Перечислите основные характеристики микросхем памяти пк кратко

Обновлено: 05.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Описание презентации по отдельным слайдам:

Организация
и основные характеристики
памяти компьютера
Аппаратное обеспечение
работы компьютера (10 класс)
Урок 3-4.

Организация и основные характеристики
памяти компьютера
Компьютер – это универсальное (многофункциональное) автоматическое программно управляемое электронное устройство, предназначенное для хранения, обработки и передачи информации.
Работа компьютера имитирует (моделирует) информационную деятельность человека. Это оказывается возможным благодаря наличию в составе компьютера памяти.

Организация и основные характеристики
памяти компьютера
Благодаря памяти возможно:
Чтение (считывание) – процесс выборки данных из ячейки с указанным адресом. При этом информация остается в памяти, а его копия передается в требуемое устройство. Таким образом, к данной ячейке можно обращаться сколько угодно раз.
Пересылка информации –информация читается из одной ячейки и записывается в другую. После завершения процесса в этих двух ячейках будет хранится одна и та же информация.
Запись (сохранение) – процесс размещения данных по указанному адресу и хранение его там определенное время. При этом, информация находящаяся в этой ячейке, стирается. Вновь записанные данные хранятся там до тех пор, пока в ячейку не будет записана новая информация.

Организация и основные характеристики
памяти компьютера
Память компьютера – (ЗУ) – совокупность устройств для хранения информации. ЗУ – запоминающее устройство.

Основные характеристики памяти:
Быстродействие (время доступа к памяти)– время, необходимое для чтения из памяти или записи в память минимальной порции информации (наносекунды – 10-9с).
Объем (емкость) памяти – максимальное количество информации на единицу носителя. Емкость оперативной памяти современного компьютера выросла до 4Гб.
Разрядность – количество линий ввода/вывода, которые имеют микросхемы оперативной и постоянной памяти или внешние накопители.

Внутренняя память представляет собой набор микросхем, размещенных внутри системного блока. Различают оперативную (ОЗУ) и постоянную память (ПЗУ).
Организация и основные характеристики
памяти компьютера

ПЗУ – постоянное ЗУ (ROM – read only memory - память только для чтения) – служит для хранения программ начальной загрузки компьютера и тестирования его узлов и, следовательно, включается в момент каждого включения компьютера. Энергонезависима, так как реализована в виде электронных схем. Хранимые в таком виде программы начинают выполняться при первом же импульсе тока, поступившем на контакты электронных микросхем.

Организация и основные характеристики
памяти компьютера

Оперативная память (или оперативное запоминающее устройство - ОЗУ) предназначена для хранения информации, изменяющейся в ходе выполнения процессором операций по ее обработке. Энергозависима. Вся информация, вводимая в компьютер и возникающая в ходе его работы, хранится в этой памяти в виде электрических зарядов и, следовательно, сохраняется только тогда, когда компьютер включен.
Организация и основные характеристики
памяти компьютера

Свойства оперативной памяти
Энергонезависимость;
Дискретность структуры;
Адресуемость ячеек;
Возможность произвольного доступа к ячейкам памяти.

Структурно оперативную память можно представить как совокупность ячеек памяти, разделенных на разряды для хранения в каждом из них бита информации. Следовательно, в любую ячейку памяти записывается некоторый набор нулей и единиц, или машинное слово – фиксированная, упорядоченная последовательность битов, рассматриваемая аппаратной частью компьютера как единое целое. Машинное слово может быть различной длины в зависимости от типа компьютера (от 8 до 64 битов или от 2 до 8 байтов) и определяет наибольшее число, которое может удержаться в ячейках памяти. Следовательно, можно говорить об объеме памяти и измерять ее в Кб(килобайтах), Мб, Гб в соответствии с количеством байтовых ячеек как дискретно структурных единиц.
Емкость оперативной памяти современного компьютера выросла до 4Гб.
Дискретность структуры ОЗУ

Все ячейки памяти пронумерованы. Номер ячейки называется ее адресом. Он позволяет отличать ячейки друг от друга, обращаться к любой ячейке, чтобы записывать в нее новую информацию вместо старой или считывать хранимую в ней информацию для использования при выполнении каких-то действий. При таком считывании хранящееся в ячейке слово не изменяется.
Адресуемость ячеек ОЗУ

В оперативной памяти в виде последовательности машинных слов хранятся как данные, так и программы. В любой момент времени доступ может осуществляться к произвольно (то есть в соответствии с командой, волей программиста) выбранной ячейке, поэтому этот вид памяти называют также памятью с произвольной выборкой – ROM (Random Access Memory).
Random Access Memory

Организация и основные характеристики
памяти компьютера
Оперативная память выполнена обычно на микросхемах динамического типа с произвольной выборкой (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла.
Другой, более дорогой тип памяти — статический (Static RAM, SRAM) в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Организация и основные характеристики
памяти компьютера
Кэш-память - один из элементов микроархитектуры процессоров для хранения данных и отслеживания исполнения команд. Это увеличивает производительность и повышает эффективность использования кэш-памяти за счет передачи большего количества команд в исполнительные блоки процессора и уменьшения общего времени, требуемое на возврат из неверно предсказанных ветвлений.

Организация и основные характеристики
памяти компьютера

Организация и основные характеристики
памяти компьютера
Внешнее запоминающее устройство (ВЗУ) – предназначено для долговременного хранения информации на специальных носителях памяти.
Под внешней памятью (ПЗУ) подразумевают как устройства для чтения/записи информации – накопители (или дисководы), так и устройства, где непосредственно хранится информация – носители информации (жесткие магнитные диски, оптические (или лазерные) диски, flash-карты и д.п.).
Внешняя память (ВЗУ) энергонезависима.

Организация и основные характеристики
памяти компьютера
Помимо сохранения информации после выключения компьютера носители внешней памяти компьютера обеспечивают перенос информации с одного компьютера на другой и позволяют практически неограниченно увеличивать общую память компьютера. Носители информации различают по таким характеристикам, как:
 информационная емкость,
 время доступа к информации,
 надежность хранения,
 время безотказной работы.

Организация и основные характеристики
памяти компьютера
В заключение этой темы сделаем
следующие замечания:
Совершенствование устройств внутренней и внешней памяти, в том числе увеличение их информационной емкости и быстродействия, происходит гораздо быстрее, чем пишутся и издаются учебники, поэтому ни об одном их достигнутых значений характеристик устройств внешней памяти нельзя говорить как об окончательном.
Предыдущее замечание касается всей аппаратной части компьютера.

Организация и основные характеристики памяти компьютера

26 марта, 2012 | Автор: admin

Организация и основные характеристики памяти компьютера

Память (memory) – функциональная часть ЭВМ, предназначенная для записи, хранения и выдачи информации.

Всю память ЭВМ можно разделить на:

  1. ОЗУ (оперативное запоминающее устройство)
  2. ПЗУ (постоянное запоминающее устройство)
  3. РОН (регистры общего назначения) внутренняя память процессора – его регистры.
  4. CMOS (Complement Metal Oxide Semiconductor – комплементарные пары метал-оксид-полупроводник указывает на технологию изготовления данной памяти) – память системных установок(конфигурации).
  5. ВЗУ (внешнее запоминающее устройство)
  6. Видеопамять – электронная память, размещенная на видеокарте, используется в качестве буфера для хранения кадров динамического изображения.

1,2,3,6 – электронная память, 5 – электромеханическая память.

Характеристики оперативной памяти

Внутренняя память ПК обладает двумя основными свойствами: дискретностью и адресуемостью.

Бит – наименьшая частица памяти компьютера.

Память – это упорядоченная последовательность двоичных разрядов(бит). Эта последовательность делится на группы по 8 разрядов. Каждая такая группа образует байт памяти.

Ячейка памяти – группа последовательных байтов внутренней памяти, вмещающая в себе информацию, доступную для обработки отдельной командой процессора.
Содержимое ячейки памяти называется машинным словом. Байты внутренней памяти пронумерованы. Нумерация начинается с 0.
Порядковый № байта называется адресом байта. Принцип адресуемости памяти заключается в том, что любая информация заносится в память и извлекается из нее по адресам, т.е. чтобы взять информацию из ячейки памяти или поместить ее туда, необходимо указать адрес этой ячейки. Адрес ячейки память равен адресу младшего байта, входящим в ячейку.
Адресация памяти начинается с 0. Адреса ячеек кратны количеству байтов в машинном слове.


Структура оперативной памяти


Оперативная память(ОП) (ОЗУ)

Быстродействие памяти характеризуется двумя параметрами: временем доступа(access time) и длительностью цикла памяти (cycle time).
Эти величины, как правило, измеряются в наносекундах. Чем больше эти величины, тем больше быстродействие памяти.
Время доступа представляет собой промежуток времени между формированием запроса на чтение информации из памяти и моментом поступления из памяти запрошенного машинного слова (операнда).
Длительность цикла определяется минимальным допустимым временим между двумя последовательными обращениями к памяти.

В статической памяти элементы построены на триггерах — схемах с двумя устойчивыми состояниями. Для построения одного триггера требуется 4-6 транзисторов. После
записи информации в статический элемент памяти он может хранить информацию сколь угодно долго (пока подается электрическое питание).
Статическая память имеет высокое быстродействие и низкую плотность размещения хранящихся данных. Этот вид памяти дорог и энергоемок, следовательно, может происходить перегрев,
что снижает надежность система, поэтому вся ОП не может быть построена по статическому принципу.

В динамической памяти элементы памяти построены на основе полупроводниковых конденсаторов, занимающих гораздо более меньшую площадь, чем триггеры в статической памяти.
Для построения динамического элемента памяти требуется 1-2 транзистора. Каждый бит ОП представляется в виде наличия или отсутствия заряда на конденсаторе, образованном в структуре
полупроводникового кристалла. Ячейки динамической памяти очень компактны, но со временем конденсатор испытывает утечку заряда, поэтому периодически (приблизительно 1000 раз в сек.)
выполняется автоматическое восстановление информации в каждой ячейке. Это снижает скорость работы динамической памяти и является основным ее недостатком.

ОП часто обозначают RAM (Random Access memory) – память с произвольным доступом (тип доступа к памяти при котором ячейки памяти пронумерованы, т.е. адресуемы и, следовательно, обращение к ним может производиться в произвольном порядке).

Чем больше ОП в ПК, тем лучше. При необходимости объем ОП можно нарастить (ограничивается параметрами ОП, поддерживаемой конкретной материнской платы, внимательно см.спецификацию к системной плате).


Распределение памяти в ПК (Разделы ОЗУ)

RAM устроена довольно сложно, она иерархична (многоэтажна). ОП разделяют на несколько типов. Деление это обусловлено историческими причинами.
Первые компьютеры были выполнены так, что они могли работать максимально с 640Кб памяти. Выделяют 4 вида памяти:

  • Стандартная (conventional memory area)
  • Верхняя (upper memory blocks(area))
  • Дополнительная (expanded memory specification)
  • Расширенная (extended memory specification)

Стандартная (conventional memory area) – базовая, первые 640 Кб, также его часто называют lower.
В мл. адреса этой памяти загружается ОС и драйверы устройств. Оставшуюся свободную часть памяти занимают пользовательские программы.
Резидентные программы так же остаются в этой памяти.

Верхняя (upper memory аrea) – 640Кб — 1Мб используется для хранения служебной информации: памяти видеоадаптера,BIOS.
Спец. драйвер Himem.sys позволяют загружать в свободные участки этой области резидентные программы и драйвера устройств.

High memory – первые 64 Кб после 1Мб. ОС MS DOS позволяет загрузить часть резидентной DOS в эту область, освобождая при этом существенную часть
базовой памяти для работы прикладных программ. Особенно это полезно для программ, использующих всю ОП. Используя спец. утилиты (для DOS emm386.exe)
в верхние разделы памяти можно загружать также и резидентные программы (команды LH для autoexec.bat и DEVICEHIGT для config.sys).

Дополнительная(expanded) память – постраничная, т.е. ОП разбивается на страницы, каждой странице ставится в соответствие определенный адрес в основной памяти. При обращении к такому адресу EMM(expanded memory manager) драйвер расширенной памяти(менеджер памяти) позволяет компьютеру считать информацию с соответствующей страницы памяти.

Расширенная (extended) память построчной организации (Smartdrv — драйвер расширенной памяти) используется для создания временного логического диска (виртуального диска), как буфер обмена с жестким диском.


Распределение ОП в ПК с ОС MS-DOS

Микросхемы ОП (модули ОП)


Производительность ПК зависит от типа и размера ОП, а это в свою очередь зависит от набора интегральных схем на материнской плате.

Устройства памяти характеризуются следующими основными показателями:

  1. временем доступа (быстродействием). Время доступа – промежуток времени, за который может быть записано (прочитано) содержимое ячейки памяти.
  2. емкостью (определяет количество ячеек (битов) в устройстве памяти).
  3. стоимостью.
  4. потребляемой мощностью (электропотреблением).

Существует 2 модуля памяти, отличающиеся формой, внутренней архитектурой, скоростью работы: SIMM и DIMM.
I. SIMM (SINGLE IN-LINE MEMORY MODULES) (SRAM)
бывают двух типов (отличающихся количеством контактов).

1. 30-контактные модули SIMM. Бывают 1 и 4 Мб. Практически сегодня исчезли из продажи для компьютеров 386, 286-процессором. Сегодня им нашлось интересное применение – в качестве ОП, устанавливаемой в некоторые звуковые платы, например, Greafive Sound Blaster 32 (AWE-32) Gravis UltraSound PnP. Однако новая карта AWE-64 уже содержит свои модули ОП, эта память не нужна.

2. 72-контактные SIMM (на 1, 4, 8, 16, 32, 64 Мб, редко 128 Мб). Внешний вид неизменный, а вот тип устанавливаемой на них памяти меняется (тип памяти указывается на микросхеме).

a) самый старый (редко сейчас встречающийся) – FPM DRAM (или просто DRAM – Dynamic Random Access Memory – динамическая ОП). Работала на 486 и первых Pentium.

b) модифицированный тип EDO DRAM (или EDO – Extended data output).

Микросхемы SIMM выпускаются одинарной и двойной плотности, с контролем четности и без (использование контроля четности позволяет парировать одиночную ошибку памяти). Модули отличаются и по скорости доступа 60 и 70 наносекунд, чем скорость меньше, тем быстрее доступ. 60 наносекунд быстрее 70 наносекунд. Модули SIMM в материнской плате Pentium и Pentium MMX устанавливаются только попарно, образуя так называемый банк.

Пример необходимо 32 Мб => 2 модуля SIMM по 16 Мб.
необходимо 64 Мб => 4 модуля SIMM по 16 Мб или 2 модуля SIMM по 32Мб.

В рамках одного банка можно использовать только одинаковые по емкости и скорости доступа модули SIMM. Если на вашей материнской плате 4 слота для модулей памяти SIMM, то можно сформировать два банка различной емкости.


II. DIMM (SDRAM DUAL IN-LINE MEMORY MODULES).

Появился впервые у MMX- компьютеров, стал основой для PII., поэтому у PII редко бывают SIMM-разъемы. DIMM не обязательно должно быть четное число. Модули DIMM бывают емкостью 16, 32, 64, 128, 256, 512 Мб

Модуль памяти Kingston DDR PC3200

Модуль памяти Kingmax DDR2-667

Пропускная способность

Пропускная способность равна произведению разрядности шины данных и частоты операций записи или считывания информации из ячеек памяти:

Максимально возможная в настоящее время (2006 год) частота шины данных совпадает с частотой системной шины и равна 1064 МГц.

Модули памяти маркируются своей пропускной способностью, выраженной в Мбайт/с: РС3200, РС4200, РС8500 и др.

Физическая и виртуальная память

Объем используемой программами памяти можно увеличить путем добавления к физической памяти (модулям оперативной памяти) виртуальной памяти.

Быстродействие жесткого диска и, соответственно, виртуальной памяти существенно меньше быстродействия оперативной памяти.

Замедление быстродействия виртуальной памяти может происходить в результате фрагментации данных в файле. Для того чтобы этого не происходило, рекомендуется произвести дефрагментацию диска и установить для файла подкачки постоянный размер.

ПЗУ (постоянное запоминающее устройство)

В ПЗУ информация остаётся неизменной.
Запись в ПЗУ обычно осуществляется электрическим или механическим способом, в процессе изготовления материнской карты. Эти данные, как правило, не могут быть изменены, выполняемые не ПК
программы могут их только считывать В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.

Часто ее называют ROM (Read Only Memory) – память только для чтения. В постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки ОС и выполнение базовых
функций по обслуживанию устройств ПК. Часто содержимое постоянной памяти называют BIOS(Basic Input Output System) – базовая система ввода/вывода.
BIOS – это система контроля и управления устройствами, подключёнными к ПК (жёсткий диск, ОП, часы, календарь). Это часть программного обеспечения ПК, поддерживающая управление адаптерами
внешних устройств, экранные операции, тестирование, начальную загрузку и установку OS. BIOS находится на материнской плате (отдельная микросхема с автономным питанием от батарейки в ПК).

На сегодняшних ПК BIOS можно перезаписывать.BIOS сегодня может сам определять новые устройства, подключённые к ПК (стандарт PnP — Plug-And-Play) включи и работай.
Управление устройствами осуществляется через механизм прерываний.


Прерывания могут быть:

  • аппаратные (инициируются аппаратными средствами),
  • логические (инициируются микропроцессором – нестандартные ситуации в работе микропроцессора),
  • программные (инициируются каким-либо программным обеспечением).

При включении ПК автоматически загружается и выполняется спец.программа POST(Power-On Self-Test) из состава BIOS.

Эта программа производит самопроверку и тестирование при загрузке:

  • проверка переключателей и CMOS-памяти на системной (материнской) плате (определение оборудования, которое подключено к ПК),
  • тестирование ОЗУ,
  • выполнение действий по загрузке OС (загрузка в ОЗУ и запуск Блока Начальной Загрузки OС),
  • выполняет другие специфические действия по подготовке ПК и дополнительно-го оборудования к работе.


BIOS

Микросхемы памяти

Большая часть современной электроники, за исключением устройств со встроенной внутренней памятью, основана на работе микросхем памяти — оперативных и энергонезависимых. Остановимся на классификации микросхем и рассмотрим их основные отличия.

Классификация и характеристики микросхем памяти

Данные устройства классифицируются по нескольким основным параметрам:

  • Энергонезависимость памяти — необходимость наличия внешнего источника питания для сохранения записанной в ней информации.
  • Возможность перезаписи информации.
  • Способ доступа к информации.

К основным характеристикам микросхем памяти можно отнести:

  • Энергонезависимость.
  • Наибольший объём записываемой информации (информационная ёмкость).
  • Организация. Один и тот же объём памяти в разных микросхемах может быть в различных сочетаниях, например 65 536 может быть поделено на 8, 16 или более частей. При этом внутренняя организация матрицы памяти неизменна, различен лишь внешний интерфейс и количество внешних выводов.
  • Энергопотребление микросхем памяти — зависит от требуемой электрической мощности необходимой для работы устройства в каждом из режимов.
  • Быстродействие памяти — определяется временем считывания информации, временем цикла обращения к памяти в устройствах с произвольным доступом. В устройствах с последовательным доступом быстродействие определяется временем необходимым на поиск и объёмом переданной в единицу времени информации в режиме чтения или записи.
  • Напряжение питания микросхем памяти. Современные тенденции по уменьшению напряжения источников питания привели к разработке устройств требующих 3.3, 2.5 и 1.8 В.
  • Диапазон температур — температура между минимальным и максимальным значениями, при которой микросхема сохраняет свои параметры.

Помимо вышеуказанных характеристик есть ещё и специфические параметры, как например: продолжительность хранения, время стирания информации, количество циклов перезаписи и т. д. А наиболее важной характеристикой является энергонезависимость микросхемы памяти — возможность сохранения записанной информации без источника питания. На этом мы остановимся более подробно, рассмотрев особенности двух основных групп микросхем памяти — оперативную и энергонезависимую.

Оперативные запоминающие устройства (ОЗУ)

Оперативные микросхемы памяти — это устройства, рассчитанные для работы с переменными потоками информации необходимыми для текущей работы устройств, например промежуточных показателей при математических расчетах. Данный тип памяти позволяет максимально быстро осуществлять перезапись информации.

Оперативные микросхемы памяти или ОЗУ подразделяются на статические и динамические, что обусловлено наличием или отсутствием D-триггеров. Статическое ОЗУ (Static RAM, SRAM) основано на использовании D-триггеров, информация в которых сохраняется в течение всего времени, пока подаётся электропитание. Статические оперативные микросхемы характеризуются быстрой скоростью работы, время доступа составляет несколько наносекунд. Благодаря этому статическая память часто применяется для кэша второго уровня.

Динамическое ОЗУ (Dynamic RAM, DRAM), напротив, не имеет в своей конструкции триггеры, представляя собой массив ячеек, в каждой из которых имеется транзистор и конденсатор. В зависимости от наличия/отсутствия заряда на конденсаторе в ячейке хранится 1 или 0 двоичной системы информации. Так как электрический заряд непостоянен, то каждый бит в динамической оперативной памяти перезаряжается каждые несколько миллисекунд, что предотвращает потерю данных. По той причине, что обновление зависит от внешних устройств, динамические микросхемы оперативной памяти имеют более сложное сопряжение, чем статические. Главным же достоинством данной конструкции являются большие объёмы хранимой информации.

По мере развития электроники, повышения быстродействия процессов и, соответственно, необходимости обработки больших массивов информации в единицу времени, возникла потребность увеличить быстродействие микросхем памяти. Появились синхронные динамические оперативные запоминающие (Synchronous DRAM, SDRAM) управляемые одним синхронизирующим сигналом. По сути — это объединение свойств статической и динамической ОЗУ, главным достижением которых стала независимость микросхемы от управляющих сигналов. Процессор задаёт ОЗУ количество выполняемых циклов и запускает процесс выполнения. На выходе каждого из циклов выдаётся 4, 8 или 16 бит в соответствии с количеством выходных строк. Благодаря отсутствию зависимости от управляющих сигналов значительно повысилась скорость обмена информацией между процессором и памятью.

Следующей ступенью конструкции памяти SDRAM стала разработка и внедрение памяти DDR (Double Data Rate — передача информации с двойной скоростью). Далее появились DDR2, DDR3, DDR4 — микросхемы синхронной динамической оперативной памяти с произвольным доступом и удвоенной скоростью передачи информации. DDR2 — это микросхема второго поколения, DDR3 — третьего и т. д. Внедрение данных микросхем дало возможность существенно повысить скорость обмена информацией в современных электронных устройствах.

Энергонезависимые микросхемы памяти

Энергонезависимые микросхемы памяти (NonVolatileRandomAccessMemory, NVRAM) или ПЗУ (постоянные запоминающие устройства) — это устройства памяти которые могут хранить данные независимо от наличия либо отсутствия внешнего источника питания.

Первыми появились устройства энергонезависимой памяти, рассчитанные на работу исключительно в режиме чтения, память ROM (Read Only Memory — память только для чтения). Запись информации в ROM-память производилась или при изготовлении кристалла в заводских условиях, или перед установкой в аппаратуру с помощью специального, сложного и недешёвого прибора — программатора.

В последствии, по мере дальнейшего совершенствования методик производства, а также упрощения способов и алгоритмов записи информации, появились современные энергонезависимые микросхемы памяти, имеющие возможность работать в режимах записи, стирания и перезаписи. Появились такие типы энергонезависимой памяти как:

  • ППЗУ — программируемые постоянные запоминающие устройства.
  • СППЗУ — стираемые ППЗУ.
  • РПЗУ — репрограммируемые постоянные запоминающие устройства и др.

Современным и перспективным типом энергонезависимой репрограммируемой памяти является — Flash память . В отличие от других типов, информация в которых стирается по байтам или под воздействием ультрафиолетовых лучей, в Flash память информация стирается и записывается блоками. Более широкому внедрению флеш-памяти, в настоящее время, препятствует ограниченный ресурс работы, современная Flash память теряет свои свойства после 100 000 циклов стирания.

Ещё одним перспективным современным типом постоянной памяти являются микросхемы созданные на основе специальных материалов — ферроэлектриков. Данный тип памяти (FRAM) является полностью энергонезависимым и демонстрирует впечатляющие показатели стойкости характеристик. Гарантии безупречной работы составляют, как правило, порядка 1014 циклов записи и стирания.

Самым же перспективным типом энергонезависимой памяти в настоящее время можно считать MRAM. Это магниторезистивная память (MRAM —англ. magnetoresistiverandom-accessmemory) в которой хранение данных обеспечивается не за счет электрических зарядов, а за счет магнитных моментов. Преимуществом независимых магнитных микросхем является высокое быстродействие, сравнимое с SRAM, а также неограниченное количество циклов записи и стирания данных.

Использование магнитных моментов для хранения информации имеет два важных преимущества:

ОЗУ представляет собой специальную микросхему, используемую для хранения данных всевозможного вида. Существует множество разновидностей данных устройств, они выпускается разнообразными компаниями. Лучшие производители чаще всего имеют японское происхождение.

Что это такое и для чего она нужна?

ОЗУ (так называемая РАМ-память) – разновидность энергозависимой микросхемы, используемой для хранения всевозможной информации. Чаще всего в ней находится:

Принцип работы, типы и характеристики оперативной памяти

Обмен данными между центральным процессором и ОЗУ осуществляется двумя способами:

Рассматриваемые девайсы представляют собой схемы, построенные на полупроводниках. Вся информация, хранимая во всевозможных электронных компонентах, остается доступной только при наличии электрического тока. Как только напряжение отключается полностью, либо происходит кратковременный обрыв питания, то всё, что содержалось внутри ОЗУ, стирается, либо разрушается. Альтернативой является устройства типа ROM.

Виды и объем памяти

Плата на сегодняшний день может иметь объем в несколько десятков гигабайт. Современные технические средства позволяют использовать её максимально быстро. Большинство операционных систем оснащаются возможностью взаимодействовать с такими устройствами. Имеется пропорциональная зависимость между объемом ОЗУ и стоимостью. Чем больше её размер, тем более она дорогая. И наоборот.

Принцип работы, типы и характеристики оперативной памяти

Также рассматриваемые устройства могут иметь разную частоту. Данный параметр определяет, как быстро осуществляется взаимодействие между ОЗУ и иными устройствами ПК (ЦП, шиной данных и видеокартой). Чем выше скорость работы, тем больше операций выполнит ПК за единицу времени.

Все современные ОЗУ можно разделить на две разновидности:

Статический тип

Более дорогой на сегодняшний день является микросхема статическая. Маркируется она как SDRAM. Динамическая же является более дешевой.

Отличительными чертами SDRAM-разновидности являются:

Также отличительной особенностью RAM является наличие возможности осуществлять выбор того бита, в который будет осуществлена запись какой-либо информации.

К недостаткам можно отнести:

Устройства оперативной памяти компьютера всевозможного вида (SDRAM и DRAM) имеют внешние отличия. Они заключаются в длине контактной части. Также имеет отличия её форма. Обозначение оперативной памяти находится как на этикетке-наклейке, так и пропечатано непосредственно на самой планке.

Принцип работы, типы и характеристики оперативной памяти

Сегодня существует множество различных модификаций SDRAM. Обозначается она как:

Динамический тип

Ещё один вид микросхем обозначается как DRAM. Он является также полностью энергозависимым, доступ к битам записи осуществляется произвольным образом. Данная разновидность широко используется в большинстве современных ПК. Также она применяется в тех компьютерных системах, где высоки требования к задержкам – быстродействие DRAM на порядок выше SDRAM.

Принцип работы, типы и характеристики оперативной памяти

Чаще всего данная разновидность имеет форм-фактор типа DIMM. Такое же конструктивное решение используется и для изготовления статической схемы (SDRAM). Особенностью DIMM-исполнения является то, что контакты имеются с обеих сторон поверхности.

Параметры ОП

Основными критериями выбора микросхем данного типа являются их рабочие параметры.

Ориентироваться следует, прежде всего, на следующие моменты:

Все они зависят от типа конкретной модели. Например, ДДР 2 будет выполнять различные действия однозначно быстрее, чем планка ДДР 1. Так как обладает более выдающимися рабочими характеристиками.

Таймингами называется время задержки информации между различными компонентами устройства. Типов таймингов довольно много, все они непосредственно влияют на быстродействие. Маленькие тайминги позволяют увеличить скорость выполнения различных операций. Имеется одна неприятная пропорциональная зависимость – чем выше быстродействие оперативно-запоминающего устройства, тем больше значения таймингов.

Выходом из данного положения служит повышение рабочего напряжения – чем оно выше, тем меньше становятся тайминги. Количество выполненных операций за единицу времени в то же время возрастает.

Частота и скорость

Чем выше пропускная способность ОЗУ, тем больше её скорость. Частота является параметром, определяющим пропускную способность каналов, через которые осуществляется передача данных различного рода в ЦП через материнскую плату.

Желательно, чтобы данная характеристика совпадала с допустимой скоростью работы материнской платы.

Например, если планка поддерживает частоту 1600 МГц, а материнская плата – не более 1066 Мгц, то скорость обмена данными между ОЗУ и ЦП будет ограничена именно возможностями материнской платы. То есть скорость будет не более 1066 МГц.

Производительность

Быстродействие зависит от многих факторов. Очень большое влияние на данный параметр оказывает количество используемых планок. Двухканальная ОЗУ работает на порядок быстрее, чем одноканальная. Наличие возможности поддерживать режимы многоканальности обозначается на наклейке, расположенной поверх платы.

Данные обозначения имеют следующий вид:

Для определения того, какой режим является оптимальным для конкретной материнской платы, необходимо посчитать общее количество слотов для подключения, и разделить их на два. Например, если их 4, то необходимо 2 идентичных планки от одного производителя. При их параллельной установке активируется режим Dual.

Принцип работы и функции

Реализовано функционирование ОП довольно просто, запись или чтение данных осуществляется следующим образом:

Каждый столбец подключен к чрезвычайно чувствительному усилителю. Он регистрирует потоки электронов, возникающие в случае, если конденсатор разряжается. При этом подается соответствующая команда. Таким образом, происходит осуществление доступа к различным ячейкам, расположенным на плате. Есть один важный нюанс, который следует обязательно знать. Когда подается электрический импульс на какую-либо строку, он открывает все её транзисторы. Они подключены к ней напрямую.

Из этого можно сделать вывод, что одна строка является минимальным объемом информации, который можно прочитать при осуществлении доступа. Основное назначение ОЗУ – хранить различного рода временные данные, которые необходимы, пока персональный компьютер включен и функционирует операционная система. В ОЗУ загружаются наиболее важные исполняемые файлы, ЦП осуществляет их выполнение напрямую, просто сохраняя результаты выполненных операций.

Принцип работы, типы и характеристики оперативной памяти

Также в ячейках хранятся:

При необходимости все, что находится в RAM, центральный процессор может сохранить на жесткий диск. Причем сделать это в том виде, в котором это необходимо.

Производители

В магазинах можно встретить огромное количество RAM от самых разных производителей. Большое количество таких изделий стало поставляться именно от китайских компаний.

Принцип работы, типы и характеристики оперативной памяти

На сегодняшний день наиболее производительной и качественной является продукция следующих брендов:

Она является компромиссным выбором между качеством и производительностью.

Таблица характеристик оперативной памяти

Оперативная память одного вида от различных производителей обладает схожими рабочими характеристиками.

Именно поэтому корректно осуществлять сравнение, беря во внимание лишь тип:

DDR
DDR2
DDR3
Частотный диапазон
100-400
400-800
800-1600
Рабочее напряжение
2.5v +/- 0.1V
1.8V +/- 0.1V
1.5V +/- 0.075V
Количество блоков
4
4
8
Termination
ограничено
ограничено
все DQ сигналы
Топология
TSOP
TSOP or Fly-by
Fly-by
Способ управления

OCD
Автоматическая калибровка с ZQ
Наличие температурного датчика
Нет
Нет
Да

Сравнение производительности и цены

Производительность оперативной памяти напрямую зависит от её стоимости. Узнать, сколько стоит модуль DDR3, можно в ближайшем компьютерном магазине, также следует ознакомиться с ценой на DDR 1. Сопоставив их рабочие параметры и цену, а после этого протестировав, можно легко в этом убедиться.

Принцип работы, типы и характеристики оперативной памяти

Наиболее корректно осуществлять сравнение ОЗУ одного вида, но с разной производительностью, зависящей от частоты работы:

Тип
Частота работы, МГц
Стоимость, руб.
Скоростьработы, Aida 64, Memory Read, MB/s
DDR 3
1333
3190
19501
DDR 3
1600
3590
22436
DDR 3
1866
4134
26384
DDR 3
2133
4570
30242
DDR 3
2400
6548
33813
DDR 3
2666
8234
31012
DDR 3
2933
9550
28930

В Aida 64 тестирование всех DDR 3 было выполнено на идентичном оборудовании:

ОЗУ является очень важной составной частью ПК, сильно влияющей на его производительность. Именно поэтому для её увеличения рекомендуется устанавливать планки с высокой частотой и небольшими таймингами. Это даст большой прирост производительности компьютера, она особенно важна для игр и различных профессиональных программ.

Читайте также: