Основные процессы в биосфере кратко

Обновлено: 02.07.2024

Биосферные процессы во всех глобальных экосистемах возможны за счет потоков энергии. Живая оболочка планеты поглощает энергию Солнца и недр Земли. Энергия идет на образование биомассы и на дыхание живых организмов. Постоянный и преимущественный приток энергии биосфера получает от Солнца. К Земле приходит коротковолновое излучение (свет), а уходит от нее в космос длинноволновое тепловое излучение. Баланс этих энергий не соблюдается, планета излучает в космос меньше энергии, чем получает от Солнца. Разность энергий (доли процента) усваивает биосфера, и этого достаточно для поддержания жизни на планете.

Помимо потоков энергии постоянно происходиткруговорот веществ -многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере. Непрерывные химические превращения веществ необходимы для развития биосферы. Циклическая миграция веществ при энергетической подпитке от Солнца обеспечивает бесконечность жизни. При этом часть вещества биосферы (каменный уголь) консервируются в толще Земли и исключаются из круговорота веществ. Антропогенное вмешательство возвращает его в биосферный круговорот.

В настоящее время в чистом природном виде круговорот веществ не существует. Современный период развития мировой экономики связан с интенсификацией производства, приводящей к увеличению объемов используемых природных ресурсов. Это в свою очередь приводит к увеличению отходов производства и, как следствие, загрязнению биосферы. Такое хозяйствование создает экологические проблемы, многие из них уже имеют глобальный характер. Например, техногенные источники сильно изменили характер круговорота углерода в биосфере, накопив его в виде диоксида углерода в атмосфере в таком количестве, что это привело к потеплению климата из-за так называемого "парникового эффекта". За сто лет средняя температура на поверхности Земли повысилась на 0,5 градуса, далее процесс потепления пойдет намного, прогнозируют последствия парникового эффекта в виде нового всемирного потопа. Чтобы обозначить пределы человеческого вмешательства, необходимо знать законы существования биосферы в их современном виде.

С момента образования биосферы все ее составные части находятся в постоянном и закономерном взаимообмене. Различают два основных круговорота:

¨ Большой (геологический)

¨ Малый (биохимический).

Большой круговорот длится миллионы лет. Горные породы подвергаются разрушению, продукты разрушения сносятся потоками воды в Мировой океан. Там они образуют донные напластования, используются в биохимических процессах водных организмов, частично возвращаются на сушу с осадками, извлеченными организмами. Границы геологического круговорота значительно шире границ биосферы, живые организмы в этом круговороте играют второстепенную роль.

Биологический круговорот обусловлен жизнедеятельностью организмов: рождение, питание, рост, размножение, развитие, выделение метаболитов, смерть, разложение, минерализация. Биологический круговорот происходит в границах биосферы и воплощает в себе уникальные свойства живого вещества. Малый круговорот осуществляется на уровне экосистемы, является частью большого круговорота. На протяжении сотен миллионов лет круговорот веществ в природе осуществлялся под действием биотических и абиотических факторов среды. Последние 100 лет все изменили, роль антропогенных факторов выросла до уровня биогеохимических, а в некоторых случаях эти факторы имеют глобальное значение, что приводит к изменению природных чистых биогеохимических циклов (круговоротов).

Круговорот воды.Постоянный перенос воды в масштабе планеты происходит за счет энергии Солнца. В процессе переноса агрегатное состояние воды изменяется, что позволяет поддерживать равновесие между суммарным испарением и выпадением осадков на планете. Испаряясь, вода с содержащимися в ней веществами переносится на многие километры воздушными потоками. Выпадая в виде осадков, вода способствует разрушению горных пород, делая их минералы доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит в моря и океаны. С поверхности Земли за 1 минуту испаряется около 1 млрд тонн воды и столько же выпадает обратно в виде осадков. Вода, доступная для живых организмов (проходящая через их тела) составляет сотую долю процента, но играет важную роль в функционировании экосистем. Вода способствует трансформации литосферы, обеспечивает связь живой и неживой материи, поддержание жизни земных организмов.

Круговорот углерода.Гораздо в большей степени зависит от деятельности живых организмов. Углерод в виде диоксида углерода из атмосферы ассимилируется наземными растениями и через фотосинтез включается в состав органических веществ. В процессе дыхания растений, животных и микроорганизмов углерод, содержащийся в организме, вновь переходит в атмосферу в виде диоксида. Эти два процесса практически уравновешены, лишь 1% углерода, усвоенного растениями, откладывается в виде торфа и на долгие тысячелетия удаляется из круговорота. Зеленые растения ежегодно извлекают из атмосферы до 300 млрд тонн диоксида углерода. Намного большее количество углерода содержится в растворенном виде в морях и океанах. Значительное количество углерода в связанном состоянии находится в литосфере и живых организмах. Углерод биосферы обменивается и обновляется живыми организмами за 395 лет.

Круговорот азота.Запасы азота в атмосфере и Мировом океане значительны, однако азот напрямую не может быть использован большинством живых организмов. В круговороте азота большую роль играют микроорганизмы (азотфиксаторы, нитрификаторы, денитрификаторы), которые переводят его в приспособленную для живых организмов форму. В основном фиксация азота происходит биологическим путем. Возвращение в атмосферу происходит вследствие денитрификации, которая происходит с участием бактерий и в ходе химических процессов. Круговорот азота в большинстве сообществ замкнутый, лишь небольшие количества его выносятся из наземных сообществ с водами. В масштабах биосферы этот процесс заметнее, реки выносят в океан около 30 млн тонн азота в год.

Круговорот кислорода.Планетарный процесс, связывающий атмосферу и гидросферу с земной корой. Звенья круговорота: образование свободного кислорода в процессе фотосинтеза, расход на дыхание живых организмов, протекание окисления органических и неорганических веществ. Химические преобразования способствуют окисленных соединений, диоксида углерода и воды, после чего эти вещества вновь вовлекаются в процесс круговорота. Весь кислород атмосферы проходит через живое вещество биосферы за 2 тысячи лет.

Возникает вопрос, почему энергия течет в одном направлении, а вещество находится в вечном круговороте, ведь в философском смысле материя неотделима от энергии? Солнечная энергия приходит на планету в виде света. Свет характеризуется корпускулярно-волновой двойственностью, то есть обладает и свойствами вещества. Принимая участие в биосферных процессах, энергия трансформируется и в конечном итоге принимает форму теплового излучения. Тепловая энергия далее не трансформируется, переходит в окружающую среду и навсегда покидает живую оболочку планеты.

Участие солнечной энергии в атмосферных процессах определяет совокупность климатообразующих процессов.Конкретные состояния климатических процессов в каждом месте и в каждый момент времени называется погодой.Постоянные изменения погодных условий служат главной причиной различных колебательных изменений в биосфере. Атмосфера нагревается неравномерно, это заставляет воздух постоянно перемешиваться. Воздушные массы соразмерны по площадям с материками и океанами, характеризуются каждая сравнительно однородными показателями (температура, влажность, давление). Распределение природно-климатических зон на земной поверхности определяется путями движения воздушных масс и скоростью их трансформирования.

Воздушные потоки в жизни биосферы играют огромную роль. Ими доставляются миллиарды тонн воды из океанов, увлажняющие сушу. Они же приносят весь необходимый для жизненных процессов йод и т.д. Огромную роль в динамике биосферы играют геокосмические ритмы, установлена связь земных процессов с солнечной активностью, меняющейся с периодичностью 11,5 года, достаточно изучено влияние луны. Наибольшее и резкое влияние оказывает на биосферу вмешательство человеческой деятельности. Антропогенная деятельность, в отличие от естественных экологических ритмов, оказывает не колебательные, а поступательные изменения природы, часто необратимые. И, тем не менее, биосфера характеризуется значительной устойчивостью.

Биосфера (греч. bios - жизнь + sphaira - шар) - наружная оболочка Земли, населенная живыми организмами, составляющими в совокупности живое вещество планеты. Термин "биосфера" предложен австрийским геологом Э. Зюссом, учение о биосфере было создано и развито российским и советским ученым Вернадским Владимиром Ивановичем.

Биосфера - совокупность всех биогеоценозов, это открытая система, структура и свойства которой определяются деятельностью организмов в прошлом и настоящем. Биосферу можно рассматривать как часть лито-, гидро- и атмосферы, заселенную живыми существами.

Биосфера

Запомните, что наибольшая концентрация живого вещества сосредоточена на границе сред (к примеру, на границе литосферы и атмосферы).

Границы биосферы

Общая толщина биосферы приблизительно 17 км. Живые организмы проникают вглубь литосферы на расстояние до 6-7 км, заселяют всю толщу гидросферы (до самого дна мирового океана). В атмосфере живые организмы встречаются в нижней части - тропосфере, которую сверху ограничивает озоновый слой (часть стратосферы).

Выше "озонового экрана" существование жизни в привычном для нас виде невозможно, так как губительное УФ (ультрафиолетовое) излучение уничтожает все живое. Возникновению жизни в недрах Земли препятствует высокая температура, оказывающая разрушительное воздействие.

Границы биосферы

Вещество биосферы

Совокупность всех живых организмов на нашей планете. Именно Вернадский показал, что деятельность живых существ - важнейший фактор геологических изменений планеты.

Формируется без участия живых организмов. Базальт, гранит, песок, золотоносные руды. К косному веществу можно отнести горные породы магматического происхождения, образовавшиеся в результате извержения вулканов.

Косное вещество биосферы

Это вещество образуется живыми организмами в процессе их жизнедеятельности. Примерами биогенного вещества могут послужить залежи известняка, природный газ, кислород, нефть, каменный уголь, торф.

Залежи мела

Биокосное вещество создается одновременно деятельностью живых организмов и косными процессами. Таким образом, биокосное вещество объединяет в себе живое и косное вещества.

К биокосному веществу относятся пресная и соленая вода, почва, воздух. Почва является верхним наиболее плодородным слоем литосферы Земли. Почва - уникальный продукт совместной деятельности живых организмов, то есть биологических и геологических процессов, протекающих в живой природе.

Биокосное вещество - почва

Функции живого вещества

Важнейший компонент биосферы - живое вещество, то есть - живые организмы. Их деятельность приводит к наиболее значительным геологическим изменениям в биосфере, они обеспечивают круговорот веществ - главное условие зарождения новой жизни.

Живые организмы постоянно получают и преобразуют энергию. Растения преобразуют энергию солнечного света в энергию химических связей, а животные передают ее по цепочке. После смерти растений и животных энергия возвращается в круговорот благодаря бактериям и грибам - сапротрофам (греч. sapros – гнилой), разлагающим мертвое органическое вещество.

Деятельность живых организмов обеспечивает постоянный газовый состав атмосферы. В ходе дыхания животные поглощают кислород и выделяют углекислый газ, а растения в ходе фотосинтеза поглощают углекислый газ и выделяют кислород. Бактерии хемотрофы также выделяют в атмосферу некоторые газы, полученные окислением сероводорода, азота.

Фотосинтез

Я никогда не перестану восхищаться этой функцией живого вещества. Вы только вдумайтесь: на одной и той же почве, рядом друг с другом, растут совершенно разные растения по форме, размеру и окраске плодов, цветков! Каждый раз задумываешься: как это возможно?

Это связано с тем, что каждое живое существо избирательно накапливает определенные химические элементы. К примеру, многие моллюски накапливают кальций, образуют известковый скелет - раковину. После их смерти раковины опускаются на дно, в результате чего создаются залежи полезных ископаемых - известняка (мела).

В результате жизнедеятельности мха сфагнума образуется полезное ископаемое - торф, а папоротниковидные образуют каменный уголь. Это концентрат углеродистых и кальциевых соединений в погибших растениях, которые тысячелетиями отмирали и образовали залежи ископаемых.

Концентрационная фнукция биосферы

Живые организмы способны окислять и восстанавливать различные химические вещества. На реакциях окисления и восстановления основан метаболизм (обмен веществ) любого живого существа, подобные реакции протекают постоянно в ходе фотосинтеза, энергетического обмена.

Без разрушения "старой" жизни, невозможно возникновение "новой". После смерти живых существ их останки подвергаются разрушению, из них высвобождается энергия, накопленная в связях химических веществ. Непрерывный круговорот должен продолжаться всегда - это главное условие жизни.

Сапротрофы

Теория биогенной миграции атомов Вернадского В.И.

При непосредственном участии живого вещества в биосфере непрерывно осуществляется биогенная миграция атомов. Даже сейчас, с каждым вашим вдохом, атомы кислорода соединяются с гемоглобином эритроцитов, доставляются по крови к клеткам тканей организма и становятся частью ваших клеток.

Откуда взялся кислород, которым мы дышим? Его в процессе фотосинтеза выделили растения. Для процесса фотосинтеза необходим углекислый газ, который в процессе дыхания выделяют животные, углекислый газ, который образуется при разложении останков растений и животных. Получается круговорот атомов.

Теория биогенной миграции атомов

Все атомы, которыми мы обладаем, которые стали частью наших рук, глаз, носа, языка - все эти атомы кому-то принадлежали до нас! За миллиарды лет существования Земли они успели побывать в мириадах растений, грибов и животных. То, что наши атомы сейчас с нами - великое чудо и немыслимая случайность.

Я искренне восхищаюсь этой теорией, она показывает непрерывность жизни, бесконечность нашего существования и единство всего живого.

Теория биогенной миграции атомов Вернадского

Ноосфера

Ноосфера (греч. noos - разум и sphaira - шар) - термин введенный русским ученым В.И. Вернадским. Ноосфера подразумевает взаимодействие природы и общества, при котором человек является главным определяющим фактором эволюции. Человек становится крупнейшей геологической силой.

Споры о том, можно ли считать современный этап развития цивилизации ноосферой остаются открытыми. Основная идея ноосферы - разумное, рациональное поведение человека, при котором он сосуществует в гармонии со всеми другими формами жизни.

К сожалению, нынешняя ситуация напоминает старую поговорку: "Пока не потеряешь, не осознаешь ценность". Неужели растения должны исчезнуть с лица Земли, чтобы мы вспомнили о том, что благодаря фотосинтезу в их листьях мы дышим кислородом? В этом случае чувство нашего ложного величия может сильно пострадать.

Ноосфера

Круговорот веществ

Углерод находится в природе в основном в составе углекислого газа, угольной кислоты и ее нерастворимых солей - карбоната кальция (из которого состоят раковины моллюсков). Отмирая, живые организмы образуют залежи полезных ископаемых: торф, древесину, каменный уголь, нефть. Известняк может надолго исключить углерод из круговорота веществ.

Подобно этому, долгое время нефть и уголь были почти полностью исключены из круговорота веществ, однако в настоящее время человек "вернул их в строй" вместе с выхлопными газами.

Круговорот углерода

Азот находится в воздухе, которым мы дышим, и составляет 78% от его объема. Большая часть азота поступает в почву и воду благодаря деятельности микроорганизмов, бактерий и водорослей.

Широко известны клубеньковые бактерии на корнях бобовых растений, находящиеся с ними в симбиозе. Клубеньковые бактерии переводят атмосферный азот в нитраты, которые необходимы для роста и развития растения и могут быть усвоены им, в отличие от атмосферного азота (газа).

В листьях в процессе биосинтеза азот преобразуется в белки. Травоядные животные поедают растения, таким образом, белок включается в их состав. После смерти животных белки разлагаются сапротрофами, которые выделяют аммиак, нитраты. Часть нитратов усваивается растениями, а часть восстанавливается бактериями до атмосферного азота - цикл замыкается.

Круговорот азота

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


Все вещества на планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: большой (геологический, биосферный) и малый (биологический).

Но большой круговорот – это и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности океана (на это тратится 50 % солнечной энергии), частью переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, а часть осадков выпадает на ту же самую водную поверхность океана. В круговороте участвует более 500 тыс. км3 воды. Играет основную роль в формировании природных условий на нашей планете. С учётом транспирации воды растениями и поглощения её в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

27.tif

Рис. 27. Геологический (большой) круговорот веществ

Малый круговорот веществ в биосфере (биогеохимический) совершается лишь в пределах биосферы. Сущность его – в образовании живого вещества из неорганического в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения (рис. 28).

28.tif

Рис. 28. Биологический круговорот веществ

Этот круговорот для жизни биосферы – главный, и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на Земле, обеспечивая биогеохимический круговорот веществ.

Наиболее интенсивному и быстрому круговороту подвергаются легкоподвижные вещества – газы и природные воды, составляющие атмосферу и гидросферу планеты. Значительно медленнее совершает круговорот материал литосферы. В целом каждый круговорот любого химического элемента является частью общего большого круговорота веществ на Земле, и все они тесно связаны между собой. Живое вещество биосферы в этом круговороте выполняет огромную работу по перераспределению химических элементов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Обмен веществом и энергией, осуществляющийся между разными структурными частями биосферы и обусловленный жизнедеятельностью организмов, называется биогеохимическим циклом.

Все биогеохимические циклы составляют современную динамическую основу существования жизни, они взаимосвязаны, и каждый из них играет свойственную ему роль в эволюции биосферы. Продолжительность циклов круговорота тех или иных веществ различна. Время, достаточное для полного оборота всего углекислого газа атмосферы через фотосинтез, составляет около 300 лет; кислорода атмосферы через фотосинтез – 2000–2500 лет; азота атмосферы через биологическую фиксацию, окисление электрическими разрядами – примерно 100 млн. лет; воды через испарение – около 1 млн. лет.

В большом и малом круговоротах участвуют множество химических элементов и их соединений. Но важнейшими из них являются круговороты биогенных элементов – кислорода, углерода, воды, азота, фосфора, серы. Большое значение имеют круговороты токсических элементов – ртути и свинца. Кроме того, из большого круговорота в биологический поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.).

В экосистемах очень важна роль биогеохимических циклов. Биогенные элементы – С, О2, N2, Р, S, СО2, Н2О и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду.

Наиболее важные для жизни химические элементы, необходимые в больших количествах, называются макроэлементами (С, О, Н, N, P, S, Ca, Mg, K, Na).

Элементы, необходимые для жизни в малых или следовых количествах – микроэлементы (Fe, Cu, Zn, Cl).

В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

Биогеохимические циклы можно подразделять на два типа:

1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан),

2) осадочный цикл с резервным фондом в земной коре.

Из 90 с лишним элементов, встречающихся в природе, 30–40 необходимы для живых организмов. Человек уникален не только тем, что его организм нуждается в 40 элементах, но и тем, что в своей деятельности использует почти все другие имеющиеся в природе элементы.

Круговорот азота. Азот составляет около 80 % атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы – бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией (рис. 29).

Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами – нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты – нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков. Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3 % его содержания в обменных фондах экосистем. Общее время круговорота азота – примерно 100 лет.

Роль бактерий в цикле азота такова, что, если будет уничтожено только двенадцать их видов, участвующих в круговороте азота, жизнь на Земле прекратится.

29.tif

Рис. 29. Основные биохимические этапы круговорота азота

Круговорот углерода. Круговороты углекислоты и воды в глобальном масштабе – самые важные для человечества биогеохимические круговороты.

В круговороте СО2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры (рис. 30).

До наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. Но в XX в. содержание СО2 постоянно растет в результате новых техногенных поступлений (сжигание горючих ископаемых, деградация почвенного слоя, сведение лесов и т.д.).

В 1800 г. в атмосфере Земли содержалось 0,29 % СО2; в 1958 – 0,315 %, а к 1980 г. его содержание выросло до 0,335 %. Если концентрация СО2 вдвое превысит доиндустриальный уровень, что может случиться в середине XXI в., то температура поверхности Земли и нижних слоев атмосферы в среднем повысится на 3°. В результате подъем уровня моря и перераспределение осадков могут погубить сельское хозяйство.

Круговорот воды. Вода составляет значительную часть живых существ: в теле человека – по весу 60 %, а в растительном организме достигает 95 %. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны (рис. 31).

30.tif

Рис. 30. Круговорот углерода

Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса:

– перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25 % общей суммы осадков, это – физическое испарение;

– транспирация – биологическое испарение воды растениями, но не дождевая вода, а вода, заключенная в растении, т.е. экосистемная. Растения, потребляя около 40 % общего количества осадков, играют главную роль в круговороте воды;

– инфильтрация – просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллодоидальный комплекс, соответствующий накоплению в почве перегноя;

– сток. В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.

31.tif

Рис. 31. Круговорот воды

Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1 % воды, выпавшей в виде осадков.

Круговорот фосфора. Фосфор – один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью организмов.

В отличие от азота и углерода резервуаром фосфора служат не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. Круговорот фосфора – типичный пример осадочного цикла.

Сера не является лимитирующим биогеном, так как ее природные ресурсы достаточно велики. Она, как и фосфор, имеет основной резервный фонд в породах и почве, но, кроме того, имеет резервный фонд и в атмосфере. В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SО42), в газообразной фазе – в виде сероводорода (H2S) или сернистого газа (SО2). В морской среде сульфат-ион является основной доступной формой серы для автотрофов. В наземных экосистемах сера возвращается в почву при отмирании растений, окисляется, и возникшие сульфаты поглощаются растениями из почвенных растворов – так продолжается круговорот. Круговорот серы является ключевым при продуцировании и разложении (Ю. Одум, 1986). Например, при образовании сульфидов железа растворим фосфор и доступен организмам.

Однако круговорот серы может быть нарушен вмешательством человека: сернистый газ (SО2), являющийся продуктом сжигания топлива, нарушает процессы фотосинтеза и приводит к гибели растительности.

Из сказанного ясно, что биогеохимические циклы легко нарушаются человеком и становятся ациклическими. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы циклические биогеохимические процессы не превратить в ациклические.


Границы биосферы

biosphere-illustration

Каждую часть планеты, от полярных льдов до экватора, населяют живые организмы. Последние достижения в области микробиологии показали, что микроорганизмы обитают глубоко под земной поверхностью и возможно их общая биомасса превышает биомассу всего животного и растительного мира на поверхности Земли.

В настоящее время фактические границы биосферы измерить невозможно. Как правило, большинство видов птицы летают на высотах 650 – 1800 метров, а рыбы были обнаружены на глубине – до 8372 метров в океаническом Жёлобе Пуэрто-Рико. Но также есть более экстремальные примеры жизни на планете. Африканский сип, или гриф Рюппеля был замечен на высоте более 11000 метров, горные гуси обычно мигрируют на высоте не менее 8300 метров, дикие яки обитают в горных районах Тибета на высоте около 3200 – 5400 метров над уровнем моря, а горные козлы живут на высотах до 3000 метров.

Микроскопические организмы способны жить в более экстремальных условиях и если брать их во внимания, то толщина биосферы намного больше, чем мы себе представляли. Некоторые микроорганизмы были обнаружены в верхних слоях атмосферы Земли на высоте 41 км. Вряд ли микробы являются активными на таких высотах, где температура и давление воздуха являются чрезвычайно незначительными, а ультрафиолетовое излучение очень интенсивным. Скорее всего, они были доставлены в верхние слои атмосферы ветрами или извержением вулканов. Также одноклеточные формы жизни были найдены в самой глубокой части Марианской впадины на глубине 11034 метров.

Несмотря на все вышеперечисленные примеры крайностей существования жизни, в общем слой биосферы Земли настолько тонкий, что его можно сравнить с кожурой яблока.

Структура биосферы

экосистема

Биосфера организована в иерархическую структуру, в которой отдельные организмы образуют популяции. Несколько взаимодействующих популяции составляют биоценоз. Общины живых организмов (биоценоз), проживающие в определенных физических средах обитания (биотоп), образует экосистему. Экосистема – это группа животных, растений и микроорганизмов, взаимодействующих друг с другом и с окружающей их средой таким образом, чтобы обеспечить свое существование. Поэтому экосистема функциональная единица устойчивости жизни на Земле.

Происхождение биосферы

первая-жизнь

Биосфера существует уже около 3,5-3,7 миллиарда лет. Первыми формами жизни были прокариоты – одноклеточные живые организмы, которые могли жить без кислорода. Некоторые прокариоты разработали уникальный химический процесс, который известен нам как фотосинтез. Они были в состоянии использовать солнечный свет, чтобы делать простой сахар и кислород из воды и углекислого газа. Эти фотосинтезирующие микроорганизмы были настолько многочисленны, что они кардинально преобразили биосферу. В течение длительного периода времени, сформировалась атмосфера из смеси кислорода и других газов, которая могла поддерживать новую жизнь.

Добавление кислорода в биосферу позволило стремительно развиваться более сложные формам жизни. Появились миллионы различных растений, животные, которые употребляли в пищу растения и других животных. Бактерии эволюционировали, для того, чтобы разлагать мертвых животных и растения.

Благодаря этой пищевой цепи – биосфера сделала огромный скачок в своем развитии. Разложенные останки отмерших растений и животных высвобождали в почву и океан питательные вещества, которые повторно поглощались растениями. Такой обмен энергией позволил биосфере стать самоподдерживающей и саморегулирующейся системой.

Роль фотосинтеза в развитии жизни

фотосинтез

Биосфера является уникальной в своем роде. До сих пор не было никаких научных фактов, подтверждающих существования жизни в других местах Вселенной. Жизнь на Земле существует благодаря Солнцу. При воздействии энергии солнечного света осуществляется процесс под названием фотосинтез. В результате фотосинтеза растения, некоторыми виды бактерий и простейших под воздействием света перерабатывают двуокись углерода в кислород и органические соединения, такие как сахар. Подавляющее большинство видов животных, грибов, растений и бактерий непосредственно или косвенно зависят от фотосинтеза.

Факторы влияющие на биосферу

obliquity_ecliptic

Существуют множество факторов, влияющих на биосферу и нашу жизнь на Земле. Есть глобальные факторы такие, как расстояние между Землей и Солнцем. Если бы наша планета находилась ближе или дальше по отношению к Солнцу, то на Земле было слишком жарко или холодно для зарождения жизни. Угол наклона земной оси также важный фактор, влияющий на климат планеты. Времена года и сезонные климатические изменения являются прямыми результатами наклона Земли.

Локальные факторы также оказывают важное воздействие на биосферу. Если посмотреть на определённый участок Земли, можно увидеть, влияние климата, ежедневной погоды, эрозии и самой жизни. Эти мелкие факторы постоянно меняют пространство и живые организмы должна реагировать соответствующим образом, адаптируясь к изменению среды обитания. Несмотря на то, что люди могут контролировать большую часть своего ближайшего окружения, они по-прежнему уязвимы природным катаклизмам.

Наименьший из факторов, влияющих на облик биосферы – это изменения, происходящие на молекулярном уровне. Реакции окисления и восстановления способны менять состав горных пород и органических веществ. Существует также биологическое разрушение. Крошечные организмы, такие как бактерии и грибки, способны перерабатывать, как органические, так и неорганические материалы.

Биосферные заповедники

rio-platano-biosphere-forestreserve

Люди играют важную роль в поддержании энергообмена биосферы. К сожалению, наше воздействие на биосферу часто оказывается негативным. Например, уровень кислорода в атмосфере уменьшается, а уровень углекислого газа растет из-за того, что люди чрезмерно сжигают ископаемое топливо, а разливы нефти выбросы промышленных отходов в океан наносят огромный ущерб гидросфере. Будущее биосферы зависит от того, как люди будут взаимодействовать с другими живыми существами.

Внеземные биосферы

вселеная

До сих пор, биосфера не была обнаружена за пределами Земли. Поэтому существование внеземных биосфер остается гипотетическим. С одной стороны, многие ученые считают, что жизнь на других планетах маловероятна, а если где-то она существует, то скорей всего в форме микроорганизмов. С другой стороны аналогов Земли может быть очень много, даже в нашей галактике – Млечный Путь. Учитывая ограниченные возможности наших технологий, в настоящее время неизвестно, какой процент из этих планет способен иметь биосферу. Также нельзя исключить вариант, что искусственные биосферы будут созданы человеком в будущем, например, на Марсе.

Биосфера – это очень хрупкая система, в которой каждый живой организм является важным звеном в огромной цепи жизни. Мы должны осознать, что человек, как самое разумное существо на планете несет ответственность за сохранение чуда жизни на нашей планете.

Читайте также: