Получение биоразлагаемых полимеров из целлюлозосодержащих отходов в условиях школьной лаборатории

Обновлено: 05.07.2024

Технология производства искусственных биодеградируемых полимеров. Медико-биологические свойства биоразлагаемых пластиков, их виды, стандартизация, основные производители. Анализ развития мирового рынка биоразлагаемых полимеров, их экологическое значение.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 13.02.2014
Размер файла 639,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Биоразлагаемые полимеры можно перерабатывать с помощью большинства стандартных технологий производства пластмасс, включая горячее формование, экструзию, литьевое и выдувное формование.

Существует две основных сферы жизнедеятельности человека, которые остро нуждаются в применении искусственных биодеградируемых полимеров, - это охрана окружающей среды и медицина.

В настоящее время для защиты окружающей среды от пластмассовых отходов активно разрабатываются два основных подхода: захоронение (хранение отходов на свалках) и утилизация (сжигание; пиролиз; рециклизация - переработка). Однако как сжигание, так и пиролиз отходов тары и упаковки и. вообще пластмасс кардинально, не улучшают экологическую обстановку. Но многие преимущества синтетических полимеров - их разнообразие, стабильность, способность образовывать пространственные сетки -- затрудняют вторичную переработку.

Новые биоразлагаемые полимеры входят на рынок, неизменно вытесняя другие виды продукции, причем это сопровождается сменой ключевых игроков на рынке. Несмотря на то, что этот нишевый рынок приобрел коммерческое значение более 20 лет назад, его развитию до сих пор мешает целый ряд нерешенных проблем, среди которых достаточно упомянуть высокие цены, отсутствие промышленной инфраструктуры и сильные законодательные ограничения.

Североамериканский рынок биоразлагаемых полимеров за последнее время продвинулся вперед существенно меньше, нежели рынки Европы и Японии, однако основными стимулами на рынке США являются новые законодательные акты и ожидаемые повышения цен на размещение отходов на свалках, которые грядут в ближайшие пять лет. Если говорить о применении этих материалов, можно уверенно сказать, что на упаковку, включая упаковку материалов навалом, приходится около 47% всего рынка этих полимеров в 2005 году. Однако будущее за рынком упаковки для компоста, на которую к 2010 году будет приходиться около 50% всего рынка. Прочая продукция - медицинская и санитарная, сельскохозяйственная и бумажных покрытий играет меньшую, но не менее важную роль в общей доле рынка, представляя 11% всего объема использования на 2005 год.

Для создания условий для устойчивого роста этой отрасли в Северной Америке, должна быть создана инфраструктура для сбора и переработки биоразлагаемых полимеров; потребители при этом должны сознательно смириться с дополнительными неудобствами и расходами; с экономической точки зрения биоразлагаемые материалы должны рассматриваться как реалистическая и рентабельная альтернатива накоплению мусора всеми действующими сторонами, а также важным бизнесом в краткосрочном и среднесрочном временном диапазоне.

Возрастающее потребление полимеров для тары и упаковки, а также других бытовых изделий разового пользования создают проблему пластмассового мусора и угрозу окружающей среде. Захоронение пластмассовых отходов - это перекладывание сегодняшних проблем на плечи будущих поколений. Утилизация путем сжигания или пиролиза кардинально не улучшает экологическую обстановку. В определенной степени этот вопрос решает вторичная переработка, однако при этом требуются значительные трудовые и энергетические затраты: отбор из бытового мусора пластиковой тары и упаковки, разделение пластиков по виду, мойка, сушка, измельчение и только затем переработка в конечное изделие. Сбор и повторная переработка полимерной тары и упаковки приводят не только к последующему их удорожанию, но и снижают качество рециклизованного полимера. К тому же не каждый потребитель согласен использовать упаковку из такого пластика.

Специалисты считают, что только для транспортных и непищевых упаковок возможно применение до 25% вторичных пластмасс, но никак не для пищевых продуктов. Даже если допустить, что значительная часть тары и упаковки будет использована вторично, возникает вопрос: какая кратность переработки является допустимой, когда наступит время захоронения или, если возможно, сжигания отработанной упаковки? В любом случае утилизация полимеров даже путем вторичной переработки не снизит напряженность экологической обстановки. Радикальным решением проблемы полимерного мусора, по мнению большинства специалистов, является разработка, производство и применение широкой гаммы полимеров, способных при соответствующих условиях биодеградировать на безвредные для экологической среды компоненты.

Сегментация мирового рынка

Благодаря стремлению решить экологические проблемы, а также снизить зависимость полимерной отрасли от ископаемых сырьевых продуктов, цены на которые постоянно растут, рынок биополимеров активно расширяется. Наибольший рост мирового рынка биоразлагаемых полимеров, согласно прогнозам аналитиков, ожидается в течение ближайших 5 лет. Мировой рынок биоразлагаемых полимеров в 2011 г. оценивался в $1,484 млрд., в 2016 г. его объем в денежном выражении достигнет $4,14 млрд. Есть и более смелые прогнозы. Так, аналитики IBAW считают, что к 2020 г. производство биоразлагаемых пластиков превратится в глобальный бизнес стоимостью $38 млрд.

Сегмент упаковочных биоматериалов составляет около 70% общего объема рынка, так как широкое использование экологически безопасного и "самоутилизируемого" материала в качестве пищевой упаковки предпочтительнее по сравнению с полимерами из нефти или природного газа. К 2016 г. ожидается незначительное уменьшение доли данного сектора до 65%. В 2011 г. в денежном выражении производство биополимеров для упаковки составило $1,04 млрд., а в 2016 г. оно увеличится до $2,7 млрд.

Другой сегмент - производство волокон/ткани - также продемонстрирует существенный рост в течение прогнозируемого периода, особенно в секторе продуктов гигиены. Использование биоразлагаемых полимеров при производстве волокон и ткани в 2011 г. оценивалось в $213,4 млн., а в 2016 г., согласно прогнозам, достигнет $692,8. Таким образом, наиболее значительный рост мирового рынка биопластиков ожидается в секторах упаковки и волокон/нитей.

Виды биоразлаемых пластиков

Биополимерами принято называть материалы, которые разлагаются микроорганизмами и получены из возобновляемых и не возобновляемых сырьевых источников, а также материалы, которые не разлагаются микроорганизмами, но получены из возобновляемых ресурсов. В области разработки биоразлагаемых полимеров можно выделить 3 основных направления:

получение полиэфиров гидроксикарбоновых кислот,

получение пластмасс на основе воспроизводимых природных полимеров,

придание биоразлагаемости промышленным многотоннажным полимерам.

Многотоннажные полимеры.

Придание биоразлагаемости многотоннажным промышленным полимерам (полиэтилену, полипропилену, поливинилхлориду, полистиролу и полиэтилентерефталату) может быть обеспечено несколькими способами:

введением в структуру полимеров молекул, содержащих в составе функциональные группы, способствующие ускоренному фоторазложению полимера;

получением композиций многотоннажных полимеров с биоразлагаемыми природными добавками, способными в определенной степени инициировать распад основного полимера;

направленным синтезом биодеградируемых пластических масс на основе промышленно освоенных синтетических продуктов.

Рынок упаковки

Наиболее существенную долю рынка сегодня занимают полимеры из полилактида, далее следуют пластмассы на основе крахмала и целлюлозы. Однако, согласно прогнозам Pira International Ltd., традиционные биопластичные упаковки на основе крахмала, целлюлозы и полиэфира к 2020 г. будут постепенно вытесняться биополиэтиленом. Сегодня доля биодеградируемого ПЭ составляет менее 1%, к 2020 г. этот материал может занять четверть всего рынка биоупаковки.

Стандартизация биополимеров

Основной проблемой стандартизации является классификация и типологизация биополимеров. Многие эксперты сходятся во мнении, что критерий "возобновляемости углерода" должен быть главным признаком классификации биополимеров. Кроме того, в качестве признаков классификации предлагаются параметры, определяющие содержание "растительной массы" или "биологической массы" в составе биополимера. В случае решения проблемы стандартизации биополимеров возможен переход к утверждению стандартов по компостированию биополимеров и условий их переработки на предприятиях утилизации. На данном этапе необходимо определить допустимые нормы выхода СО2 при утилизации биополимеров и способы его абсорбции с целью ограничения дополнительных выбросов парниковых газов в атмосферу.

Основные производители

В настоящее время производители полимеров на базе молочной кислоты значительное внимание уделяют вопросам удешевления биоразлагаемой продукции за счет создания высокопроизводительных технологических процессов. Активную работу в совершенствовании технологии производства молочной кислоты проводит американская фирма Cargill Inc. На базе молочной кислоты она освоила выпуск биоразлагаемого полимера Eco-Pla, листы из которого сравнимы по ударопрочности с полистиролом. Покрытия и пленки отличаются высокой прочностью, прозрачностью, блеском, приемлемой температурой экструзии (около 200°С), имеют низкий коэффициент трения. Пленка хорошо сваривается и при этом может биоразлагаться при компостировании. Фирмой Cargill Inc. в результате проведенных работ освоено производство полилактида ферментацией декстрозы кукурузы мощностью до 6 тыс. т/год. В перспективе она планирует расширить производство до 50-150 тыс. т/год и снизить стоимость полилактида с $250 до $2,2/кг.

Голландская фирма CSMN выпускает 34 тыс. т/год молочной кислоты с возможным увеличением мощности в 2 раза. Технология получения кислоты разработана и запатентована совместной фирмой PURAC-GRUPPE, поставляющей молочную кислоту под маркой PURAC на мировой рынок.

С целью удешевления полимера на основе молочной кислоты японской фирмой Mitsui Toatsu освоена опытно-промышленная установка получения полилактида в одну стадию. Образующийся продукт представляет собой термостойкий полимер со свойствами лучшими, чем пластик, полученный по двухстадийному процессу. При этом цена нового материала составляет $4,95/кг. На основе этого полилактида фирма Dai Nippon разработала жесткую пленку, по свойствам сравнимую с полистиролом и эластичную - с полиэтиленом. полимерный биодеградируемый медицинский экологический

Исследованием технологии получения полимеров на основе полимолочной кислоты с 1991 г. активно занимается финская фирма Neste, где всесторонне изучаются физико-механические свойства полилактида с молекулярной массой 5000-10000 и рассматриваются области применения такого полимера.

Департамент биотехнологии японской группы Toyota построил пилотную установку мощностью 1 тыс. т по производству полимолочной кислоты. Hycail - предприятие, находящееся в Нидерландах, пустило промышленное производство полимолочной кислоты мощностью 50 тыс. т продукта в год.

В США агрохимическая группа ADM и биотехнологическая компания Metabolix планируют построить завод по производству биополиэфира (биополиэстера) мощностью 50 тыс. т/год. Американская группа Procter&Gamble Chemicals планирует пустить в Европе производство ферментативного полиэстера. Завод компании Tianan по производству полимолочной кислоты работает в Китае.

На основе крахмала фирма Biotec GmbH производит компостируемые пластические массы для различных областей применения: литьевой биопласт в виде гранул для литья изделий разового назначения, пеноматериалы для упаковки пищевых продуктов, гранулы для получения компостируемых раздувных и плоских пленок Bioflex. Высокая экологичность и способность разлагаться в компосте при 30°С в течение 2 месяцев с образованием благоприятных для растений продуктов распада делает перспективным применение подобных материалов в быту.

В рамках программы по охране окружающей среды чешская фирма Fatra совместно с производителями крахмала и институтом полимеров разработала разлагающуюся при компостировании упаковочную пленку марки Ecofol на основе крахмала с полиолефином. Использование недорогих компонентов позволило получить готовую пленку по 70 крон/кг. Такая пленка в условиях компостирования разлагается за 3-4 месяца.

Японские исследователи при получении биодеструктируемых полимерных материалов, находящих применение в сельском хозяйстве, используют обработанную термомеханически древесную массу в композиции с поливинил-ацетатом и глицерином. В последнее время особое внимание разработчиков привлекают композиции, содержащие хитозан и целлюлозу. Из них получают биоразлагаемые пластики, пленку с хорошей прочностью и водостойкостью, когда в смеси содержится 10-20% хитозана. Тонкие пленки деструктируют в почве за 2 месяца, полностью растворяются и исчезают. Плотность пластика целлюлоза-хитозан - 0,1-0,3 г/куб. см. Фирмой Showa (Япония) разработан биодеструктируемый полимер для внешнего корпуса телевизоров и персональных компьютеров. Полимер является одним из типов термореактопластов, получаемых при нагревании аминосмолы с протеином, хотя состав подробно не обсуждается. Предложенный материал имеет высокую теплостойкость, прочность и упругость, разлагается в воде и под действием подпочвенных бактерий.

BASF и Bayer AG занимаются получением биоразлагаемых синтетических пластиков путем синтеза полиэфиров и полиэфирамидов. На основе такого полиэфира еще в 1995 г. BASF освоил производство биоразлагаемого пластика Ecoflex F, применяемого для изготовления мешков, сельскохозяйственной пленки, гигиенической пленки, для ламинирования бумаги. Механические свойства Ecoflex F сравнимы с ПЭНП. Из него получают пленку с высокой разрывной прочностью, гибкостью, водостойкостью и проницаемостью водных паров. Перерабатывается он методом экструзии с раздувом и охлаждением на валках как полиэтилен низкой плотности. Его способность к деформации позволяет получить тонкие пленки (менее 20 мкм), которые не требуют специальной обработки.

Пленка из Ecoflex F хорошо сваривается, на нее наносится печать на обычном оборудовании. Использование фирмой собственного исходного сырья, производственных мощностей позволяет производить гранулы синтетического полиэфира по EUR6,5-8,0/кг в зависимости от качества. Композиции, содержащие основной компонент - сополиэфир повышенной вязкости, используют для получения биоразлагаемых пенопластов для упаковки. Со второй половины 90-х годов прошлого века Bayer AG выпускает новые компостируемые, биоразлагаемые в аэробных условиях термопласты ВАК-1095 и ВАК-2195 на основе полиэфирамида. Материал имеет высокую адгезию к бумаге, что позволяет широко использовать его для изготовления влаго- и погодостойкой упаковки, используемой в пищевой промышленности и сельском хозяйстве. Мешки из ВАК-1095 в компосте при соответствующем увлажнении разлагаются за 10 дней на биомассу, диоксид углерода и воду. Переработка композиций в конечные изделия ведется на стандартном оборудовании. Таким образом, можно достаточно быстро освоить выпуск новых экологически безопасных полимеров и в значительной степени решить задачу понижения цены биоразлагаемых пластиков, уменьшить проблему полимерного мусора из отходов тары и упаковки и сократить захоронения полимеров в землю.

Выводы

Биопластики - эффективные и технологически зрелые материалы. Они способны улучшить баланс между экологическими выгодами и воздействием пластмасс на окружающую среду. Анализ жизненного цикла показывает, что биопластик может сократить выбросы С02 на 30-70% по сравнению с обычной пластмассой (в зависимости от материала и области применения). Более того, увеличение использования биомассы в биопластике имеет явное преимущество: возобновляемость и доступность.

Направления применения биополимеров расширяются - от бытовых и сельскохозяйственных до общепромышленных и машиностроительных. Опережающее развитие технологий производства и переработки биодеградируемых и компостируемых полимеров имеет государственную поддержку в ряде стран Европы.

Литература

2. Источник: РБК-Украина. Международная маркетинговая группа 2003-2013

Подобные документы

Характеристика биодеградируемых (биоразлагаемых) полимеров - материалов, которые разрушаются в результате естественных природных (микробиологических и биохимических) процессов. Свойства, способы получения и сферы использования биодеградируемых полимеров.

реферат [25,3 K], добавлен 12.05.2011

Актуальность замены полиэтиленов и полипропиленов на растительные компоненты. Биоразлагаемые полиэфиры, пластмассы с природными полимерами. Основные модификации синтетических полимеров. Анализ рынка биоразлагаемых материалов на сегодняшний день.

реферат [28,7 K], добавлен 03.05.2012

Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.

реферат [28,1 K], добавлен 27.05.2010

Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.

реферат [19,8 K], добавлен 11.08.2002

Проблемы производства и потребления биоразлагаемых (фоторазрушаемых композиций) упаковочных материалов. Выделение и очистка биоразлагаемого полигидроксибутирата для изделий медицинского назначения. Способ производства пленки (поливом и с раздувом).

В настоящее время созданы материалы, которые вечны во времени. Они прочные и долгосрочные. Например, пластик. В природу выбрасывается около 10 миллионов тонн в год пластиковых отходов. Они попадают в океаны и наносят большой вред морским животным. Как известно, время разложения одной пластиковой бутылки более 400 лет. А масштабы производства пластика всё растут. Обычные методы переработки мусора – сжигание, закапывание и даже вторичная его переработка не решают проблему. Так при сжигании пластика в атмосферу выделяются ядовитые газы, отравляющие живые организмы и раздражающие озоновый экран, закопанный пластик будет веками загрязнять нашу почву. Отличный способ избавления от пластика – его вторичная переработка в производстве - рециклинг, но это при условии соблюдения раздельного сбора мусора, а такая культура в нашем обществе, к сожалению, воспитывается очень медленно.

Таким образом, тема моего исследования актуальна, ведь настало время, когда требуются инновационные способы решения данной проблемы. В настоящее время активно развивается такой метод борьбы с глобальным загрязнением планеты от пластика, как использование новых материалов (экопластик).

И я считаю, что, если весь мир начнёт производить биоразлагаемый пластик, то наша планета станет гораздо чище.

1.2. Цель проекта: изучить виды биоразлагаемого пластика, сделать экопластик самостоятельно.

1.3. Задачи проекта:

- Выяснить сведения о происхождении пластика, его пользе и вреде.

- Изучить литературу о биоразлагаемых материалах, биопластике.

- Ознакомиться с биоразлагаемым пластиком, представленным в магазинах.

- Сделать самостоятельно экопластик.

- Изучить, как быстро разлагается самодельный экопластик.

- сбор материала и описание;

- наблюдение и фотофиксация;

- сравнение и анализ изменений;

- ведение дневника наблюдений.

1.5. Объектом моего исследования стал процесс приготовления биоразлагаемого пластика, а предметом – свойства вещей из биопластика.

1.6. Гипотеза: я предположил, что, изучив свойства предметов из биопластика, можно доказать не только их пользу для человека, но и безопасность для окружающей среды и решил экспериментально проверить эту гипотезу.

2. Основная часть

2.1. Рождение пластика

Загрязнение Земли началось именно с изобретения пластика, когда человечество, пройдя каменный, бронзовый и железный век, вступило в век пластиковый. Современную жизнь уже нельзя представить без пластика – он повсюду, и он разный. Пластик теперь заменяет всё: древесину, ткани, металлы, стекло…

2.2. Польза и вред пластика

В книге В.А. Проскурякова и Л.И. Шмидта я прочитал, что пластмасса – это материал уникальный, экономичный, лёгкий, надёжный, качественный и энергосберегающий. И ничто так активно не развивалось за последние 150 лет, как пластмасса! [6].

Пластмассовая промышленность изменила нашу жизнь к лучшему. Из Большой иллюстрированной энциклопедии я узнал, что были созданы термостойкая посуда для микроволновых печей, прочные защитные шлемы для полицейских, биологически совместимые с иммунной системой человека протезы, замена металлических деталей несущих винтов сложной техники и многое другое [2].

За последние 20 лет пластик полностью заменил упаковочную бумагу и стеклянную тару. Такая упаковка красочна, привлекательна, долго сохраняет продукты свежими. Пластик не ржавеет, не гниёт, не разлагается… Но эта особенность пластика – и есть самый его большой недостаток. Он перевесит все достоинства разом!

Поэтому Мировой океан и его обитатели в опасности. По данным учёных, от загрязнения окружающей среды пластиковыми отходами в мире гибнет более миллиона морских птиц и более ста тысяч млекопитающих в год.

Опасно ещё и то, что пластик распадается от солнечного света и крошится на маленькие кусочки. Их сложно разглядеть в океане, но пробы воды показывают высокую концентрацию пластиковой крошки. Они попадают в пищу всех живущих на планете [5]. Недавние исследования учёных доказали, что пластик уже повсюду: в воздухе, воде, даже в соли. А мы пьём эту воду, дышим этим воздухом, употребляем эти продукты в пищу!

2.3 Что такое биопластик

В Большом энциклопедическом словаре под редакцией А.М. Прохорова я прочитал, что пластиковая масса – это материал на основе синтетических полимеров, способный приобретать заданную форму при нагревании под давлением и устойчиво сохранять её после охлаждения [3].

Биопластики — это полимеры, полученные из растительного сырья. Они могут быть сделаны из побочных продуктов сельского хозяйства или из вторичного полимерного сырья, с применением микроорганизмов. В результате производится материал, доступный для природных деструкторов – бактериологических организмов, разлагающих полимеры [1]. Создание биоразлагаемого пластика считается лучшим способом борьбы за чистоту планеты.

Виды разлагающихся полимеров

В настоящее время уже создан пластик, основанный на биополимерах, т.е. веществах, существующих в природе, которые способны перерабатывать бактерии.

Биоразлагаемый пластик можно разделить на группы:

1. полилактиды (ПЛА), то есть полимеры на основе молочной кислоты;

2. полигидроксиалконоаты (ПГА) — продукты переработки растительного сахара микроорганизмами;

3. полимеры на основе крахмала.

2.4 Биопластик в промышленных масштабах

Производство биополимеров всё время растёт. К 2020 году процент использования таких материалов уже составляет 43% [8]. Кукуруза – сырьё для изготовления пластика. Из специально выращенных сортов извлекают крахмал или сахар и производят природную биомолекулу, пригодную для дальнейшей переработки [Приложение 2]. Крахмал — изделия из модифицированного крахмала можно красить, но его технологические свойства ещё уступают полиэтилену. И всё-таки из крахмала уже делают поддоны для пищевых продуктов, сельскохозяйственные плёнки, упаковочные материалы, столовые приборы, сетки для хранения овощей и фруктов и многое другое [Приложение 3].

Полимеры молочной кислоты (ПЛА)

Полилактиды получают после фeрмeнтации сахаров кукурузы. ПЛА смешивaют с крaхмалом для лучшего разложения. Из них делают изделия с коротким сроком службы: упаковки для фруктов и овощей, яиц, некоторых лекарств, хирургические нити. В полилактидные плёнки упаковывают бутерброды и цвeты, а в полилактидные бутылки разливают соки и молоко [Приложение 3].

Это самые распространённые материалы, получаемые на основе сахара. Из них делают упаковочные и нетканые материалы, одноразовые салфетки и предметы личной гигиены, водоотталкивающие покрытия для бумаги.

2.5 Проблемы производства биоразлагаемого пластика

Учёные считают, что производство биопластиков к 2021 году будет составлять до 5 миллионов тонн, но говорить о массовом выпуске пока не представляется возможным. Проблема в деньгах, т.к. биопластики стоят в 2–7 раз дороже, чем их аналоги. В настоящее время в масштабе производят только полимеры с уникальными свойствами, например, те, которые используют в фармакологии и медицине [1].

2.6 Основные области применения биопластика

· Упаковка (примерно 60%)

· Сельское хозяйство (защитные плёнки, сетки и поддоны для хранения урожая)

· Электроника (разъёмы, оболочка компьютеров, зарядные устройства, мобильные телефоны, клавиатуры).

· Медицина – полимеры, совместимые с человеческими тканями, которые легче рассасываются: больных не надо оперировать повторно, как это сейчас происходит с металлическими штифтами [7].

3. Практическая часть (описание исследования)

А теперь я расскажу, как я проводил свой эксперимент по созданию биопластика и исследованию его свойств.

День 1 Проанализировав всю информацию, я решил сделать экопластик из молока. Я нашёл рецепт для изготовления биомассы из молока. Взял кастрюлю, нагрел в ней стакан молока почти до кипения, вылил в молоко столовую ложку уксуса. Молоко стало сворачиваться. Процедил его через марлю. Получил материал, похожий на мягкий пластилин. Сделал форму для ложек, стал формировать ложку из получившейся массы. Я заметил, что масса скатывается. Я предположил, что пропорция для изготовления массы неверная.

День 2-4 После высыхания ложка треснула, и я убедился, что пропорция была неверная. Решил подобрать правильную пропорцию. В итоге получил следующую пропорцию: молоко к уксусу = 16:1. Изготовив массу в данной пропорции (однородная, пластичная, легко раскатывается), сформировал пуговицы.

День 5-8 Пуговицы затвердели. Я заметил, что на них появилась плесень. Стал искать информацию о том, как можно сохранить натуральный продукт максимально долго. Узнал о различных консервантах и решил использовать глицерин. Изготовил массу с добавлением глицерина (заменил одну часть молока на глицерин). Из получившейся массы сделал пуговицы.

День 9-15 Пуговицы высохли. Начинаю эксперимент: поместил пуговицу в торфяной горшочек, засыпал почвой и посадил семена петрушки. Для сравнения во вторую ёмкость поместил магазинный экопластик. Некоторые пуговицы я оставил на открытом воздухе.

День 16 Я задался вопросом, как мои пуговицы поведут себя в воде? Взял стакан, поместил в него пуговицу, начал наблюдение. Для сравнения во второй стакан поместил экопластик, купленный в магазине.

День 17-26 Каждый день поливал закопанный пластик. На 26 день в горшочке с самодельным пластиком проросла петрушка. При этом земля была покрыта белой плёнкой. Я сделал вывод, что экопуговицы начали процесс разложения. В горшке с магазинным экопластиком не было никаких изменений.

Также в стакане с самодельным пластиком вода стала мутной, но пуговица сохранила свою форму, но стала чуть мягче. В стакане с магазинных экопластиком вода прозрачная, пластик такой же твёрдый.

День 27-34 В горшочке с магазинных экопластиком также проросла петрушка. Продолжаю каждый день поливать. В стаканы добавил воды, так как она испарилась.

День 35-49 Я обратил внимание, что петрушка завяла. Мне подсказали, что надо горшочки переставить ближе к свету, что я и сделал.

В стакане с самодельной пуговицей произошли значительные изменения: вода мутная, покрылась толстой белой плёнкой, появился неприятный запах, пуговица стала мягкой – процесс разложения явно выражен. В стакане с магазинным экопластиком процесс без изменений: вода прозрачная, без запаха, пластик твёрдый.

День 50-60 Я обратил внимание, что в горшке с самодельным пластиком снова ожила петрушка. Продолжаю поливать. В стаканах заменил воду.

День 61-70 Пока идёт процесс разложения биопластика, я решил проверить самодельный пластик на прочность. Для этого я пришил пуговицы, затем ткань постирал с другими вещами. Первая стирка холодная, температура воды 30 градусов, вторая стирка при температуре воды 60 градусов, третья стирка при температуре воды 90 градусов. Пуговицы выдержали данное испытание на отлично, только после третьей стирки края пуговиц размыло, так как они были не прессованы, как вся пуговица. Хочу обратить внимание, что каждая стирка заканчивалась отжимом на 1200 оборотов, а это достаточно большая нагрузка.

День 71-80 Продолжаю испытывать пуговицы на прочность: бросал их с высоты 1 м, 2м, 2,6м. Пуговицы выдержали и это испытание на отлично.

День 81-99 Я решил раскопать биопластик. С магазинным экопластиком не произошло никаких изменений: он сохранил свой цвет, форму и прочность. Самодельный экопластик полностью разложился, от него не осталось и следа!

В стаканах с водой аналогичная ситуация: с магазинным экопластиком не произошло особо никаких изменений (слегка пожелтел), а самодельный экопластик почти полностью растворился, лишь на поверхности воды плавали сильно размягчённые остатки пуговицы [Приложение 4].

В ходе своего наблюдения я провёл сравнительный анализ предметов из биопластика. Контрольной группой у меня были ложки из биопластика, купленные в магазине.

Мне интересно было самому получить биомассу из молока, а также провести исследования свойств предметов, сделанных из неё.

Цель моего проекта достигнута и задачи решены: мне удалось в домашних условиях получить образец биоразлагаемого пластика на основе природного продукта – молока. Полученный биопластик способен полностью разлагаться в почве примерно в течение 90 дней, а также полностью разлагается в воде за более длительный промежуток времени. При этом данный биопластик достаточно прочен и влагоустойчив. Я считаю, что его можно использовать для производства одноразовой посуды, которая составляет четверть всех пластиковых отходов. Созданный мной экопластик был получен из молочной сыворотки, которая появляется при скисании молочных продуктов, таким образом, экопластик, полученный в ходе моей исследовательской работы, можно производить из сыворотки испорченных (просроченных) молочных продуктов.

Моя гипотеза подтвердилась: изделия из созданного мною биопластика экономически выгодны, достаточно прочны и удобны в употреблении, а главное экологически безопасны.

Мне было интересно проводить исследование. Я теперь уверен, что решить проблему загрязнения планеты от пластика можно при замене его биоразлагаемыми материалами, прежде всего природного происхождения.

Кузнецова Ольга Анатольевна

В данной работе учащиеся рассказывают о том ,что такое биопластик, в чем преимущества биопластика, какие бывают разновидности биопластика. В работе дана историческая справка о появлении первого биопластика, практическом применении биопластика и промышленном производстве. В экспериментальной части работы учащиеся предлагают способ получения биопластика в условиях школьной лаборатории. К работе прилагается видео о получении биопластика и презентация данной работы.

ВложениеРазмер
glavnyy_dokument.docx 760.34 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

“Лицей г. Отрадное” Кировского района Ленинградской области

Учебно –исследовательская работа по химии

Работу выполнили учащиеся 10н класса

Руководитель Кузнецова Ольга Анатольевна

2.Что такое биопластик и его разновидности. . . . . . . . . . . . . . . . . . . . . . . . . . .4

3.Историческая справка. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Практическое применение биопластика в Европе. . . . . . . . . . . . . . . . . . . . .11

5.Промышленное производство биопластика. . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.Экспериментальная часть работы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

7.Заключительная часть. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

8.Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Загрязнение окружающей среды является одной из проблем, решение которой уже имеется, но многие не понимают для чего это нужно, и не думают о том, что рано или поздно экологическая катастрофа затронет каждого человека на земле.

Рассмотреть биопластик, как один из вариантов решения проблемы загрязнения окружающей среды.

Рассмотреть виды возможных биопластмасс.

Изучение литературу по теме загрязнения окружающей среды.

Подбор материалов для изготовления биопластика в домашних условиях.

Осуществление эксперимента по созданию биопластика в домашних условиях.

1.Что такое биопластик и его разновидности

Биопластик – пластмассы, полученные из возобновляемых источников биомассы, таких как растительные жиры и масла, кукурузный крахмал или микробиоматерия. Биопластики могут быть сделаны из побочных продуктов сельского хозяйства или вторичного полимерного сырья с применением микроорганизмов. Обычные пластики как правило получают из нефти и газа, их производство требует большого количества ископаемого топлива, а образование парниковых газов происходит в большем объёме чем при производстве биопластмасс. Некоторые, но не все из биопластмасс являются биоразлагаемыми. Биопластмассы могут состоять из крахмалов, целлюлозы, биополимеров и различных других материалов. Биопластик – это не один материал , к нему относят целое семейство материалов с различными свойствами и областями применения. В соответствии с определением, которое дается Европейской ассоциацией производителей, поставщиков и потребителей биопластиков и других биоразлагаемых материалов European Bioplastics, биопластиком является материал, который имеет биологическое происхождение или/и является биоразлагаемым. Семейство биопластика условно можно разделить на четыре основные группы:

Группа 2. Биоразлагаемые пластики из ископаемого сырья. Это полностью синтетические материалы, получаемые традиционными методами нефтехимической промышленности из вполне классического углеводородного сырья, однако способные в силу своих структурных особенностей подвергаться биодеградации. Это в первую очередь полибутираты (если точнее, сополимеры адипиновой кислоты, диметилтерефталата и 1,4-бутандиола; общепринятая аббревиатура PBAT), полибутиленсукцинаты (PBS), поливиниловый спирт (PVAL), поликапролактоны (PCL) и полигликолевая кислота (PGA). К этой группе с очень большими оговорками можно отнести традиционные пластики, модифицированные с помощью промоторов деполимеризации, либо полученные с введением нестойких к гидролизу сополимеров. Эта подгруппа в настоящее время почти полностью представлена модифицированным ПЭТ, где в качестве сополимера используется, например, PBAT.

б ) биоразлагаемые пластики из природного сырья; полимерная цепь образуется в ходе жизнедеятельности микроорганизмов в контролируемой среде. Эта группа включает целое семейство полимеров

с общим названием полигидроксиалканоаты (PHA), которые образуются в ходе жизнедеятельности бактерий

в ) биоразлагаемые пластики из природного сырья; в ходе биологического процесса образуется мономер, а сборка полимера осуществляется химическим путем. Яркий пример веществ этой группы — хорошо известная полимолочная кислота (PLA).

3.Практическое применение биопластика в Европе

4.Промышленное производство биопластика

Обзор технологии получения биоразлагаемых полимеров и пластиков

Ужесточающиеся год от года экологические требования на уровне международного сообщества рано или поздно поставят вопрос об утилизации использованных полимерных изделий перед всеми странами мира.

Синтетические полимеры, обладая уникальными свойствами и относительно низкой ценой, в последние десятилетия безраздельно господствуют практически во всех сферах человеческой жизни. Однако эти соединения имеют два принципиальных недостатка. Во-первых, подавляющее большинство пластиков производится из невозобновляемого углеводородного сырья, запасы которого ограничены. Во-вторых, большинство полимеров не разлагаются в природе, что приводит к загрязнению окружающей среды и проблемам утилизации.

Борьба с пакетами

Если первое соображение пока не кажется таким уж реальным, то экологические мотивы уже заставляют многие страны и регионы ограничивать использование полимеров.

Так, в Тайване с 2003 года полимерные пакеты запрещены к использованию во всех торговых центрах. То же произошло в Лос-Анджелесе в 2007 году. С пластиковыми пакетами борются в Кении, Руанде и Танзании. В Бангладеш использование пластиковых пакетов запрещено полностью, после того как было обнаружено, что они, засорив дренажные системы, явились основной причиной наводнений в 1988 и1998 годах, которые затопили 2/3 страны. Во многих странах Европы существуют налоги на пластиковые пакеты. В декабре 2010 года их запретили в Италии.

Если меры по охране среды будут ужесточаться, а цены на нефть и газ продолжат расти, то возможна смена парадигмы в области производства и использования полимеров, то есть переход к производству биоразлагаемых пластиков из возобновляемого сырья наступит гораздо быстрее, чем мы этого ожидаем.

Все производимые и изучаемые технологии биоразлагаемых пластиков делятся на четыре группы. Первая – это полимеры, выделенные из биомассы, и природные полимеры: крахмал, целлюлоза, белки. Вторая – полимеры, производимые микроорганизмами в ходе своей жизнедеятельности (полигидроксиалканоаты, бактериальная целлюлоза). Третья – полимеры, искусственно синтезированные из природных мономеров (например, полилактиды). И последняя группа – традиционные синтетические пластики с введенными в них биоразрушающими добавками. Эти технологии активно развиваются в странах с постиндустриальной экономикой. Прежде всего, в США и Европе. Свои разработки и внедрения есть в Китае, Японии, Корее.

А вот в России поиск технологий получения полимеров из возобновляемого сырья и биодеградируемых пластиков идет неактивно. С одной стороны, это странно, ведь Россия располагает большими ресурсами достаточно дешевых зерновых, которые могли бы служить сырьем для производства биополимеров. Но с другой стороны, это достаточно закономерно.

Научные разработки в области экотехнологий у нас в принципе не популярны, да и получить на них финансирование научным центрам (в основном, государственным) довольно сложно. С другой стороны, уровень потребления традицион ных пластиков в России крайне низкий. Насыщение базовых потребностей в традиционных полимерах еще не произошло, поэтому кажется, что заниматься биотехнологиями в нефтехимии еще рано. Да и нефти в России пока достаточно.

Природные полимеры

Направление по использованию природных полимеров, прежде всего, интересно тем, что ресурсы исходного сырья постоянно возобновляемы и практически не ограничены.

Наиболее широко из ряда природных соединений в биоразлагаемых упаковочных материалах используется крахмал. Пластические массы на основе крахмала обладают высокой экологичностью и способностью разлагаться в компосте при 30 °С в течение двух месяцев с образованием благопри ятных для растений продуктов распада. С целью снижения себестоимости биоразлагаемых материалов бытового назначения (упаковка, пленка для мульчирования в агротехнике, пакеты для мусора) используется неочищенный крахмал, смешанный с поливиниловым спиртом и тальком.

В качестве возобновляемого природного биоразлагаемого начала при получении термопластов активно разрабатываются и другие природные полисахариды: целлюлоза, хитин, хитозан. Полимеры, полученные взаимодействием целлюлозы с эпоксидным соединением и ангидридами дикарбоновых кислот, полностью разлагаются в компосте за 4 недели. На их основе формованием получают бутыли, разовую посуду, пленки для мульчирования. Из тройной композиции (хитозан, микроцеллюлозное волокно и желатин) получают пленки с повышенной прочностью, способные разлагаться микроорганизмами при захоронении в землю. Они применяются для упаковки, изготовления подносов и т.д. Пищевую упаковку производят также из природного белка – цеина.

Исследования промышленных способов получения биополимеров начались в конце 1980-х в Италии компанией Novamont S.p.a. Сегодня она располагает заводом продуктов на основе крахмала мощностью 60 тыс. тонн в год. В Германии работают фирмы Biotec (20 тыс. тонн в год) и BIOP Biopolymer Technologies (3,5 тыс. тонн в год), причем последняя также торгует лицензиями на собственную технологию получения биопластиков. В Голландии базируется компания Rodenburg Biopolymers с мощностями 40 тыс. тонн. Компания Limigrain Cйrйales Ingrйdients производит 10 тыс. тонн полимера на основе крахмала. В США крупным производителем является Cereplast Inc.

Отходы бактерий

При росте некоторых микроорганизмов на средах, содержащих питательные углеродные вещества и имеющих дефицит азота или фосфора, микробныеклетки начинают синтезировать и накапливать полигидроалканоаты (PHA), которые служат им резервом энергии и углерода. При изменении окружающей среды в случае голода микроорганизмы могут разлагать PHA и использовать образующиеся продукты для питания. Это свойство бактерий человек использует для промышленного получения полигидроалканоатов. Важнейшими из них являются полигидроксибутират (PHB) и его сополимер с полигидроксивалератом (PHV).

Полигидроксиалканоаты – это полностью биодеградируемые пластики. В компосте при влажности 85% и температуре 20-60 °С разлагается на воду и углекислый газ за 7-10 недель.

PHV бактериального происхождения был открыт в 1925 году во Франции у бактерий Ralstonia entrophus и Bacillus megaterium. Первое промышленное производство сополимеров PHB-PHV организовала в 1980 году английская фирма ICA. Полимер получил название Biopol. Он характеризуется относительной термостабильностью, пропускает кислород, устойчив к агрессивным химикатам и имеет прочность, сопоставимую с полипропиленом.

В апреле 2010 года в США в городе Клинтон компанией Тelles был запущен завод по производству PHBV мощностью 50 тыс. тонн в год. Пластик получил название Mirel, его предполагаемая цена – $4,5-5,5 за кг. Отметим, что традиционный полиэтилен низкого давления стоит в России около $2,2-2,5 за кг. Сырьем для предприятия Тelles служит глюкоза, получаемая из осахаренного кукурузного крахмала. Стоимость сырья в себестоимости PHBV составляет при этом 60%. Поэтому основные усилия ученых и технологов направлены на поиск дешевого сырья для производства PHA. Для России перспективным сырьем сегодня является крахмал зерновых (пшеница, рожь, ячмень) и, в перспективе, производные древесного сырья.

Клетка – завод мономеров

Бактерии могут производить не только готовые полимеры, но и сырье – мономеры, из которых уже искусственно можно получать пластики. Самым распространенным биоразлагаемым полимером из этой группы является полимолочная кислота (PLA). Производство мономера – собственно молочной кислоты – микробиологическим способом дешевле традиционного, так как бактерии синтезируют ее из доступных сахаров в технологически несложном процессе. Сам полимер молочной кислоты (точнее, смесь двух оптических изомеров одного и того же состава) имеет достаточно высокую термическую стабильность: температуру плавления 210-220 °С, температура стеклования – около 90 °С.

Изделия из PLA характеризуются высокой жесткостью, прозрачностью и блеском, напоминая в этом отношении полистирол. В качестве пластификатора можно использовать сам мономер – молочную кислоту.

Патент на способ промышленного получения PLA был выдан компании DuPont еще в 1954 году. Однако коммерциализация этого биопластика началась лишь в XXI веке. В 2002 году в городе Блэр в США фирмой Nature Work был запущен завод мощностью 140 тыс. тонн по производству PLA из глюкозы кукурузного крахмала. Сегодня это крупнейший производитель PLA в мире, его мощности уже 280 тыс. тонн. В ближайшие 5-10 лет планируется строительство третьего завода, сырьем для которого будут практически бесплатные отходы переработки кукурузы. Продукцию завода в Блэр перерабатывают множество компаний, только в Европе их более 30.

В Старом Свете также функционирует несколько заводов PLA, ряд мелких производителей есть в Азии. Известные мировые инжиниринговые компании также осваивают новую нишу. Лицензии на технологию PLA предлагают, например, Sulzer Chemtech Uhde Inventa-Fischer.

PLA самый дешевый из биопластиков, его цена – $2,2-4,5 за кг. Свойства PLA определяют его широкое применение: он устойчив к действию ультрафиолетового света, плохо воспламеняется и горит с малым выделением дыма.

Переработка PLA возможна практически любыми современными методами вплоть до экструзии пленок. Кроме того, PLA – полностью биоразлагаемый полимер. Изделия из PLA при компостировании полностью разлагаются на воду и углекислый газ за период 20-90 дней.

Главные области применения PLA – упаковка (сумки, тара для пищевых продуктов), бутылки для молока, соков, воды, но не газированных напитков, так как PLA пропускает углекислый газ. Из PLA также изготавливают игрушки, корпусы сотовых телефонов, компьютерные мышки и ткани. Пока развитие этого биопластика сдерживается его ценой. Однако прогнозируется, что новые технологии сделают его конкурентоспособным с полиэтиленом и полипропиленом уже до 2020 года.

Добавки-разрушители

Современные добавки допускают типовые способы обработки полимеров, но с условием,что время нахождения сырья в зоне нагрева не должно превышать 7-12 минут.

Малый процент добавки (обычно 1-8%) почти не сказывается при этом на остальных технологических режимах обработки, единственное – нужно равномерно распределять ее по объему полимера.

Очевидно, что использование биоразлагающих добавок целесообразно в тех изделиях, которые часто и массово, используются и выбрасываются. Это пакеты, сельскохозяйственные и упаковочные пленки, одноразовая посуда, бутылки и т.п. Поэтому наиболее популярные полимеры для использования с добавками – это полиэтилен, полипропилен, ПЭТФ. Основными производителями таких добавок являются американские компании Willow Ridge Plastics, BioTec Environmental, ECM BioFilms. Но одним из лидеров и пионеров рынка является британская Symphony Environmental со своей добавкой D2W. Как правило, добавки этих фирм работают с полиолефинами, однако, например, добавки серии EcoPure фирмы Bio-Tec Environmental можно использовать более чем с 15 полимерами. ECM BioFilms выпускает добавки для полистирола, полиуретанов и ПЭТФ. Срок деградации может варьироваться от 9 месяцев до 5 лет. Стоимость добавок за оптовую партию может составлять от $4,2 до $18 за кг в зависимости от производителя.

Смена парадигмы

Пока биоразлагаемые пластики из природного сырья не могут составить конкуренцию традиционным по самой простой причине – ценовой. Точно так же использование дорогих биоразлагающих добавок приводит к удорожанию изделий и из традиционных полимеров.

Однако прогнозы развития рынка биопластиков более чем оптимистичны. Его объем в 2010 году оценивался в $640 млн, а к 2012 году ожидается рост до $1,3 млрд.

В более отдаленной перспективе 2015-2016 годов прогнозируется рост на 43% ежегодно. Ожидается, что самые дешевые из сегодняшних биопластиков смогут конкурировать с традиционными по цене к 2020 году. Вместе с тем, осознание той реальной цены, которую человечество должно платить за сохранение среды своего обитания, так или иначе приведет к введению серьезных ограничений на использование неразрушающихся изделий массового спроса и переходу к пусть более дорогим, но более экологичным материалам. Поэтому крупнейшие частные компании и научные центры многих стран занимаются поисками новых, более дешевых технологий получения биопластиков.

Вместе с тем, не во всех сферах человеческой жизни известные пластики из природного сырья могут заменить традиционные. Речь идет, скорее всего, о продуктах массового спроса. В крайнем случае, приемлемым выходом является применение биоразрушающих добавок и использование технологий рецикла полимерных отходов.

Поэтому производителям нефтехимической продукции в ближайшие десятилетия не стоит опасаться потери своих рынков.

Читайте также: