Основные законы электротехники кратко

Обновлено: 04.07.2024

Основные понятия электротехники, термины и определения

Рассмотрены самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.

1. Электрический ток

Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.

К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.

Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.

В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых "дырок". Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.

По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.

Щитовые амперметр и вольтметр

Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:

в среде, окружающей провода с током, наблюдается магнитное поле;

проводник, по которому течет ток, нагревается;

в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.

За направление электрического тока принимается направление движения ионов металла (т. е. положительных зарядов) при электролизе растворов солей. Направление перемещения электронов в металлических проводниках противоположно вышеуказанному направлению (они перемещаются от отрицательного полюса источника к положительному).

Единицей электрического тока является 1 ампер (1 А). Эта единица выбрана в качестве основной при записи закона электродинамического силового взаимодействия проводников, что устанавливает ее связь с основными механическими единицами.

Зависимость от времени электрического тока может быть различной. У постоянного тока направление и значение не изменяются. Направление и значение переменного тока изменяются, причем особенно важен для практики переменный ток синусоидальной формы . Если электрическому току свойственны черты и постоянного и переменного тока, то такой ток называется пульсирующим.

Сила, вызывающая движение электронов в проводнике (ток), распространяется со скоростью света. Однако сами электроны движутся в проводнике со скоростями всего порядка 1 мм/с.

Подробно про электрический ток:

2. Контур электрического тока

В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.

По второму проводу ток возвращается к источнику, проходит через него и снова начинает свой путь. На этом пути электрический ток черпает энергию для своего движения в источнике, а затем отдает ее приемнику обычно путем ее перехода в энергию другого вида — световую, тепловую, механическую и т.д.

Простая электрическая цепь с лампочкой, выключателем и батарейкой

В природе и технике встречается много подобных циклических процессов. Например, хорошую, но, конечно, формальную аналогию можно усмотреть в случае движения воды в системе охлаждения автомобиля. Вода получает тепловую энергию от стенок цилиндров двигателя внутреннего сгорания.

Даже без водяного насоса возникает движение воды по трубопроводам системы охлаждения и вода отдает большую часть полученной тепловой энергии в радиаторе, являющемся в данном случае приемником энергии.

Согласно современным представлениям электрический ток в проводниках образуется очень большим количеством мельчайших носителей заряда, называемых электронами. Электрический заряд следует рассматривать как одну из основных характеристик частиц и тел, которая проявляет себя в различного рода силовых взаимодействиях.

Электрическая розетка на 220 вольт

3. Электродвижущая сила, напряжение

Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС). Источники электрической энергии называются источниками ЭДС.

На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения. Падение напряжения на участках цепи — приемниках называют короче просто напряжением.

Исходящий от источника ЭДС "импульс напряжения" распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.

Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.

В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.

Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.

Единицей ЭДС и напряжения является 1 вольт (1В).

Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.

Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.

Подробнее про электродвижущую силу и напряжение:

Электрические аппараты защиты

4. Электрическое сопротивление, закон Ома

Электрические величины (ток, напряжение и сопротивление) связаны между собой. Закон Ома определяет зависимость между током, протекающим по цепи, напряжением, приложенным к участку цепи, и сопротивлением этого участка цепи.

В общем виде этот закон формулируется так: электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома для всей цепи формулируется так: ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи.

При своем движении по проводнику электроны сталкиваются с атомами и при этом теряют часть своей энергии, что приводит к нагреву проводника. Таким образом, наблюдается сопротивление движению электронов. Опыты показывают, что ток в участке электрической цепи тем больше, чем больше напряжение (падение напряжения) на этом участке.

При определенных условиях между электрическим током и напряжением существует линейная зависимость: I = GU .

Символом G в данном уравнении обозначена электрическая проводимость участка цепи, которая тем больше, чем меньшее сопротивление оказывает проводник прохождению электрического тока.

Однако на практике чаще применяется величина, обратная проводимости, которая называется электрическим сопротивлением: R = 1/G , откуда R = U/I . Это равенство служит для определения электрического сопротивления и известно под названием закона Ома для участка цепи.

Георг Симон Ом (1789—1854) обнаружил в 1826 году, что сопротивление многих материалов (проводников) не зависит от значения тока в проводнике и, следовательно, является константой.

Из закона Ома следует, что с ростом напряжения пропорционально увеличивается ток и что при увеличении сопротивления ток уменьшается. Единицей электрического сопротивления является 1 Ом.

Закон Ома

На практике часто требуется определить электрический ток в некотором приемнике. Значение этого тока можно установить на основании известных значений электрического сопротивления приемника и поданного на него напряжения.

Если напряжение будет слишком велико, то ток может быть настолько большим, что вследствие теплового эффекта может разрушить приемник. Большие значения тока могут возникнуть в электрической цепи и при слишком малом сопротивлении или в случае прямого контакта (короткого замыкания) токоведущих частей цепи.

Для защиты устройств и приборов от перегрузок по току в электрические цепи включаются плавкие предохранители, которые перегорают, или автоматические выключатели, которые выключаются если ток в цепи превышает некоторое определенное значение.

Сопротивление проводника или провода тем больше, чем больше его длина l и чем меньше площадь его поперечного сечения S.

Значение электрического сопротивления зависит также и от материала, из которого изготовлен проводник. Каждый материал характеризуется электрическ ой констан той : удельным электрическим сопротивлением ρ . Следовательно, уравнение для расчета сопротивления проводника имеет следующий вид: R = (ρl)/S.

Сопротивление проводника зависит не только от его длины, площади поперечного сечения и материала, но и от температуры.

У ряда материалов значение электрического сопротивления при температуре вблизи абсолютного нуля скачкообразно падает до чрезвычайно малого значения. Это явление получило название сверхпроводимости. В настоящее время явление сверхпроводимости не получило еще широкого применения в технике, однако уже с успехом используется при решении некоторых специальных технических задач, как, например, при получении сверхмощных магнитных полей для физических исследований.

Подробнее об электрическом сопротивлении и законе Ома:

Асинхронный электродвигатель

5 . Энергия и мощность

В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).

Принимая во внимание закон Ома, можно написать выражение для энергии электрического тока, преобразуемой в приемнике с сопротивлением R (закон Джоуля—Ленца): W = I 2 Rt

При расчетах электроэнергетических установок чаще в качестве единиц энергии выбирают ватт-час или киловатт-час. Электрическую энергию можно преобразовывать в другие виды энергии.

Электрический ток нагревает проводники, т. е. электрическая энергия преобразуется в тепловую энергию (тепловой эффект Джоуля). В электродвигателях электрическая энергия переходит в механическую (смотрите - Виды электродвигателей).

Щитовой ваттметр

Мощность можно определить как изменение энергии в единицу времени : P = dW/dt

Мощность в цепи постоянного тока: P = UI . Единица мощности - Вт.

Счетчик электрической энергии

В электроэнергетике широко применяются единицы мощности киловатт (кВт) и мегаватт (МВт), причем 1 кВт = 10 3 Вт и 1 М Вт = 10 6 Вт, а в слаботочной и измерительной технике — милливатт (мВт), причем 1 мВт = 10 -3 Вт. Мощность является важнейшей характеристикой электрических машин и приборов, так как для практики важна их способность производить работу в единицу времени.

2015-07-16 Теория Один комментарий

Здравствуйте. Как я и обещал в статье Электричество. Основные понятия , в этой части мы продолжим знакомство с основами электротехники, на этот раз рассмотрим основные электротехнические законы.

Начнем наверное с основного закона в электротехнике — закона Ома, открытого в 1826 году немецким физиком Георгом Омом. Я думаю многие о нем слышали и знают, но я все таки напомню:

Сила тока участка электрической цепи прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна его сопротивлению.

В виде формулы это выглядит так:


I – сила тока, идущего через участок цепи (измеряется в амперах);

U – напряжение на участке цепи (измеряется в вольтах);

R – сопротивление участка цепи (измеряется в Омах);

Для лучшего запоминания закона Ома очень удобно пользоваться вот таким треугольником:


Для нахождения нужного значения, закрываем его пальцем и два оставшихся подскажут, как его найти. Если значения расположены на одном уровне, то значит их необходимо перемножить. Если значения расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

Закон Джоуля — Ленца

Закон Джоуля — Ленца — это физический закон теплового действия электрического тока. Открыт в 1840 году независимо Джеймсом Джоулем и Эмилием Ленцом.

Закон Джоуля — Ленца гласит:

Количество теплоты, выделяемой в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени протекания.

В виде математической формулы это выражение имеет вид:

Q — количество теплоты, выделяемое током (Дж);

I — сила тока, проходящего по проводнику (А);

R — это сопротивление, оказываемое проводником (Ом);

t — время, затрачиваемое на прохождение тока ©;

Закон Джоуля-Ленца в дифференциальной форме выглядит так:

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля


w — мощность выделения тепла в единице объёма;


— плотность электрического тока;


— напряжённость электрического поля;

σ — проводимость среды;

Законы Кирхгофа

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в электрических цепях. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю .


Или другими словами сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Рассмотрим первый закон Кирхгофа на примере:

Здесь I2 и I4 — приходящие токи, а I1 и I3 — вытекающие токи

Тогда по правилу Кирхгофа можно записать:

I1 + I2 — I3 +I4 = 0 или I2 + I4 = I1+ I3

Второй закон Кирхгофа гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура.



Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае.

Правила Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Основным законом электротехники, несомненно, является Закон Ома. Названый, как и большинство, законы в физики, в честь его открывателя немецкого физика Ома, он гласит:

Сила тока участка электрической сети прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна его сопротивлению.

В символическом выражении Закон Ома выглядит так:

I=U÷R, где I-Сила тока в цепи (Ампер), U-Напряжение сети (Вольт), R-Сопротивление сети (Ом).

В таком виде закон Ома не имеет практического применения в электрике жилых и промышленных зданий. Напомню, что для электропитания зданий применяется переменное напряжение и здесь работают немного другие законы электротехники. Но закон Ома является одной из баз лежащей в основе всех формул и всех электротехнический расчетов.

Практическое применения имеет закон взаимосвязи (соответствия) напряжения, силы тока и мощности в электрической цепи. Он математически выводится из закона Ома и основан на двух алгебраических формулах, выражающих физические законы:

P=U×I, где P-мощность электрической сети (Ватт), U-напряжение, I-сила тока.

I=U÷R, где I-сила тока, U-напряжение, R-сопротивление.

Если немного посидеть, вспомнить простую алгебру и поманипулировать с эти двумя формулами, можно получить диаграмму-подсказку, в которой все четыре величины:U; I; R; P математически связаны друг с другом.

Практическое применение этих математических формул законов электрики можно применить в расчете простой электросети напряжением 220 Вольт без электродвигателей.

Например: Освещение одной комнаты из 20 лампочек накаливания. Напряжение сети величина постоянная и равна 220 вольт. Мощность каждой лампочки 25 Ватт.

Простым умножением получаем следующие результаты:

Общая потребляемая мощность сети:25 Ватт×20 лампочек=500ватт.

Сила тока в сети:500ватт÷220 вольт=2,3 ампера.

Если таких комнат в квартире три, то суммарный рабочий ток в сети составит 3×2,3 ватта=6,9 Ампер.

В соответствии с этим расчетом можно выбрать номинал автомата защиты освещения всей квартиры. Округляем 6,9 ампер в большую сторону, до значения номиналов автоматов имеющихся в продаже. Это 10 ампер.

Вывод: Простой расчет по основному закону электропроводки позволил рассчитать номинал нужного автомата защиты.

Законы Кирхгофа

Электрика любого помещения выполняется в виде замкнутых, рабочих электрических цепей. Два главных закона, которые определяют процессы в электрических сетях, являются законы Кирхгофа. Их два. Оба из них применяются и для постоянных и для переменных токов.

Первый закон Кирхгофа утверждает:

Суммарная величина токов направленная к узлу электрической сети равна суммарной величине токов направленных от узла.

В практике на основе первого закона Кирхгофа основана работа Устройств защитного отключения (УЗО). Работа УЗО заключается в отключении электропитания сети при возникновении токов утечки. При нормальном режиме работы суммарное значение тока, втекающая в электрическую сеть равна значению тока утекающему из нее. Если равенство токов нарушается, значит, в сети есть утечка. УЗО сконструировано и подключено таким образом, что при утечке тока УЗО его обнаруживает и размыкает питание электросети.

Второй закон Кирхгофа гласит:

Любой замкнутый контур переменной электрической сети имеет равные значения комплексных напряжений и ЭДС (электродвижущих сил) на всех пассивных элементах сети.

Примечание: Комплексное напряжение это значение напряжение в сети переменного тока.

Практическое применение можно пояснить на любой квартирной группе электропитания. Для пояснения рассмотрим квартиру.

Сколько бы групп электропитания в квартире не было, на любой розетке или светильнике напряжение в сети (при рабочем режиме) будет 220 вольт.

Еще один основной закон электрики нужно вспомнить.

Закон Джоуля-Ленца

В математическом символизме закон Джоуля-Ленца выглядит так:

Q=I 2 ×R×t,где Q это количество выделяемого тепла в проводнике, в Джоулях;I-сила тока;R-сопротивление проводника;t-время прохождения тока в секундах.

В качестве информации: Ленц это русский физик Эмилий Христианович Ленц. Русский физик, электротехник, физический географ.1804-1865 года жизни.

Говоря о практическом применении закона Джоуля-Ленца, трудно назвать в какой части электрики он не проявляется. Электрические обогреватели, электрические водонагреватели, тепловые завесы, выбор автоматов защиты, тепловые реле в автоматике и многое другое.

Конечно это не все основные законы электрики. На по своему значению эти законы имеют фундаментальное значение.


ОМ (по имени германского физика Г. Ома (1787-1854)) – единица электронного сопротивления. Обозначение Ом. Ом – сопротивление проводника, меж концами которого при силе тока 1 А появляется напряжение 1 В. Определяющее уравнение для электронного сопротивления R= U / I.

Закон Ома является главным законом электротехники, без которого нельзя обойтись при расчете электронных цепей. Связь меж падением напряжения на проводнике, его сопротивлением и силой тока просто запоминается в виде треугольника, в верхушках которого размещены знаки U, I, R.

К закону Ома

Самый главный закон электротехники — закон Ома

ЗАКОН ДЖОУЛЯ-ЛЕНЦА (по имени британского физика Дж.П.Джоуля и российского физика Э.Х.Ленца) – закон, характеризующий термическое действие электронного тока.

Согласно закону, количество теплоты Q (в джоулях), выделяющейся в проводнике при прохождении по нему неизменного электронного тока, находится в зависимости от силы тока I (в амперах), сопротивления проводника R (в омах) и времени его прохождения t (в секундах): Q = I 2 Rt.

Преобразование электронной энергии в термическую обширно употребляется в электронных печах и разных электронагревательных устройствах. Тот же эффект в электронных машинах и аппаратах приводит к непроизвольным энергозатратам (энергопотере и понижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку. При перегрузке увеличение температуры может вызвать повреждение изоляции либо сокращение срока службы установки.

ЗАКОН КИРХГОФА (по имени германского физика Г.Р.Кирхгофа (1824-1887)) – два главных закона электронных цепей. 1-ый закон устанавливает связь меж суммой токов, направленных к узлу соединения (положительные), и суммой токов, направленных от узла (отрицательные).

Алгебраическая сумма сил токов In, сходящихся в любой точке разветвления проводников (узле), равна нулю, т.е. SUMM(In)= 0. К примеру, для узла A можно записать: I1 + I2 = I3 + I4 либо I1 + I2 – I3 – I4 = 0.


2-ой закон устанавливает связь меж суммой электродвижущих сил и суммой падений напряжений на сопротивлениях замкнутого контура электронной цепи. Токи, совпадающие с произвольно избранным направлением обхода контура, числятся положительными, а не совпадающие – отрицательными.

Контур тока

Алгебраическая сумма моментальных значений ЭДС всех источников напряжения в любом контуре электронной цепи равна алгебраической сумме моментальных значений падений напряжений на всех сопротивлениях такого же контура SUMM(En)=SUMM(InRn). Переставив SUMM(InRn) в левую часть уравнения, получим SUMM(En) – SUMM(InRn) = 0. Алгебраическая сумма моментальных значений напряжений на всех элементах замкнутого контура электронной цепи равна нулю.

ЗАКОН ПОЛНОГО ТОКА — один из главных законов электрического поля. Устанавливает связь меж магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.

Намагничивающая сила вдоль контура равна полному току, проходящему через поверхность, ограниченную этим контуром. В общем случае напряженность поля на разных участках магнитной полосы может иметь различные значения, тогда и намагничивающая сила будет равна сумме намагничивающих сил каждой полосы.

ЗАКОН ЛЕНЦА — основное правило, обхватывающее все случаи электрической индукции и позволяющее установить направление возникающей э.д.с. индукции.

Согласно закону Ленца это направление во всех случаях такое, что ток, сделанный появившейся э.д.с., препятствует тем изменениям, которые вызвали возникновение э.д.с. индукции. Этот закон является высококачественной формулировкой закона сохранения энергии в применении к электрической индукции.

ЗАКОН Электрической ИНДУКЦИИ, закон Фарадея – закон, устанавливающий связь меж магнитными и электронными явлениями. ЭДС электрической индукции в контуре численно равна и обратна по знаку скорости конфигурации магнитного потока через поверхность, ограниченную этим контуром. Величина ЭДС поля находится в зависимости от скорости конфигурации магнитного потока.

ЗАКОНЫ ФАРАДЕЯ (по имени британского физика М.Фарадея (1791-1867)) – главные законы электролиза. Устанавливают связь меж количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах при пропускании через электролит неизменного тока I в течение секунды q = It, m = kIt.

2-ой закон ФАРАДЕЯ: химические эквиваленты частей прямо пропорциональны их хим эквивалентам.

ПРАВИЛО БУРАВЧИКА — правило, позволяющее найти направление магнитного поля, зависящее от направления электронного тока. При совпадении поступательного движения буравчика с протекающим током направление вращения его ручки показывает направление магнитных линий. Либо при совпадении направления вращения руки буравчика с направлением тока в контуре поступательное движение буравчика показывает направление магнитных линий, пронизывающих поверхность, ограниченную контуром.

Правило буравчика

ПРАВИЛО ЛЕВОЙ РУКИ — правило, позволяющее найти направление электрической силы. Если ладонь левой руки размещена так, что вектор магнитной индукции заходит в нее (вытянутые четыре пальца совпадают с направлением тока), то отогнутый под прямым углом большой палец левой руки указывает направление электрической силы.

Правило левой руки

Правило левой руки

ПРАВИЛО ПРАВОЙ РУКИ — правило, позволяющее найти направление наведенной эдс электрической индукции. Ладонь правой руки располагают так, чтоб магнитные полосы входили в нее. Отогнутый под прямым углом большой палец совмещают с направлением движения проводника. Вытянутые четыре пальца укажут направление индуктированной эдс.

Читайте также: