывается на том, что при скрещивании двух мутантов возникает дигетерозигота, имеющая дикий фенотип в силу доминирования нормальных аллелей каждого из генов (мутации комплементарны друг другу). Если скрещиваемые мутанты несут в дигетерозиготе аллельные мутации, то в компаунде дикий тип не появляется, так как оба аллеля одного и того же гена в разных хромосомах имеют мутационные изменения, или, по-другому, мутации не комплементарны. При этом мутации не должны разделяться кроссинговером. (схемка. )

Например, при скрещивании двух мутантных норок, белой и пастелевой, все гибриды имеют коричневую окраску, т. е. дикий фенотип. При скрещивании белой норки с другой мутантной формой - платиновой - все гибриды имеют платиновую окраску, т. е. мутантный фенотип. Следовательно, в первом случае наблюдается комплементарность, т.е. неаллельность; а во втором — отсутствие комплементарности, т.е. аллельность.

В основу рекомбинационного теста было положено представление, что только мутации в разных генах способны рекомбинировать между собой. Исследователи школы Моргана считали мутации аллельными, если соблюдались функциональный (гетерозигота - мутантный фенотип) и рекомбинационный, (рекомбинаций нет) критерии. В связи с изменением представлений о структуре гена уточнялись и критерии аллелизма.

Один и тот же ген может изменяться в несколько состояний; иногда таких соетояний бывает несколько десятков и даже сотен. Ген А может мутировать в состояние а1, а2, а3, . аn. Ряд состояний одного и того же гена называют серией множественных аллелей, а само явление — множественным аллелизмом,

Изучение серий множественных аллелей показало, что любая аллель такой серии может возникать мутационно непосредственно от аллели дикого типа или любого другого члена данной серии, а каждый из членов серии, по-видимому, имеет свою характерную частоту мутирования.

Наследование членов серии множественных аллелей подчиняется менделевским закономерностям. При этом, в отличие от генов, для которых известно только два состояния, сочетание двух разных членов серии множественных аллелей в гетерозиготе называют компаундом.

Серии множественных аллелей обнаружены у крупного рогатого скота, кроликов, мышей, морских свинок, дрозофилы, а также у кукурузы, табака, гороха и др. У человека известна серия аллелей: IA, IB, I0 которая определяет полиморфизм по группам крови:

Существование серии множественных аллелей локуса, определяющего самостерильность у растений, является тем механизмом, который в ряде случаев обеспечивает перекрестное оплодотворение. Так, было показано, что у табака, клевера и других растений на рыльцах прорастает только пыльца, несущая аллель, отличную от аллелей, имеющихся в генотипе рыльца по локусу самостерильности.

Распространенность множественного аллелизма среди животных, растений и микроорганизмов и наличие его у человека могла быть обусловлена тем, что это явление увеличивает резерв мутационной изменчивости, а потому имеет приспособительное значение в эволюции.

Читайте также: