Основное уравнение гидростатики кратко

Обновлено: 02.07.2024

Гидростатика – раздел гидравлики, в котором изучаются законы равновесия жидкостей, находящихся в покое.

Понятие покоя или равновесного состояния по отношению к жидкости можно отождествлять с аналогичным понятием в одном из разделов технической механики - статике. Любое тело, материальная точка или обособленный объем вещества (в т. ч. жидкости) считается покоящимся, если все силы (внешние и реактивные), действующие на этот материально существующий субъект (т. е. имеющий массу), уравновешивают друг друга.

Гидростатическое давление

На жидкость, находящуюся в покое действуют массовые и поверхностные силы. Массовыми являются силы, действующие на все частицы рассматриваемого объема жидкости. Это силы тяжести и силы инерции (силы инерции проявляются в движущейся жидкости, поэтому их учитывает раздел гидродинамика) .
Массовые силы пропорциональны массе жидкости, а для однородной жидкости, плотность которой одинакова во всех точках, - объему. Поэтому массовые силы называют еще объемными.

К поверхностным относятся силы, действующие на поверхности жидкости. Это, например, атмосферное давление, действующее на жидкость в открытом сосуде, или силы трения, возникающие в движущейся жидкости между отдельными слоями и стенками сосуда (в покоящейся жидкости силы трения отсутствуют) .

Жидкость, находящаяся в состоянии покоя, может находиться только под действием силы тяжести и поверхностных сил, вызванных внешним давлением (например, атмосферным) . Внешние силы давления являются нормальными сжимающими поверхностными силами (считается, что жидкость не сопротивляется растяжению) . Все эти силы создают в неподвижной жидкости некоторую равнодействующую (результирующую) силу, которая называется гидростатической силой .

Покоящаяся жидкость под воздействием гидростатической силы находится в напряженном состоянии, характеризуемом гидростатическим давлением.

основное уравнение гидростатики

Выделим в покоящейся жидкости произвольный объем (см. рис. 1) . Мысленно разделим этот объем произвольной плоскостью П . Выделим на полученном сечении точку А и некоторую площадку ΔS вокруг этой точки.
Через поверхность П давление передается со стороны отсеченной части I на часть II . Сила ΔP , действующая на рассматриваемую площадку ΔS и есть гидростатическая сила.

Отношение гидростатической силы к площади поверхности (выделенного сечения) жидкости называют средним гидростатическим давлением. Истинное гидростатическое давление в данной точке жидкости может быть определено, как предел, к которому стремится среднее гидростатическое давление при бесконечном уменьшении рассматриваемой площадки ΔS :

p = lim ΔP/ΔS при ΔS стремящемся к нулю.

Гидростатическое давление всегда направлено по внутренней нормали к площадке, на которую оно действует, и величина его в произвольной точке не зависит от ориентации этой площадки в пространстве.

Это утверждение вытекает из условий:
- неподвижности жидкости, поскольку при любом перемещении жидкости неизбежно возникают касательные напряжения;
- равновесия рассматриваемого элементарного (бесконечно малого) объема, поскольку равновесие может быть достигнуто лишь при равенстве всех действующих на рассматриваемый элементарный объем внешних сил (предполагается, что весом бесконечно малого объема жидкости можно пренебречь) .
При этом выделенный объем может иметь любую произвольную форму – куба, правильной пирамиды и т. д. – в любом случае легко доказать, что силы, действующие на грани этого объема будут одинаковы во всех направлениях.

Основное уравнение гидростатики. Закон Паскаля.

Выделим в однородной жидкости, находящейся в покое, элементарный объем ΔV в виде прямоугольного параллелепипеда с площадью горизонтального основания ΔS и высотой H (см. рис. 2) .
Рассмотри условия равновесия выделенного элементарного объема.

закон Паскаля в гидравлике

Пусть давление на плоскость верхнего основания равно р1 , а на плоскость нижнего основания – р .
Силы давления действующие на вертикальные грани выделенного параллелепипеда взаимно уравновешиваются как равные по величине и противоположно направленные.
На горизонтальные грани действуют силы давления, направленные вертикально: на верхнюю грань эта сила будет равна р1ΔS (направлена вниз) , на нижнюю – pΔS (направлена вверх) .

На верхнюю и нижнюю грани рассматриваемого параллелепипеда действуют силы, обусловленные давлением на жидкость со стороны внешней среды (например, атмосферного давления) и вес (сила тяжести) элементарного столбика жидкости над каждой из горизонтальных граней параллелепипеда.
Очевидно, что разность сил тяжести, действующих на верхнюю и нижнюю площадку, будет равна весу жидкости, заключенной в объеме рассматриваемого параллелепипеда, который равен ρgΔV ,
где ρ – плотность жидкости, g – ускорение свободного падения, ΔV – объем параллелепипеда: ΔV = HΔS .

Исходя из условия равновесия выделенного элементарного параллелепипеда объемом ΔV , можно утверждать, что сумма всех внешних сил, действующих на параллелепипед равна нулю, т. е.:

pΔS – p1ΔS – ρgΔV = pΔS – p1ΔS – ρgΔSH = 0 .

Преобразовав эту формулу, получим величину гидростатического давления на нижнюю горизонтальную площадку:

Если верхняя грань параллелепипеда граничит с внешней средой (например, атмосферой) , оказывающей давление р0 на жидкость, то формула может быть переписана в виде:

Это выражение является основным уравнением гидростатики .

основное уравнение гидростатики и закон Паскаля

Итак, гидростатическое давление в любой точке внутри покоящейся жидкости равно сумме давления на свободную поверхность со стороны внешней среды и давления столба жидкости высотой, равной глубине погружения точки (т. е. ее расстоянию от свободной поверхности жидкости) .

На основании основного уравнения гидростатики может быть сформулирован закон Паскаля: внешнее давление, производимое на свободную поверхность покоящейся жидкости, передается одинаково всем ее точкам по всем направлениям.

Блез Паскаль (Blaise Pascal, 1623 - 1662) - выдающийся французский ученый - математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.

Любопытны цитаты из популярного сборника высказываний Паскаля, не потерявшие актуальность и в наши дни.
Вот некоторые из них:

  • Искание истины совершается не с весельем, а с волнением и беспокойством; но все таки надо искать ее потому, что, не найдя истины и не полюбив ее, ты погибнешь.
  • Прошлое и настоящее - наши средства, только будущее - наша цель.
  • Нас утешает любой пустяк, потому что любой пустяк приводит нас в уныние.
  • Когда человек пытается довести свои добродетели до крайних пределов, его начинают обступать пороки.
  • Справедливость должна быть сильной, а сила должна быть справедливой.
  • Истина так нежна, что чуть только отступил от нее, впадаешь в заблуждение, но и заблуждение это так тонко, что стоит только немного отклониться от него, и оказываешься в истине.
  • Величие не в том, чтобы впадать в крайность, но в том, чтобы касаться одновременно двух крайностей и заполнять промежуток между ними.
  • Изучая истину, можно иметь троякую цель: открыть истину, когда ищем ее; доказать ее, когда нашли; наконец, отличить от лжи, когда ее рассматриваем.
  • Сила добродетели человека должна измеряться не его усилиями, а его повседневной жизнью.
  • Лишь в конце работы мы обычно узнаём, с чего нужно было её начать.
  • Существует достаточно света для тех, кто хочет видеть, и достаточно мрака для тех, кто не хочет.
  • Человек - это приговорённый к смерти, казнь которого откладывается на время его жизни.

Умер Паскаль после тяжелой и продолжительной болезни в возрасте 39 лет, оставив после себя яркий след в науке.
Имя этого ученого увековечено в названиях одной из единиц международной системы СИ, языка программирования Paskal и лунного кратера.

Пример решения задачи с использованием закона Паскаля

Водолазы при подъеме затонувшего судна работали на глубине 50 м. Определить давление p воды на этой глубине и силу P давления на скафандр водолаза, если площадь его поверхности S равна 1 м 2 .
Атмосферное давление считать равным 1013 МПа (0,1013×106 Па), плотность воды – 1000 кг/м 3 .

Решение:

Определим давление, оказываемое столбом воды на глубине 50 м (в Па) :

ρgH = 1000×9,81×50 = 4,9×105 Па.

Применив основное уравнение гидростатики, с учетом атмосферного давления, найдем давление на глубине 50 м:

p = p0 + ρgH = 1,013×105 + 4,9×105 = 5,91×105 Па ≈ 0,59 МПа.

Силу давления столба воды на скафандр водолаза определим по формуле:

P = pS = 5,91×105×1 = 591000 Н = 591 кН.

Основное уравнение гидростатики и закон Паскаля широко применяются при решении многих инженерных задач. Свойства жидкости передавать производимое на нее давление без изменения используется при конструировании гидравлических прессов, домкратов, гидроаккумуляторов, гидроприводов и других механизмов. Основной принцип работы этих устройств основа на пропорциональной разности сил, приложенных к поршням гидроцилиндров, имеющих разный диаметр: P1S2 = P2S1 .

Гидростатика – раздел гидромеханики, изучающий равновесие жидкости. Различают абсолютное равновесие жидкости, когда из массовых сил действует только сила тяжести и, относительное равновесие, когда на жидкость, кроме сил тяжести, действуют инерционные силы. В этом случае объем жидкости может двигаться не деформируясь, т.е. как абсолютно твердое тело, в то время как движение частиц жидкости друг относительно друга отсутствует. Здесь мы рассмотрим только гидростатику несжимаемой жидкости


Основным законом (уравнением) гидростатики называется уравнение: , где

p — гидростатическое давление (абсолютное или избыточное) в произвольной точке жидкости,

ρ — плотность жидкости,

g — ускорение свободного падения,

z — высота точки над плоскостью сравнения (геометрический напор),

H — гидростатический напор.

Уравнение показывает, что гидростатический напор во всех точках покоящейся жидкости является постоянной величиной.

Иногда основным законом гидростатики называют принцип Паскаля.

8. Геометрическая интерпретация основного уравнения гидростатики.

Ордината z рассматриваемой точки жидкости отсчитывается от произвольной горизонтальной плоскости XOY, принятой в качестве координатной. Эту плоскость наз плоскостью сравнения, а отсчитанную от нее координату z точки –геометрическим напором в данной точке жид.

Величина имеет линейную размерность и представляет собой геометрическую высоту, на которую поднимется жидкость под действием давления р. Высоту можно измерить, если подсоединить к сосуду трубку, из которой удален воздух. Жид в трубке поднимется на высоту . Если трубка открыта и давление на свободной поверхности равно атмосферному, то жидкость в трубке поднимется на высоту , соответствующую избыточному давлению.

Графическая иллюстрация напоров жидкости в сосуде при

Высота соответствует давлению р. Высота называется пьезометрической высотой. Высота, соответствующая давлению рвак, называется вакуумметрической высотой. Высота может быть измерена с помощью простейшего вакуумметра.

Сумму высот называют гидростатическим напором Н. Пьезометрический напор Нп меньше гидростатического напора на высоту, соответствующую атмосферному давлению, .

9. Закон Паскаля и его практическое приложение. Графическое изображение давле­ния .

Применив основное уравнение гидростатики к двум точкам покоящейся жидкости , изменим давление в первой точке на Dр, не нарушая равновесия жидкости. Тогда во второй точке давление должно измениться на некоторую величину Dр2. Из осн. урав. гидростатики следует, что

т.е. изменение давления в любой точке покоящейся жидкости передается в остальные ее точки без изменений. Это положение называется законом Паскаля. На этом законе основан принцип работы гидравлических машин. Рассмотрим одну из них.Гидравлический пресс – это машина, которая используется для получения больших усилий при прессовании, штамповке, испытании материалов и т.п. Она состоит из двух сообщающихся цилиндров с поршнями малого d и большего D диаметров. первый соединен с рычагом, дающим дополнительный выигрыш в силе. Если к рычагу приложена сила Р0, то на малый поршень передается сила .Следовательно, в жидкости под поршнем давление увеличивается на величину где w - площадь поперечного сечения малого поршня.Изменение давления передается во все точки занятого жидкостью пространства, а значит, и под большой поршень. Пренебрегая практически незначительной поправкой на разность высотных положений нижней поверхности поршней, получаем силу давления на большой поршень: ,где W - площадь поперечного сечения большого поршня. Отношение W/w называют передаточным числом. Очевидно, для цилиндров W/w = (D/d) 2 .

Учитывая потери энергии на трение в движущихся частях введем к.п.д. h, получаем расчетную формулу Обычно h = 0,80-0,85. в современных гидравлических прессах развиваются усилия до 700 000 кН. Графическое изображение давления

10.Абсолютное и манометрическое давление. Вакуум. Приборы для измерения давления Давление в жидкости увеличивается с глубиной погружения, а формула абсолютного гидростатического давления в точке покоящейся жидкости имеет вид: . Часто давление на свободной поверхности воды равно атмосферному давлению р0 = рат, в этом случае абсолютное давление определяется как: , а называют избыточным давлением и обозначают ризб. Абсолютное гидростатическое давление может быть меньше атмосферного, но всегда больше нуля. Избыточное давление может быть и больше, и меньше нуля. Положительное избыточное давление называют манометрическим давлением рман: . Манометрическое давление показывает, на сколько абсолютное давление превышает атмосферное.Отрицательное избыточное давление называют вакуумметрическим давлением рвак: . Вакуумметрическое давление показывает насколько абсолютное давление ниже атмосферного. Приборы для измерения гидростатического давления можно подразделить на две группы: жидкостные и механические.

Приборы для измерения гидростатического давления: жидкостные и механические. В жидкостных приборов лежит принцип сообщающихся сосудов. Простейшим является пьезометр. Пьезометр прозрачную трубку 5 мм. Один конец присоединен к сосуду, в котором измеряется давление, а другой конец открыт. , где hп – высота подъема жидкости в пьезометре . Определить давление р0 в сосуде над свободной поверхностью. , где hС– глубина погружения точки С относительно уровня жидкости в сосуде. . Пьезометр является очень чувствительным и точным прибором, для измерения небольших давлений. Жидкостные манометры, в которых давление уравновешивается не той же жидкостью, а жидкостью большего удельного веса; обычно жидкостью явл. ртуть. Удельный вес ртути больше чем у воды в 13,6 раза. Ртутный манометр. Под давлением р в сосуде уровень ртути в левом колене манометра понижается, а в правом – повышается. , где rж и rрт – плотности соответственно жидкости в сосуде и ртути. . Разность давлений в двух сосудах в одном сосуде, применяют дифференциальные манометры.

, , , . Повышения точности измерений, микроманометры. . Измерения давления меньше атмосферного, вакуумметрами. . , в сосуде наз. вакуумметрической высотой (hвак.)Большие давления, применяют приборы второго типа – механические. пружинный манометр. И существует мембранные манометры.


пьезометр

11.Давление жидкости на плоские стенки

Рассмотрим плоскую стен­ку с площадью смоченной час­ти w, наклоненную к горизонту под углом q. Гидростатическое давление жидкости не остается постоянным в пределах смоченной части стенки. Разбив площадь w на элементарные площадки dw и считая в пределах dw давление р неизменным, значение силы давления на элементарную площадку как dР = рdw. Вектор направлен со стороны жидкости по нормали к площадке. Суммарное воздействие жидкости сведется к равнодействующей силе Р, значение которой определяется по соотношению:


Сила давления покоящейся жидкости на плоскую наклонную стенку равна произведению площади w на давление жидкости в центре тяжести смоченной части стенки. Сила направлена со стороны жидкости по нормали к стенке. При р0 = рат сила избыточного давления равна: . Далее силу избыточного давления обозначаем Р. Линия действия силы Р пересекает площадку в точке D, которая наз центром давления. Центр давления не совпадает с центром тяжести площади w, поэтому необходимо определять координаты центра давления. Сила Р0 = р0w, связанная с действием в каждой точке смоченной площади w одного и того же давления р0, приложена в центре тяжести смоченной площади (точке С). Сила Р приложена в другой точке, не совпадающей с точкой С. Если необходимо найти точку приложения суммарной силы Рабс, то ее определяют по правилу сложения сил. Пусть рассматриваемая площадь w имеет ось симметрии (линия 0l ). Тогда центр давления D будет расположен на оси симметрии и для определения его положения достаточно найти расстояние от линии уреза жидкости до точки D, то есть lц.д. Воспользовавшись теоремой моментов: , где – статический момент смоченной площади относительно линии уреза жидкости. Центр давления силы избыточного давления на плоскую наклонную площадку расположен ниже центра тяжести смоченной площади, считая по оси симметрии (по наклону) стенки, на .


Оглавление

  • 1. Методы применения законов гидравлики
  • 2. Основные свойства жидкости
  • 3. Силы, действующие в жидкости
  • 4. Гидростатическое давление и его свойства
  • 5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести
  • 6. Законы Паскаля. Приборы измерения давления
  • 7. Анализ основного уравнения гидростатики
  • 8. Гидравлический пресс
  • 9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления
  • 10. Определение силы давления в расчетах гидротехнических сооружений
  • 11. Общая методика определения сил на криволинейные поверхности
  • 12. Закон Архимеда. Условия плавучести погруженных тел
  • 13. Метацентр и метацентрический радиус

Приведённый ознакомительный фрагмент книги Гидравлика предоставлен нашим книжным партнёром — компанией ЛитРес.

4. Гидростатическое давление и его свойства

Общие дифференциальные уравнения равновесия жидкости — уравнения Л. Эйлера для гидростатики.

Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.

Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение Δw, и есть гидростатическое давление.

Если оценить среднее значение этой силы,


Рассмотрев точку А как предельный случай w, определяем:


Если перейти к пределу, то Δw переходит в точку А.

Поэтому Δpx→ Δpn. В конечном результате px = pn, точно так же можно получить py = pn, pz = pn.

Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения Δw.

Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через Δw.

Другое дело, что в сумме (px + py + pz) какая-то составляющая окажется равной нулю.

Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.

p = f(x, y, z).

Свойства гидростатического давления.

1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.

2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.

3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (ρ = const)

где ρ — плотность жидкости;

П1, П2 — значение поле массовых сил в этих точках.

Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.

Гидростатическое давление

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

В этой статье мы подготовили для Вас, всю необходимую информацию о гидростатическом давлении, начиная от закона Паскаля и определения формулы гидростатического давления и до свойств давления и применения законов гидростатики в повседневной жизни.

Содержание статьи

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Гидростатическое давление в сосуде

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Гидростатическое давление на точку

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

представляет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м 2 ) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м 2 = 1*10 3 Н/м 2

меганьютон на квадратный метр – 1МН/м 2 = 1*10 6 Н/м 2

Давление равное 1*10 5 Н/м 2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м 2 ), в технической системе – килограмм-сила на квадратный метр (кгс/м 2 ). Практически давление жидкости обычно измеряют в кгс/см 2 , а давление равное 1 кгс/см 2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см 2 = 0,98 бар = 0,98 * 10 5 Па = 0,98 * 10 6 дин = 10 4 кгс/м 2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см 2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

Гидростатическое давление одинаково

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
Оно направлено по внутренней нормали к площади, на которую действует;
Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Читайте также: