Попытайтесь обнаружить ткацкий след в развитии вычислительной техники кратко

Обновлено: 02.07.2024

§ 6. История развития вычислительной техники

Веками люди совершенствовали способы и методы передачи, накопления, обработки и хранения информации. Информационная революция — кардинальное изменение инструментальной основы, способов передачи и хранения информации, а также объёма информации, доступной активной части населения.

Человечество прошло через несколько информационных революций, связанных с появлением речи, письменности, книгопечатания и средств коммуникации (телеграф, телефон, радио, телевизор). Пятая информационная революция связана с новыми информационными технологиями, основой которых является вычислительная техника.

В развитии вычислительной техники также можно выделить несколько этапов, связанных с возникновением разных поколений ЭВМ:

1) 40-е — начало 50-х гг. XX в. (создание ЭВМ на электронных лампах);

2) середина 50-х — 60-е гг. XX в. (разработка ЭВМ на дискретных полупроводниковых приборах);

3) середина 60-х — середина 70-х гг. XX в. (появление ЭВМ на интегральных микросхемах);

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.

1. Что понимают под информационными революциями? Какие информационные революции пережило человечество?

2. Выясните, когда отмечается День российской информатики. С чем связан выбор именно этой даты?

7. По какому принципу ЭВМ делятся на поколения? Дайте краткую характеристику каждому поколению компьютеров.

8. Предложите классификацию современных персональных компьютеров. Изобразите её в виде графа.

10. Что такое суперкомпьютеры? Для решения каких задач они используются?

11. Какое место в рейтинге суперкомпьютеров (Тор500) занимают российские разработки?

12. Назовите основные тенденции, прослеживаемые в развитии вычислительной техники.

Небольшая предыстория. Мой муж, который недавно увлёкся историей компьютерной техники, недавно спросил у меня: "Ты знаешь, для чего использовались первые перфокарты? Для ткачества! Можно сказать, что они были предшественниками тех самых огромных, в полкомнаты, вычислительных машин, в результате развития которых появились столь необходимые нам сегодня компьютеры". Этот факт меня очень удивил. Я поискала информацию в интернете и сегодня хочу поделиться с вами этой увлекательной историей.

Как ткацкий станок стал прадедушкой компьютера., фото № 1

Ещё в XVIII веке, а именно в 1725 году Базиль Бошо (Basile Bouchon) впервые предложил новый способ управления ткацким станком с помощью перфорированной бумажной ленты. Изобретенный им станок до сих пор хранится в Париже, в Музее искусств и ремесел. А выглядит он вот так:

Как ткацкий станок стал прадедушкой компьютера., фото № 2

В 1728 году Жан-Батист Фалькон (Jean-Baptiste Falcon) внес улучшение в ткацкий станок Бошо: управление с помощью рулона бумажной перфорированной лентой он заменил набором отдельных карт, прикрепленных друг к другу. Это позволяло быстро вносить измения в программу. А вот и сам станок Фалькона:

В 1801 году Жаккард усовершенствовал ткацкие станки (Бошо-Фалькон), которые работали нестабильно, и для управления которыми требовалось несколько человек. Станки Жаккарда считаются первым промышленным применением полуавтоматических машин для управления узорами на тканях. Перфокарты были соединены друг с другом и походили на широкую перфоленту больших размеров:

Как ткацкий станок стал прадедушкой компьютера., фото № 3

12 апреля 1805 года император Наполеон Бонапарт с супругой посетили Лион. Крупнейший в стране центр ткачества в XVI–XVIII веках изрядно пострадал от Революции и пребывал в плачевном состоянии. Большинство мануфактур разорились, производство стояло, а международный рынок все больше заполнял английский текстиль. Желая поддержать лионских мастеров, в 1804 году Наполеон разместил здесь крупный заказ на сукно, а годом позже прибыл в город лично.

В ходе визита император посетил мастерскую Жозефа Жаккара, где императору продемонстрировали удивительную машину. Установленная поверх обыкновенного ткацкого станка громада позвякивала длинной лентой из дырчатых жестяных пластин, а из станка тянулось, накручиваясь на вал, шелковое полотно с изысканнейшим узором. При этом никакого мастера не требовалось: машина работала сама по себе, а обслуживать ее, как объяснили императору, вполне мог даже подмастерье.

Наполеону машина понравилась. Несколькими днями позже он распорядился передать патент Жаккара на ткацкую машину в общественное пользование, самому же изобретателю положить ежегодную пенсию в 3000 франков и право получать небольшое, в 50 франков, отчисление с каждого станка во Франции, на котором стояла его машина. Впрочем, в итоге это отчисление сложилось в весомую сумму – к 1812 году новым приспособлением было оборудовано 18000 ткацких станков, а к 1825-му – уже 30000.

Вскоре после того как жаккардова машина получила широкое распространение, перфорированные карты (а также перфорированные ленты и диски) стали применять в разнообразных устройствах.

При подготовке публикации использованы материалы портала "Популярная механика".

Favorite

В закладки

Если вам нравится iPhone, скажите спасибо ткацкому станку. Краткая история программирования

Код. Сегодня он везде: в светофорах, в наушниках, в вашем чайнике, в автомобиле — куда не покажи пальцем, это будет работать благодаря коду.

Программисты создают настоящее и делают огромный вклад в будущее. Для многих программирование до сих пор кажется чем-то загадочным, сложным и даже странным.

В этом материале вы узнаете, откуда появился код, как он работает, кто стал первым программистом и причём здесь ткацкие станки.

У всех компьютеров общий предок — ткацкий станок


Их считывание происходило двумя методами: электромеханическим и фотоэлектрическим.

Для кого-то это может стать неожиданным фактом, но пра-прадедушкой современных компьютеров являются ткацкие станки. Со стороны так и не подумаешь: что может объединять потрясающие тонкие MacBook с этими огромными махинами.

Общий предок — перфокарты. Да, в компьютерах Mac они не использовались, но зато отлично применялись в компьютерах первого поколения. На них записывались программы.

Только в ЭВМ это были математические задачи, а в станках — картины.


На фотографии изображён рабочий образец Жаккардового станка.

Идею применять перфокарты в ткацких станках впервые реализовал французский изобретатель Жозеф Жаккар в 18 веке. В каждое из отверстий проходила отдельная игла. Благодаря этому появилась возможность создавать полотна с невероятной детализацией.

Некоторые из таких полотен можно сравнить с настоящими картинами, написанными профессиональными художниками.


Это портрет Жозефа Жаккара, сотканный на его изобретении.

Правда, для математических вычислений тогда ещё использовались счёты, которых хватало только для сложения и вычитания. Людям требовалось что-то большее.


Пускай при жизни Бэббидж не успел реализовать свой проект, вместо него это сделали сотрудники Музея науки в Лондоне. Сборка заняла два года в период с 1989 по 1991 год.

Взяв за основу Жаккардов станок, в 19 веке британский учёный Чарльз Бэббидж придумал машину с физическим механизмом. Перфокарты в ней использовались в трёх сценариях.

Перфокарты операций переключали машину между режимами сложения, вычитания, деления и умножения.

Перфокарты переменных управляли передачей данных из памяти в арифметическое устройство и обратно.

Числовые перфокарты могли быть использованы как для ввода данных в машину, так и для сохранения результатов вычислений, если памяти было недостаточно.

Цитата из описания машины на Википедии.

Как и в ткацком станке, аналитическая машина использовала иглы: когда они проходили через отверстия – механизм внутри приходил в действие. Если отверстий не было, иглы просто отталкивались. По сути эти перфокарты стали первыми программами.

К сожалению, при жизни реализовать своё изобретение ему не удалось.


Портрет Ады.

Идею вычислительных машин подхватила его ученица Ада Байрон. Она, кстати, написала первые в истории компьютерные программы.

Табулируюшая машина сделала работу с данными проще


Компьютеры и табуляторы действительно сделали людей продуктивнее во многих аспектах.

Все эти разработки тогда были уделом сообщества учёных. Массово перфокарты, кроме ткацких станков, нигде особо не использовались. Но всё поменяла табулирующая машина Германа Холерита. Американский учёный придумал её с целью ускорить процесс переписи населения.

Данные о возрасте, количестве детей, роде деятельности, расе и прочем записывались в ячейки на перфокартах. Ручной анализ всех этих данных занял бы значительно больше времени, а машина с этим справилась эффективнее. После этого на табулятор обратили внимание власти, военные, бухгалтеры, и перфокарты стали более массовыми.

Россия тоже внесла свой вклад в развитие компьютеров и программирования


Теперь набор перфораций стал нести в себе не только математические задачи, но и список симптомов у больных.

Стоит сказать ещё одно невероятное крутое устройство придумал в 1832 году российский учёный Семён Корсаков. Без шуток, это была, пожалуй, первая машина для интеллектуального поиска информации.

В основном она использовалась в медицинских учреждениях: пациент вводил информацию о своих симптомах, а машина по ним подбирала вероятное заболевание и список лекарств, необходимых для лечения. Симптомы вводились на перфокарты и поступали в считывающий блок машины.

Перфокарты работают просто, но программистов они сильно ограничивали


Все электронные вычислительные машины работают по бинарному принципу: на глубинном уровне все данные представляют собой набор единиц и нулей. 1 — заряд есть, 0 — заряда нет.

В перфокартах вырез представлял собой единицу. Все программисты тогда, по сути, занимались тем, что вырезали дырочки на картонных листах, и это было намного сложнее, чем писать код сейчас.

Ведь сегодня есть удобные среды для программирования с инспекторами. Если вдруг при компиляции кода случится ошибка, компьютер на неё укажет и предложит вариант исправления. Раньше такого не было.

Компиляторы упростили работу с кодом


Да-да, так и работает код. Поэтому, кстати, под новые процессоры требуется оптимизировать софт, потому что у всех платформ свои инструкции.

Для более удобной работы с кодом инженеры во всём мире принялись за разработку компиляторов — это специальные алгоритмы для перевода команд, написанных на привычном нам языке, в бинарный код.

Процессоры содержат в себе блоки с числовыми командами, которые отвечают за то, что выполнить. Когда программист принимается за компиляцию написанного им кода, процессор знает, как перевести на понятный ему язык команды, написанный человеком.

Так появился Ассемблер — язык программирования низкого уровня. Низкого, потому что он сочетал в себе элементы привычного человеческого языка и машинного кода. За ним стали развиваться уже языки программирования высокого уровня. В них теперь задействовались только команды, соответствующие нашему привычному человеческому языку.

Языки высокого уровня сделали работу с кодом понятной для всех

Повышенные требования к компьютерам стали основной причиной, по которой языки ВУ появились. Теперь на ЭВМ создавались сложные вычислительные алгоритмы, которые содержали тысячи строчек кода.

Немудрено, ведь человечество стало запускать ракеты и отправлять людей в космос. Код таких программ в рамках языков программирования низкого уровня был бы слишком сложным для человеческого ума. Найти какие-то ошибки в них было бы невозможно, а их наличие могло бы привести к катастрофическим последствиям.

Языки программирования высокого уровня привели к важному этапу в этой истории. Теперь код стал более понятным, изучать и писать его стало значительно проще.

Компьютеры стали превращаться в устройства для всех.

Благодаря играм появились графические интерфейсы


Недавно попробовал поиграть в ним с компьютером, вообще не представляю, как можно обыграть в этом машину.

Самая первая компьютерная игра появилась в начале 1940-х годов, её создал американский инженер Эдвард Гордон. Однажды за обедом вместе со своими коллегами он обсуждал идею того, что датчики, которые используются в счётчиках Гейгера для калибровки, могут научить компьютер играть. Они решили проверить гипотезу. Скажу заранее — у них всё получилось.

Так появился Nimatron — игровой автомат, весом в тонну, который показали на Всемирной выставке в Нью-Йорке. Он произвёл фурор: на ниматроне было сыграно порядка 100 тыс. партий. Забавно, что 90 тыс. из них выиграла машина.

С этого момента стало ясно, что компьютеры могут не только решать математические задачи, но и развлекать.


Без игр современная техника была бы совсем другой. Правда, компьютерные игры не появиться не могли.

В 1962 году появилась Spacewar! — это первая компьютерная игра в нашем привычном понимании. Она имела двухмерную графику и возможность кооператива для пары участников. Всё, что нужно было делать — это уничтожать космические корабли противника.

Spacewar! создали программисты из Массачусетского технологического университета. Группой руководили Стив Рассел и Мартин Гретц. Игры показали, что компьютеры могут быть понятными многим. Да-да, дело было в графике. Непосредственно сами системы компьютеров того поколения управлялись при помощи ввода команд в терминале.


Карл держит в руках самую первую компьютерную мышь.

Это было дико неудобно. Для игр задействовались манипуляторы — джойстики, с помощью которых пользователи управляли виртуальными объектами. Инженеры переняли некоторые эти принципы при создании элементов человеко-машинного интерфейса.

В 1968 году американский изобретатель Дуглас Карл Энгельбарт представил миру курсор. Он разрабатывался совместно с командой инженеров из Стэнфордского исследовательского института, и эта вещь изменила то, как люди пользуются компьютерами.

Разработка программного обеспечения перешла на новую ступень развития. Теперь программисты могли знать, как будет выглядеть софт, и понимать, как пользователи будут с ним взаимодействовать. Более того, существуют среды для визуального программирования.


Apple тоже внесла огромный вклад в развитие компьютеров.

Это способ, в котором создание софта осуществляется при помощи манипулирования графическими объектами. Для проектирования каких-то сложных сервисов они, конечно, не подходят, но для простеньких программ или для ознакомления — в самый раз.

Следом за Xerox Alto в 1980-х вышли Apple Lisa и Macintosh — первые массовые компьютеры с графическим интерфейсом на рынке. Теперь компьютеры научились решать не только научные задачи, но и повседневные.

Интернет — самое масштабное, что было создано с помощью кода


Недавно Тим Бернерс-Ли решил продать исходный код интернета в виде NFT-токена на аукционе. Стартовая цена: $1 тыс.

Официальным днём рождения интернета считается 1989 год, тогда Тим работал в CERN над внутренней сетью организации, в которой сотрудники могли бы обмениваться информацией. Он предложил прокачать изначальную идею и создать глобальный гипертекстовый проект. Все документы находящиеся в его пределах должны были связываться между собой гиперссылками.


NeXTcube был выбран не случайно. Система обладала невероятно удобным софтом для разработки.

Теперь сеть стала способом передачи информации и других цифровых продуктов, созданных при помощи кода. Наступила эпоха интернет-сервисов.

В итоге все привело к интернет-сервисам и искусственному интеллекту


Сегодня вся наша жизнь сфокусирована в одном устройстве, которое помещается в кармане.

В конце 20-го века компьютеры всё равно были устройствами, к которым люди обращались только в крайней необходимости. Потом появились смартфоны, вычислительная мощность росла, в итоге это привело к тому, что интернетом мы стали пользоваться каждый день часами.

Instagram, YouTube, Netflix, Facebook, признавайтесь, кто где дольше сидит? Влияние программистов и сервисов на нашу жизнь стало огромным. По-сути, круглые сутки мы живём с нескончаемом потоке информации. И теперь те принципы программирования, которые были заложены в прошлом веке, стали определять то, как мы едим, путешествуем, отдыхаем, одеваемся и живём.

Фишка нейросетей состоит в том, что они могут совершенствовать сами себя. Следующим шагом в истории программирования будет этап, когда искусственный интеллект сможет реплицироваться, придумывать новые алгоритмы и писать код. Кто-то боится, что компьютеры вовсе заменят людей и лишат их большинства профессий. Но я больше склоняюсь к мнению историка Юваля Ной Харари:

Исчезновение многих традиционных профессий в самых разных областях от искусства до здравоохранения, отчасти будет скомпенсировано созданием новых. Семейного врача, который занят в основном диагностикой известных болезней и выпиской знакомых лекарств, вероятно, заменит искусственный интеллект.

Но благодаря этому у нас останется больше денег на врачей и лаборантов, которые проводят революционные исследования, разрабатывают новые лекарства или хирургические процедуры.

Искусственный интеллект будет способствовать созданию новых профессий и другим путем. Вместо того, чтобы соревноваться с искусственным интеллектом, люди могут сосредоточиться на его обслуживании и совершенствовании.

Вот так одна идея использовать перфокарты в ткацких станках смогла создать будущее.

Favorite

В закладки


Электронно-вычислительные машины прочно вошли во все сферы жизнедеятельности современного общества. К своему высокотехнологичному состоянию средства вычислительной техники шли путем долгой эволюции. Кратко об истории развития вычислительной техники можно прочесть в данной статье.

История развития вычислительной техники

Информатика как наука, включает в себя много направлений, в том числе и раздел, связанный с изучением вычислительной техники. История развития вычислительной техники насчитывает тысячи лет, с момента возникновения первых счетных палочек до современных высокотехнологичных компьютерных средств.

Первые приспособления для счета

Первыми устройствами для выполнения простых арифметических операций, известными исторической науке, были счеты. Так, среди культурных артефактов древнего мира – Египта, Вавилона, Греции, Рима, Китая можно найти специальный предмет, предназначенный для счета – абак. Абак представляет собой доску, на которой в специальных углублениях расположены небольшие камни. Современные варианты счетов, в виде бусин, нанизанных на проволоку, используются, и посей день для выполнения операций сложения и вычитания.

Абак — приспособление для счета

Рис. 1. Абак — приспособление для счета.

Для более сложных операций, таких как умножение, деление, возведение в степень, вычисление корней и логарифмов, были придуманы различные приспособления. Это логарифмические линейки и таблицы. Логарифмическая линейка была изобретена в 1622 году англичанином Уильямом Отредом, а первая таблица появилась в 1614 году и содержала значения тригонометрических функций.

Механические устройства для вычислений

Арифмометр

Рис. 2. Арифмометр.

Итогом механического периода вычислительных приборов стала разработка английского ученого Чарльза Беббиджа, ставшая прообразом современного компьютера. Задумка аналитической машины, представляла собой проект вычислительного устройства общего назначения, в котором в качестве носителя информации использовались перфокарты. Эта машина, хоть и не была построена при жизни ученого, послужила примером для создания современных компьютеров.

Следующей вехой в развитии вычислительных комплексов явилось использование электромеханических устройств. Первым представителем семейства электромеханических машин стал табулятор Холлерита, разработанный в 1887 г, позволявший автоматизировать и ускорить обработку статистической информации.

Программируемые вычислители

Результатом эволюции вычислительных устройств явилось создание электронной вычислительной машины в том виде, в котором мы привыкли ее сейчас видеть. Однако и ЭВМ прошли несколько этапов развития, связанных в первую очередь, с развитием электронной элементной базы:

К первому поколению вычислительных устройств , базирующемуся на лампах можно отнести ENIAC ( США, 1946 г.), ЭВМ БСЭМ-2 (СССР, 1949 г.). Эти машины позволяли производить до 20 тысяч операций в секунду и в качестве устройства ввода использовали перфокарты. Огромные габариты и энергопотребление таких устройств обусловлено особенностями используемой элементной базы.


Самый первый компьютер под названием ENIAC, созданный в 1946 году имел массу более двадцати тонн и занимал огромное помещение площадью порядка 150 квадратных метров.


Рис. 2. ENIAC — первый компьютер на электронных лампах.

Следующий этап развития ЭВМ связан с изобретением полупроводникового транзистора — компактного и экономичного аналога электронной лампы. Быстродействие подобных устройств увеличилось уже до сотен тысяч операций в секунду, а их габариты и энергопотребление значительно снизилось. Что привело к более широкому распространению ЭВМ и упрощению взаимодействия с пользователем. Одним из представителей семейства полупроводниковых машин является ЭВМ БСЭМ-6 (СССР, 1959 г.)

Объединение транзисторных схем в отдельные интегральные микросхемы (ИМС) дало толчок третьему поколению компьютеров. Для этого этапа характерно дальнейшее увеличение производительности и снижение стоимости производства и эксплуатации. А также появление различных периферийных устройств, таких как накопители на магнитных дисках, дисплеи, графопостроители. Среди машин третьего поколения можно выделить IBM-360 (США) и ЕС ЭВМ (СССР).

В настоящее время все компьютеры относятся к четвертому поколению и основаны на использовании микропроцессоров — сверхбольших интегральных схем. Это первый тип компьютеров, который появился в розничной продаже.

Первые компьютеры — это профессия. До того как были созданы компьютерные устройства, компьютерами называли людей, занимавшихся выполнением сложных вычислений на арифмометрах. Как правило, этой профессией овладевали женщины, многие из которых затем с успехом работали программистами.

Что мы узнали?

История развития вычислительной техники берет свое начало в древности. Первыми приспособлениями для вычислений были счеты, логарифмические линейки, арифмометры. Прообразом современного компьютера была аналитическая машина Чарльза Бэббиджа. Развитие компьютерной техники проходило параллельно совершенствованию ее элементной базы: от вакуумных ламп до интегральных микросхем.

Читайте также: