Опыт подтверждающий закон всемирного тяготения кратко

Обновлено: 04.07.2024

Код ОГЭ 1.13. Всемирное тяготение. Закон всемирного тяготения. Сила тяжести. Ускорение свободного падения. Формула для вычисления силы тяжести вблизи поверхности Земли. F = mg. Искусственные спутники Земли.

Закон всемирного тяготения не объясняет причин тяготения, а только устанавливает количественные закономерности.

Закон всемирного тяготения (И. Ньютон, 1667 г.): Тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где F – сила тяготения, m1 и m2 – массы взаимодействующих тел, r – расстояние между телами (центрами масс), G – гравитационная постоянная .

Закон справедлив для: 1) материальных точек; 2) однородных шаров и сфер; 3) концентрических тел.

Физический смысл гравитационной постоянной G: гравитационная постоянная G численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

Гравитационная постоянная G очень мала, и гравитационное взаимодействие существенно только при больших массах взаимодействующих тел.


Внимание! Силы притяжения – центральные. В соответствии с третьим законом Ньютона: .


Сила тяжести – частный случай силы всемирного тяготения. Рассмотрим взаимодействие планеты и тела (по сравнению с планетой тело можно считать материальной точкой).

Изображённая на рисунке сила F12 – сила притяжения тела к планете, которая и называется силой тяжести .

Применительно к ней формулу закона всемирного тяготения можно записать так: , где m – масса тела, М – масса планеты, г –расстояние между телом и центром планеты, g – ускорение свободного падения. Тогда для ускорения свободного падения получаем: . Если обозначить через R радиус планеты, а через h –расстояние до тела от поверхности планеты, то


Сила тяжести и ускорение свободного падения направлены к центру масс планеты (перпендикулярно сферической поверхности планеты в данной точке).

Ускорение, сообщаемое телу силой тяжести (ускорение свободного падения), зависит от:

  • массы планеты;
  • радиуса планеты;
  • высоты над поверхностью планеты;
  • географической широты (на Земле на полюсах g ~ 9,83 м/с 2 , на экваторе g ~ 9,79 м/с 2 );
  • наличия полезных ископаемых.

Внимание! Ускорение силы тяжести (свободного падения) не зависит от массы и других параметров тела!
Внимание! При решении задач ускорение силы тяжести (свободного падения) принимается равным 10 м/с 2 .

яблоко Ньютона

Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

Определение закона

Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Формула

Ниже представляем вашему вниманию формулу закона всемирного тяготения.

формула закона всемирного тяготения

Невесомость тел

Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

Видео

И в завершение поучительное видео об открытии закона всемирного тяготения.

Открытые Галилеем закономерности в движении маятников позволили ученым не только изобрести маятниковые часы, но и экспериментально доказать… вращение Земли.

Опыт с огромным маятником был поставлен французским инженером Фуко в 1850 году — через 208 лет после ухода из жизни Галилея и через 307 лет после кончины Коперника, впервые предположившего, что Земля вращается не только вокруг Солнца, но и одновременно вокруг собственной оси.

В парижском Пантеоне, зале с очень высоким куполом, Фуко подвесил на гибком тросе длиной 67 метров шар массой 28 килограммов. С нижней стороны у шара имелось острие, а на полу Пантеона насыпали полоску из песка. Маятник раскачали, и острие стало прочерчивать узкую бороздку в песке — в одном и том же месте при каждом размахе. Но что это? По мере того как шло время, бороздка в песке поворачивалась по часовой стрелке!

На самом деле все, конечно, происходило наоборот: маятник, как ему и положено, все время двигался в одной и той же плоскости, но под ним медленно вращалась вокруг воображаемой оси Земля, делая полный оборот против часовой стрелки за одни сутки.

Поворачивалась в обратную сторону и бороздка, наглядно показывая недоверчивым зрителям, что мы летим вокруг Солнца на космическом корабле под названием Земля, похожем на гигантский волчок.

Опыт Фуко повторяли много раз в самых высоких зданиях и планетариях разных частей света, в том числе и у нас в стране, например, в Ленинграде, в Исаакиевском соборе. И Земля всегда вращалась под маятником…

Закон всемирного тяготения

Великий Ньютон, родившийся в 1643 году, продолжил другие исследования Галилея, связанные с движением тел и их взаимным притяжением друг к другу.

Ньютону было всего двадцать четыре года, когда он впервые сформулировал закон всемирного тяготения.

Сила притяжения любых двух тел, формулировал Ньютон в законе всемирного тяготения, прямо пропорциональна произведению масс этих тел, постоянной всемирного тяготения (одинаковой для всех тел в природе), называемой гравитационной постоянной, и обратно пропорциональна расстоянию между телами, возведенному в квадрат. Расстояние необходимо измерять между центрами тел, в частности, если в процессе притяжения участвует Земля, то отсчет надо вести от центра Земли, отстоящего от земной поверхности в среднем на глубину 6370 километров.

Для самого Ньютона наиболее важным доводом в пользу закона всемирного тяготения послужило полученное им доказательство, что притяжение Земли действует и на Луну. Расчет показал, что если бы масса Земли была меньшей, чем в действительности, то Луна улетела бы с орбиты в бескрайние просторы Вселенной; при большей массе Земли Луна постепенно тормозилась бы, приближаясь к Земле по спирали, как спускаемый космический аппарат!


Исаак Ньютон, научные труды которого легли в основу величественного здания классической физики. Справа — его рабочий кабинет.

Ньютон очень строго относился к своим выводам. Сначала по его расчетам получилось значение ускорения Луны на 15\% меньше, чем определили астрономы, и Ньютон не стал ничего сообщать о своем открытии.

Он опубликовал закон всемирного тяготения только через 16 лет, когда стали известны более строгие опытные данные, и расхождение его теории с наблюдениями уменьшилось до 2\%.

Закон всемирного тяготения позволил с высокой точностью определить орбиты планет Солнечной системы, благодаря ему была строго доказана справедливость законов Кеплера .

Законы движения тел

Не только небесная, но и земная механика многим обязана гению Ньютона. Он сформулировал три закона движения тел, с помощью которых механики до сих пор рассчитывают самые сложные конструкции, определяют скорость и ускорение многочисленных механизмов и средств транспорта, оценивают прочность конструкций.

Приведем эти три закона в той форме, которую использовал их автор:

Биографы Ньютона рассказывают, что первое время в школе он учился очень посредственно. И вот однажды его обидел лучший ученик в классе. Ньютон решил, что самая страшная месть для обидчика — отнять у него место первого ученика. Дремавшие в Ньютоне способности проснулись, и он с легкостью затмил своего соперника.

Разбуженного джинна познания нельзя снова спрятать в темную, заплесневевшую бутылку. С того счастливого для мировой науки эпизода начался процесс превращения скромного английского школьника в великого ученого…

История открытия закона всемирного тяготения уходит далеко в прошлое и связана со множеством великих умов. Среди них Николай Коперник, родившийся почти за 200 лет до того, как закон был сформулирован более точно. Постулат окружён множеством слухов и легенд, начиная с яблока, которое изменило представление о физике того времени, и заканчивая известным соперничеством Ньютона и Роберта Гука, ставивших себя на первое место при ответе на вопрос, кто открыл закон всемирного тяготения.

история открытия закона всемирного тяготения

Сейчас доподлинно неизвестно, что из рассказанного соответствует истине, но некоторые события и факты из задокументированных источников не нуждаются в подтверждении и представляют собой вехи развития знания людей о явлении гравитации.

Как Ньютон открыл закон всемирного тяготения

Говоря о законах классической механики, всегда упоминают сэра Исаака Ньютона. Учёный перевернул виденье своих современников об окружающем их мире и, что самое главное, математически обосновал свои предположения, которые долгие годы после смерти физика не нуждались в доработке.

С его именем связан один из постулатов современной физики, ставший в своё время объектом для множества научных дискуссий, – закон всемирного тяготения, который Ньютон открыл в 1688 году и опубликовал вместе со знаменитыми тремя законами механики, образовавшими фундамент развития науки о движении.

открытие закона всемирного тяготения

Закон тяготения не был бы настолько привлекательным, если бы описывал только то, как тела падают на землю. В легенде его открытия существует важное уточнение о том, что Ньютон ещё в 1666 году размышлял о движении объектов, в частности Луны. Уже тогда зная, что спутник вращается вокруг Земли, учёный пытался понять причины такого поведения и увидел, как яблоко сорвалось с ветки и приземлилось рядом.

Это и послужило причиной возникновения предположения, что именно воздействие Земли вынуждает тела не зависать без поддержки в воздухе, а Луну двигаться по наблюдаемой траектории. Однако доказать это сразу не удалось: проведя все расчёты, сэр Ньютон сформулировал закон всемирного тяготения, но из-за несправедливого в тот момент расстояния между спутником и нашей планетой получил слишком большую погрешность, что при его щепетильном характере оказалось неприемлемым. Только спустя 22 года с новыми, более точными цифрами, учёный представил общественности свой закон.

История открытия закона всемирного тяготения

О земном притяжении задумывались ещё в Древней Греции, но большинство предложенных теорий были далеки от действительности. Сам Исаак Ньютон в своей переписке с Эдмундом Галлеем обозначал своими предшественниками французского астронома Исмаэля Буйо (Буллиальда), английского математика Кристофера Рене и английского учёного, проявившего себя не в одной науке, Роберта Гука.

Система Коперника

гелиоцентрическая система мира

До 1543 года общепризнанной и неоспоримой полагалась геоцентрическая модель (все планеты и солнце вращаются вокруг земли), сформулированная Птолемеем ещё во II веке, но после того, как книга Коперника была опубликована, научное мировоззрение общества потребовало существенных изменений.

геоцентрическая система мира

О самом тяготении в сочинении астронома не было речи, но закон Ньютона затрагивает не только Землю, но и Солнечную систему. Поэтому для правильной постановки задачи, посвящённой раскрытию механизма Вселенной (чем, если говорить кратко, занимается физика как наука), важно понимать, что наша планета не является центром мироздания, что и доказал Николай Коперник.

Первые догадки Уильяма Гильберта

Имя Уильяма Гильберта особенно известно в области, изучающей электрические и магнитные явления, что, впрочем, смогло помочь ему прославиться и в механике. Гильберт был одним из первых учёных, кто согласился с Коперником и его картиной мира, но предшественником Ньютона его делает тот факт, что именно Гильберт первым высказал догадку о природе гравитации Земли и Луны.

теория Уильяма Гильберта

В посмертной работе физика, изданной в 1603 году, указано предположение учёного, что наша планета и её спутник являются огромными магнитами и поэтому притягиваются друг к другу. Причём в труде указано, что магнитная сила Земли больше из-за разности масс. Такая смелая догадка в общем смысле оказалась справедливой, однако природу взаимодействия Гильберт высказал неверно: он полагал, что движение планет происходит за счёт действия магнетизма.

Три закона Кеплера в открытии закона всемирного тяготения

Первыми эмпирическими соотношениями, приблизившими открытие закона всемирного тяготения, стали законы Кеплера, первые два из которых датированы 1609 годом, а третий – 1618.

Учитель Иоганна Кеплера датский алхимик и астроном Тихо Браге первым провёл точные астрономические наблюдения за движением планет, на основании которых составил таблицу, состоявшую из координат. Получив данное наследие, Кеплер понял, что планеты движутся с определённой закономерностью, и вывел три закона, описывающих идеализированную гелиоцентрическую картину мира.

Первый закон Кеплера утверждает, что все планеты Солнечной системы обращаются вокруг звезды по эллипсу, и одним из фокусов этого эллипса является Солнце.

Второй закон Кеплера гласит, что плоскость движения планет проходит через Солнце и, если засечь одинаковые промежутки времени и провести радиусы от звезды до планеты, они будут занимать одинаковые по величине площади.

законы Кеплера

Третий закон Кеплера носит математический характер и записывается соотношением:

где T1,2 – периоды обращения двух планет вокруг Солнца,

a1,2 – длины больших полуосей орбит этих планет.

Особенность закономерностей Кеплера заключается в том, что уже за полвека до Ньютона он выделил Солнцу главенствующую роль при движении планет, однако теоретически обосновать свой вывод не смог. После первопричину его законов нашёл Ньютон.

Законы падения тел Галилео Галилея (Закон инерции)

Наряду с работой Кеплера эксперименты Галилея по падению тел также подготавливали для Ньютона почву для будущего открытия.

опыты Галилео Галилея

Помимо этого, учёный ввёл новое понятие (которое сегодня называют инерцией), показав, что тело будет покоиться или двигаться равномерно, если на него не воздействуют внешние силы. Через полвека после формулировки этого правила Галилеем Ньютон повторит его в качестве первого закона механики.

Доказательства Роберта Гука

Роберт Гук был учёным, открывшим множество явлений в разных областях физики, химии и биологии. Однако его современники часто вспоминали его как завистливого и склочного человека из-за импульсивного характера и споров об авторстве с другими учёными. Закон всемирного тяготения также стал камнем преткновения для Гука, и в момент его открытия физик заявил, что сформулировал это правило задолго до Ньютона. Частично это правда.

догадки Роберта Гука

Эдмунд Галлей и его выводы из закона Кеплера

В 1684 году английский астроном Эдмунд Галлей математически доказал обратную пропорциональность силы тяжести и квадрата расстояния, выведя зависимость из третьего закона Кеплера.

вывод пропорциональности силы Эдмундом Галлеем

Таким образом, всё было готово для точной формулировки теории тяготения Ньютона и её полного математического обоснования.

Решение задачи Исааком Ньютоном

Чтобы вывести окончательный вариант закона всемирного тяготения, Ньютон описал движение Луны вокруг Земли, оперируя радиусами планеты и спутника, а также расстоянием между ними. Важную роль при формировании математической модели играли второй и третий законы механики, к тому времени уже вычисленные Ньютоном.

определение закона всемирного тяготения

Интересный факт: гравитационная постоянная G, которая присутствует в современной формуле закона притяжения, не была явно вставлена учёным в выведенный им закон. Более того, она отсутствовала в трудах физиков до XIX века.

Определение значения гравитационной постоянной

В 1798 году Генри Кавендиш при помощи крутильных весов, созданных Шарлем Кулоном, провёл эксперимент, пытаясь вычислить среднюю плотность Земли. Его установка представляла собой коромысло с двумя небольшими шарами на концах, к которым в ходе опыта подводили по шару большего размера. Из-за гравитационного воздействия между телами коромысло установки отклонялось на некоторый угол, что фиксировалось оптическими приборами. Это значение и величина упругости нити, держащей коромысло, позволили определить силу притяжения между шарами, а после и коэффициент пропорциональности, до этого момента неизвестный.

крутильные весы Кавендиша

В результате своего эксперимента Генри Кавендиш рассчитал, что гравитационная постоянная равна G = 6,754∙10 -11 м 3 / (кг∙с 2 ). Сегодня это значение вычислено с большей точностью: G = 6,67384∙10 -11 Н∙м²·кг −2 .

Вычисление коэффициента пропорциональности стало одним из многочисленных применений закона тяготения.

Краткая биография великого английского учёного Исаака Ньютона

Исаак Ньютон родился 4 января 1643 года. Так как отец мальчика, в честь которого он и был назван, погиб до его рождения, мать будущего учёного обзавелась новой семьёй, оставив сына на попечение родственников. Ньютон рос болезненным, но мечтательным ребёнком, уже в детском возрасте проявив любовь к чтению и разработке простых игрушек. Однако в первое время в школе мальчик плохо учился, и только случай помог изменить его отношение к учёбе. Будучи слабым ребёнком, Ньютон подвергся нападению со стороны своих одноклассников и, понимая, что едва ли сможет одолеть их физически, решил превзойти обидчиков умом.

Так, в 1661 году Исаак Ньютон стал студентом Колледжа Святой Троицы, находящегося под попечением Кембриджского университета, впоследствии связав с ним более 30 лет жизни. В период чумы, царствовавшей в Англии с 1665 по 1667 годы, Ньютон вернулся в домой, и, как после утверждал сам учёный, именно в этот период он сделал большую часть своих научных открытий.

Исаак Ньютон

В 1668 году после возвращения в колледж Исааком Ньютоном была получена магистерская степень, и он стал преподавателем в своей альма-матер. В последующие годы физик глубоко увлёкся алхимией, математическим анализом и проводил оптические опыты, и ему удалось изобрести телескоп-рефлектор, усовершенствованные версии которого помогли открыть многие астрономические объекты.

Ньютон был замкнутым, нелюдимым человеком, не любившим делиться своими научными результатами из-за споров и дискуссий, в которые его постоянно норовили втянуть. Зимой 1677 года в его доме случился пожар, в связи с чем сгорела большая часть его рукописных работ, а в мае того же года умер его друг Исаак Барроу, что стало невосполнимой утратой для учёного, которому за всю жизнь удалось сблизиться только с несколькими людьми.

Интересный факт: трудясь при дворе, физик смог придумать технологию чеканки, позволяющую минимизировать подделки. Новизна заключалась в отделке гуртов у монет маленькими линиями, что используется и сегодня.

В 1703 году Королевское общество выбрало Ньютона президентом, а в 1705 году королева Великобритании Анна даровала ему титул сэра, который был впервые присвоен за научные достижения.

Сэр Исаак Ньютон умер 31 марта 1727 года. Современники описывали, что в похоронах участвовал весь Лондон.

Вопрос о том, как был открыт закон всемирного тяготения, только на первый взгляд кажется простым. На самом деле его ответ скрывает в себе многолетний труд множества учёных, которые постепенно делали возможным данное открытие.

Читайте также: