Основные законы электрических цепей кратко

Обновлено: 02.07.2024

Основными законами теории электрических цепейявляются законы Ома и Кирхгофа. С помощью этих законов можно осуществить анализ и расчет любых электрических цепей. Так, в неразветвлённой электрической цепи (рис. 1.18), содержащей источник энергии e(t) с внутренним сопротивлением Rвн и сопротивлением нагрузки Rн,будет протекать ток i(t), значение которого определяется законом Ома, т.е.

Закон Ома был сформулирован в 1826 г. Омом следующим образом: сила тока прямо пропорциональна разности потенциалов на концах проводника и обратно пропорциональна сопротивлению этого проводника [2]. Для участка электрической цепи, сопротивление которого R и напряжение на котором u(t), закон Ома записывается в виде

Произведение называют падением напряжения, причем под напряжением на любом участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

Запись, аналогичная (1.24), может быть осуществлена не только для мгновенных значений токов и напряжений, но и для других значений, т.е.:

Анализ и расчет разветвлённых цепей обычно осуществляют с помощью законов Кирхгофа, которые были сформулированы в 1845 г. немецким физиком Г. Кирхгофом.

Первый закон Кирхгофа формулируется следующим образом. Сумма всех токов, втекающих в узел электрической цепи, равна сумме всех токов, вытекающих из этого узла, или алгебраическая сумма токов в узле равна нулю. Под словом “алгебраическая” понимают, что перед суммированием токов следует определиться с их знаками, так для тока, входящего в узел, берётся знак плюс, а для тока, выходящего из узла, берётся знак минус. Иллюстрацию первого закона Кирхгофа и его аналитическую запись можно осуществить на примере участка электрической цепи (рис. 1.24) с узлом 1.

Рис. 1.24. Участок электрической цепи с узлом 1

В соответствии с рис. 1.24 получим, что

Выражение (1.26) является аналитической записью первого закона Кирхгофа для мгновенных значений токов. Запись (1.26) можно осуществить для любых значений токов, если электрическая цепь состоит только из сопротивлений R. Когда в схеме имеется индуктивность и (или) ёмкость, выражение (1.26) будет верным только для мгновенных значений токов i(t) и комплексных значений . Его нельзя применять для действующих I и амплитудных значений Im гармонического тока, а также для постоянных значений I- тока, что станет понятным из дальнейшего изложения материала в пособии.

Второй закон Кирхгофа применяют к замкнутым контурам электрической цепи (рис. 1.25).

Рис. 1.25. Замкнутый контур электрической цепи

Он формулируется следующим образом. Алгебраическая сумма падений напряжений на элементах контура равна алгебраической сумме э.д.с. источников, действующих в контуре.

Для аналитической записи второго закона Кирхгофа следует задаться направлением обхода в контуре и токами в его элементах. Положительный знак падения напряжения на элементе будет в том случае, если направление тока на нём совпадает с направлением обхода контура (в противном случае – отрицательный). Положительный знак у э.д.с. ставится при совпадении направления обхода с её направлением, отрицательный – при их несовпадении. Для замкнутого контура электрической цепи по рис. 1.25 аналитическая запись второго закона Кирхгофа будет иметь следующий вид:

Выражение (1.27) является записью второго закона Кирхгофа для мгновенных падений напряжений на элементах контура, т.е.

В случае наличия в контуре кроме элементов R элементов L и (или) С второй закон Кирхгофа можно применять только для

мгновенных u(t) и комплексных значений напряжений, т.е. аналогично первому закону Кирхгофа.

Контрольные вопросы

1. Что называется электрической цепью и какие основные элементы входят в ее состав?

2. Что представляют собой активные и пассивные элементы электрической цепи?

3. Дайте определение понятию эквивалентной схеме электрической цепи, и что входит в ее состав?

4. Дайте определения понятий: ветвь, узел, контур, одноконтурные и многоконтурные цепи.

5. Как для схемы электрической цепи выбираются независимые контуры?

6. Что представляет собой электрический ток, напряжение и падение напряжения? Как выбирают положительные направления тока?




7. Какие буквенные обозначения приняты для электрического тока и напряжения?

8. Приведите пример использования при расчетах электрической цепи понятий положительного направления тока и напряжения.

9. Дайте определение понятиям энергии и мощности в электрической цепи. Какие буквенные обозначения используются для этих понятий?

10. Какой физический смысл имеют положительный и отрицательный знаки мгновенной мощности?

11. Дайте характеристику идеализированному резистивному элементу. Какими основными свойствами обладает этот элемент?

12. Дайте характеристику идеализированному емкостному элементу. Какими основными свойствами обладает этот элемент?

Основными законами теории электрических цепейявляются законы Ома и Кирхгофа. С помощью этих законов можно осуществить анализ и расчет любых электрических цепей. Так, в неразветвлённой электрической цепи (рис. 1.18), содержащей источник энергии e(t) с внутренним сопротивлением Rвн и сопротивлением нагрузки Rн,будет протекать ток i(t), значение которого определяется законом Ома, т.е.

Закон Ома был сформулирован в 1826 г. Омом следующим образом: сила тока прямо пропорциональна разности потенциалов на концах проводника и обратно пропорциональна сопротивлению этого проводника [2]. Для участка электрической цепи, сопротивление которого R и напряжение на котором u(t), закон Ома записывается в виде

Произведение называют падением напряжения, причем под напряжением на любом участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

Запись, аналогичная (1.24), может быть осуществлена не только для мгновенных значений токов и напряжений, но и для других значений, т.е.:

Анализ и расчет разветвлённых цепей обычно осуществляют с помощью законов Кирхгофа, которые были сформулированы в 1845 г. немецким физиком Г. Кирхгофом.

Первый закон Кирхгофа формулируется следующим образом. Сумма всех токов, втекающих в узел электрической цепи, равна сумме всех токов, вытекающих из этого узла, или алгебраическая сумма токов в узле равна нулю. Под словом “алгебраическая” понимают, что перед суммированием токов следует определиться с их знаками, так для тока, входящего в узел, берётся знак плюс, а для тока, выходящего из узла, берётся знак минус. Иллюстрацию первого закона Кирхгофа и его аналитическую запись можно осуществить на примере участка электрической цепи (рис. 1.24) с узлом 1.

Рис. 1.24. Участок электрической цепи с узлом 1

В соответствии с рис. 1.24 получим, что

Выражение (1.26) является аналитической записью первого закона Кирхгофа для мгновенных значений токов. Запись (1.26) можно осуществить для любых значений токов, если электрическая цепь состоит только из сопротивлений R. Когда в схеме имеется индуктивность и (или) ёмкость, выражение (1.26) будет верным только для мгновенных значений токов i(t) и комплексных значений . Его нельзя применять для действующих I и амплитудных значений Im гармонического тока, а также для постоянных значений I- тока, что станет понятным из дальнейшего изложения материала в пособии.

Второй закон Кирхгофа применяют к замкнутым контурам электрической цепи (рис. 1.25).

Рис. 1.25. Замкнутый контур электрической цепи

Он формулируется следующим образом. Алгебраическая сумма падений напряжений на элементах контура равна алгебраической сумме э.д.с. источников, действующих в контуре.

Для аналитической записи второго закона Кирхгофа следует задаться направлением обхода в контуре и токами в его элементах. Положительный знак падения напряжения на элементе будет в том случае, если направление тока на нём совпадает с направлением обхода контура (в противном случае – отрицательный). Положительный знак у э.д.с. ставится при совпадении направления обхода с её направлением, отрицательный – при их несовпадении. Для замкнутого контура электрической цепи по рис. 1.25 аналитическая запись второго закона Кирхгофа будет иметь следующий вид:

Выражение (1.27) является записью второго закона Кирхгофа для мгновенных падений напряжений на элементах контура, т.е.

В случае наличия в контуре кроме элементов R элементов L и (или) С второй закон Кирхгофа можно применять только для

мгновенных u(t) и комплексных значений напряжений, т.е. аналогично первому закону Кирхгофа.

Контрольные вопросы

1. Что называется электрической цепью и какие основные элементы входят в ее состав?

2. Что представляют собой активные и пассивные элементы электрической цепи?

3. Дайте определение понятию эквивалентной схеме электрической цепи, и что входит в ее состав?

4. Дайте определения понятий: ветвь, узел, контур, одноконтурные и многоконтурные цепи.

5. Как для схемы электрической цепи выбираются независимые контуры?

6. Что представляет собой электрический ток, напряжение и падение напряжения? Как выбирают положительные направления тока?

7. Какие буквенные обозначения приняты для электрического тока и напряжения?

8. Приведите пример использования при расчетах электрической цепи понятий положительного направления тока и напряжения.

9. Дайте определение понятиям энергии и мощности в электрической цепи. Какие буквенные обозначения используются для этих понятий?

10. Какой физический смысл имеют положительный и отрицательный знаки мгновенной мощности?

11. Дайте характеристику идеализированному резистивному элементу. Какими основными свойствами обладает этот элемент?

12. Дайте характеристику идеализированному емкостному элементу. Какими основными свойствами обладает этот элемент?

При анализе простых и сложных цепей широко используются законы Ома, Кирхгофа, Джоуля Ленца, Фарадея, Ампера.

Существует 2 законы Ома:

Для участка цепи

Для полной цепи

Ток в участке цепи прямопропорционален напряжению на данном участке и обратно пропорционален сопротивлению на данном участке:


илиU=I*R

Произведение тока участка цепи на величину сопротивления называют падением на данном участке. Ток в электрической цепи прямопропорционален ЭДС источника и обратно пропорционален сумме сопротивлений, которые состоят из внутреннего сопротивления источника питания и внешнего.


Существует 2 закона Кирхгофа:

Первый закон Кирхгофаприменяется для узла электрической цепи (точки, где сходятся три и более ветви). Формулируется он следующим образом: алгебраическая сумма токов, сходящихся в узле, равна 0.


Второй закон Кирхгофасправедлив для контура электрической цепи (любого замкнутого пути, образованного одной или более ветвями) и формулируется следующим образом:в любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений на участках цепи, входящих в этот контур, равна алгебраической сумме ЭДС в нем:


Закон Джоуля-Ленцапозволяет определить количество тепловой энергии, которая выделяется на сопротивлениеrпри протекании по нему электрического токаI. Математическая запись этого закона имеет вид:


W=

Для характеристики скорости превращения электрической энергии в тепловую используют мощность, выражение для которой можно получить из закона Джоуля-Ленца:

P=W/t=r=/r=UI

Закон электромагнитной индукции Фарадеяустанавливает связь между индуктированием ЭДС в электрических цепях и изменением магнитного потока, пронизывающего поверхность, ограниченную контуром цепи, или индуктированием ЭДС в проводнике при пересечении им магнитного поля. В соответствии с этим законом ЭДС, индуктируемая в цепи при изменении магнитного потока Ф, проходящего через поверхность, ограниченную контуром, равна скорости изменения магнитного потока, взятой с отрицательным знаком:

E=-dФ/dt

Эквивалентные преобразования в электрических цепях.

Под эквивалентными преобразованиями подразумевается замену участков электрической цепи, содержащей последовательно и параллельно соединенных несколько элементов одним элементом. При чем в результате замены общий ток и общее напряжение цепи не изменяется. Главной особенностью последовательного соединения является наличие общего тока одинакового по значению для всех элементов, включая последовательные.

Одинаковое значение тока на всех элементах включенных последовательно приводит к тому, что напряжение на каждом из элементов, включенных последовательно прямопропорционально сопротивлению участка цепи.

Общее напряжение в цепи:

U=++= I(++)=I


При параллельном соединении элементов условное начало объединяется в одну точку, а условные концы в другую. В результате на всех будет находиться одинаковое напряжение.

Токи в элементах, включенные параллельно обратно пропорциональны сопротивлению ветвей, включенных параллельно.

===


Данную цепь, состоящую из трех элементов, можно заменить одним эквивалентным потребителем. При этом напряжение и ток I не изменяться.



Здесь:


Для двух включенных параллельно:

Основные законы электротехники

Предмет электротехники охватывает отрасль прикладных знаний, имеющую целью изучение способов применения электрической энергии в технике и промышленности. Электротехника, благодаря настойчивому труду ученых и инженеров, развивалась гигантскими шагами и быстро завоевала себе одно из самых почетных мест среди прикладных наук.

Основные законы электротехники


ЗАКОН ОМА (по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом. Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. Определяющее уравнение для электрического сопротивления R = U / I.

Закон Ома является основным законом электротехники, без которого нельзя обойтись при расчете электрических цепей. Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R.

К закону Ома

ЗАКОН ДЖОУЛЯ-ЛЕНЦА (по имени английского физика Дж.П.Джоуля и русского физика Э.Х.Ленца) – закон, характеризующий тепловое действие электрического тока.

Согласно закону, количество теплоты Q (в джоулях), выделяющейся в проводнике при прохождении по нему постоянного электрического тока, зависит от силы тока I (в амперах), сопротивления проводника R (в омах) и времени его прохождения t (в секундах): Q = I 2 Rt.

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку. При перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

ЗАКОН КИРХГОФА (по имени немецкого физика Г.Р.Кирхгофа (1824-1887)) – два основных закона электрических цепей. Первый закон устанавливает связь между суммой токов, направленных к узлу соединения (положительные), и суммой токов, направленных от узла (отрицательные).

Алгебраическая сумма сил токов In, сходящихся в любой точке разветвления проводников (узле), равна нулю, т.е. SUMM(In)= 0. Например, для узла A можно записать: I1 + I2 = I3 + I4 или I1 + I2 – I3 – I4 = 0.


Второй закон устанавливает связь между суммой электродвижущих сил и суммой падений напряжений на сопротивлениях замкнутого контура электрической цепи. Токи, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а не совпадающие – отрицательными.

Контур тока

Алгебраическая сумма мгновенных значений ЭДС всех источников напряжения в любом контуре электрической цепи равна алгебраической сумме мгновенных значений падений напряжений на всех сопротивлениях того же контура SUMM(En)=SUMM(InRn). Переставив SUMM(InRn) в левую часть уравнения, получим SUMM(En) – SUMM(InRn) = 0. Алгебраическая сумма мгновенных значений напряжений на всех элементах замкнутого контура электрической цепи равна нулю.

ЗАКОН ПОЛНОГО ТОКА один из основных законов электромагнитного поля. Устанавливает взаимосвязь между магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.

Намагничивающая сила вдоль контура равна полному току, проходящему сквозь поверхность, ограниченную этим контуром. В общем случае напряженность поля на различных участках магнитной линии может иметь разные значения, и тогда намагничивающая сила будет равна сумме намагничивающих сил каждой линии.

ЗАКОН ЛЕНЦА - основное правило, охватывающее все случаи электромагнитной индукции и позволяющее установить направление возникающей э.д.с. индукции.

Согласно закону Ленца это направление во всех случаях таково, что ток, созданный возникшей э.д.с., препятствует тем изменениям, которые вызвали появление э.д.с. индукции. Этот закон является качественной формулировкой закона сохранения энергии в применении к электромагнитной индукции.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ , закон Фарадея – закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Величина ЭДС поля зависит от скорости изменения магнитного потока.

ЗАКОНЫ ФАРАДЕЯ (по имени английского физика М.Фарадея (1791-1867)) – основные законы электролиза.

Устанавливают взаимосвязь между количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах.

При пропускании через электролит постоянного тока I в течение секунды q = It, m = kIt.

Второй закон ФАРАДЕЯ: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам.

ПРАВИЛО БУРАВЧИКА — правило, позволяющее определить направление магнитного поля, зависящее от направления электрического тока. При совпадении поступательного движения буравчика с протекающим током направление вращения его рукоятки указывает направление магнитных линий. Или при совпадении направления вращения рукоятки буравчика с направлением тока в контуре поступательное движение буравчика указывает направление магнитных линий, пронизывающих поверхность, ограниченную контуром.

Правило буравчика

ПРАВИЛО ЛЕВОЙ РУКИ — правило, позволяющее определить направление электромагнитной силы. Если ладонь левой руки расположена так, что вектор магнитной индукции входит в нее (вытянутые четыре пальца совпадают с направлением тока), то отогнутый под прямым углом большой палец левой руки показывает направление электромагнитной силы.

Правило левой руки

Правило левой руки

ПРАВИЛО ПРАВОЙ РУКИ — правило, позволяющее определить направление наведенной эдс электромагнитной индукции. Ладонь правой руки располагают так, чтобы магнитные линии входили в нее. Отогнутый под прямым углом большой палец совмещают с направлением движения проводника. Вытянутые четыре пальца укажут направление индуктированной эдс.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.


Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.


При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:


Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов


Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Читайте также: