Оцените работоспособность системы питания по дымности выхлопных газов кратко

Обновлено: 04.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Практическая работа по охране труда

Тема: Проверка автотранспортных средств на дымность отработавших газов (ОГ).

Цель: практическое освоение методов и средств оценки уровня дымности отработавших газов автомобиля, находящегося в эксплуатации.

Ход работы :

1. Изучить устройство и принцип работы оборудования для проверки дымности ОГ дизельного двигателя.

2. Изучить методику проверки дымности ОГ дизельного двигателя.

3. Произвести измерение дымности дизельного двигателя. На основании результатов проверки составить отчет о пригодности транспортного средства к дорожному движению.

1. Устройство и принцип работы оборудования для проверки дымности ОГ дизельного двигателя.

2. Методика проведения проверки дымности ОГ дизельного двигателя.

1. Проверка условий измерения:

1) выпускная система автомобиля не должна иметь неплотностей, вызывающих утечку ОГ и подсос воздуха;

2) перед испытаниями двигатель должен быть прогрет не ниже рабочей температуры моторного масла или охлаждающей жидкости, указанной в руководстве по эксплуатации автомобиля;

3) устройство для пуска холодного двигателя должно быть отключено.

2. Порядок проведения измерения дымности дизельного двигателя .

1. Установить рычаг переключения передач (селектор) в нейтральное положение, затормозить транспортное средство стояночным тормозом и заглушить двигатель.

2. Подготовить дымомер к работе согласно руководству по его эксплуатации.

3. Подключить датчик тахометра дымомера к двигателю согласно руководству по эксплуатации дымомера.

4. Подключить датчик температуры двигателя: поместить его через отверстие, предназначенное для масляного щупа, в поддон картера двигателя до погружения в находящееся там моторное масло.

5. Установить пробоотборное приспособление в выпускной трубе транспортного средства. Трубка пробоотборника должна быть обращена открытым концом навстречу потоку ОГ и располагаться (по возможности) в направлении оси выпускной трубы или удлинительного патрубка, где распределение ОГ является наиболее равномерным. Трубку рекомендуется заглублять в выпускную трубу на расстояние, равное не менее чем утроенному диаметру выпускной трубы. Соединительные патрубки между пробоотборным приспособлением и дымомером должны иметь длину (2,5 ± 0,5) м, устанавливаться (по возможности) с подъемом от места отбора пробы до дымомера и не иметь резких перегибов.

6. Установить на выпускную трубу транспортного средства устройство для отвода ОГ.

7. Запустить двигатель.

8. При работе двигателя в режиме холостого хода при минимальной частоте вращения быстрым (но не резким) нажатием до упора на педаль управления подачей топлива установить максимальную частоту вращения до включения регулятора. Затем отпустить педаль до установления минимальной частоты вращения. Этот процесс повторить не менее шести раз.

9. При каждом последующем свободном ускорении фиксировать максимальную дымность до получения устойчивых значений. Измеренные значения считаются устойчивыми, если четыре последовательных значения располагаются в зоне 0,25 м1 и не образуют убывающей последовательности. Результатом измерения считается среднее арифметическое четырех значений.

10. Выдержать паузу не менее 60 с после проверки в режиме свободного ускорения, после чего провести проверку в режиме максимальной частоты вращения. Для этого нажать педаль до упора и зафиксировать ее в таком положении, установив максимальную частоту вращения. Измерить дымность не ранее чем через 10 с после впуска отработавших газов в прибор.

11. Заглушить двигатель, отсоединить устройство для отвода ОГ и пробоотборное приспособление от выпускной трубы глушителя, отключить датчик тахометра от двигателя, вынуть датчик температуры из поддона картера и вставить масляный щуп на место.

Отчет о пригодности транспортного средства к дорожному движению .

15 июня 2013 Комментариев нет

Диагностика дизеля по дымности выхлопа

Многие автолюбители не уделяют должного влияния выбросам вредных веществ двигателями своих автомобилей. А между тем, концентрации токсичных компонентов в отработавших газах являются важным диагностическим параметром.

Токсичные компоненты отработавших газов можно разделить на две основные группы:

— продукты неполного сгорания топлива: оксид углерода, углеводороды и сажа (у дизелей);

Кроме выше перечисленных компонентов, в отработавших газах содержаться различные канцерогенные вещества, но их концентрации значительно ниже.

Повышение выбросов продуктов неполного сгорания с одновременным снижением выбросов оксидов азота с отработавшими газами говорит об ухудшении полноты сгорания топлива, а следовательно и ухудшения топливной экономичности. Повышение выбросов оксидов азота свидетельствует об увеличении температуры в процессе сгорания.

Для дизелей важным диагностическим параметром являются выбросы сажи, которые можно оценить визуально по дымности (степени черноты) отработавших газов. Выбросы сажи повышаются при уменьшении угла опережения впрыска топлива и ухудшении параметров впрыскивания и распыливания топлива. При повышении дымности отработавших газов дизеля следует произвести регулировку угла опережения впрыска топлива. Если после регулировки дымность не уменьшилась — необходимо произвести регулировку или замену форсунок.

В настоящее время существует множество самых разнообразных приборов, предназначение которых — помощь в диагностике двигателя. Какие-то из них работают с блоком управления двигателя, позволяя воспользоваться средствами самодиагностики и управления исполнительными механизмами, т. е. сканеры неисправностей. Другие передают сведения о работе систем зажигания и различных датчиков. Больше всего в этом помогает, естественно, осциллограф. С помощью различных вакуумметров и компрессометров мы можем получить информацию о механическом состоянии двигателя внутреннего сгорания, т. е. о компрессии и герметичности надпоршневого пространства. Мы можем даже оценить состояние внутренней поверхности цилиндров с помощью эндоскопа. Однако единственный прибор, с помощью которого у нас получится оценить то, как проходит сам процесс сгорания топлива, — это газоанализатор.

Проверка на герметичность

Итак, газоанализ. Прежде чем перейти собственно к рассказу про CO и CH, стоит напомнить: любой, даже самый совершенный газоанализатор не отобразит реального содержания газов в выхлопе, если нарушена герметичность выхлопного тракта. То есть он будет выдавать некорректную информацию. Казалось бы, если в выхлопной трубе давление выше атмосферного, как туда может попасть воздух? Чтобы ответить на этот вопрос, надо вспомнить о том, что выхлопные газы выходят из цилиндров не непрерывным потоком, а циклически: между моментами, когда открывается выпускной клапан и газы выходят из цилиндра, существуют моменты, когда выпускной клапан закрыт и газы движутся по трубе, так сказать, по инерции. В эти моменты они создают в трубе разрежение. Результатом чего и является как раз подсасывание атмосферного воздуха.

В итоге — сбивающие с толку показания и лишняя головная боль диагносту. Поэтому, повторимся, всегда перед проведением теста необходимо проверить выхлопной тракт на герметичность. Для этого существует два способа. Первый из них более инновационный. Как известно, есть специальные дымогенераторы, аналогичные тем, что используются при выступлениях певцов и артистов. Суть в том, что при движении создаваемого ими плотного дыма по магистрали сразу же становятся видны все утечки. По словам Рязанова, многие из тех, с кем ему приходилось общаться, хотят использовать такой аппарат в работе. Несмотря на это, почти никто его не применяет.

Что на выходе


Убедившись в герметичности выхлопного тракта, подключаем газоанализатор. Двигатель заведен, выхлопные газы выходят, а газоанализатор их усердно, простите за тавтологию, анализирует, показывая различные цифры. Что есть что? Начнем издалека. При сгорании бензина, если заглянуть в учебник химии (а горение есть не что иное, как химическая реакция), получаются H20 и CO2. К сожалению, это происходит лишь при полном идеальном сгорании смеси. В жизни идеальных процессов не существует. В двигателях же внутреннего сгорания этот прискорбный факт подкрепляется еще и тем, что мы имеем дело с процессом динамическим.
В процессе горения меняются и объем (ибо поршень движется), и температура, и давление, и даже теплопроводность самой среды. Рассчитать процесс горения смеси в камере сгорания очень и очень сложно. Всему этому мы и обязаны содержанию в выхлопе всяческих посторонних веществ. Наиболее известными из них являются старые добрые CO и CH. Что же они из себя представляют? CH — это общее обозначение всех углеводородов, которые получаются из несгоревшего бензина (именно всех, а не какого-то конкретного одного, как считают некоторые авторемонтники). То есть, повторимся, CH — это попросту несгоревший бензин. CO — это бензин, который гореть начал, но по каким-то причинам ему не посчастливилось найти еще одну молекулу кислорода, дабы догореть (то бишь окисляться) до CO2. Для лучшего понимания Рязанов приводит аналогию с костром:

Когда-то давно, когда об инжекторах большей частью думали, а использовали почти везде карбюраторы, и газоанализаторы были под стать. С тем, что можно было получить от карбюраторного смесеобразования, этих двух параметров было вполне достаточно как для диагностики, так и для регулировки системы подачи топлива. Теперь все стало сложнее. Во-первых, ужесточились экологические нормы.

СН

CH, как уже говорилось, — это несгоревшее топливо. Если данный параметр завышен, значит, бензин горит не полностью. Возможно это в двух случаях:

1)богатая смесь. Здесь все просто. Бензина много. Воздуха мало. И далеко не на каждую молекулу бензина находится молекула кислорода. Топливо и хотела бы сгореть, но кислорода не хватает. Вот и выбрасывается бензин в буквальном смысле в трубу;

2)бедная смесь. Да, звучит парадоксально. Казалось бы, кислорода достаточно и ни одна молекула бензина не уйдет обиженной. Однако так не происходит, и бензин не горит.

CO

Как же понять, бедная у нас или богатая смесь? Вот тут и приходит на помощь знание второго параметра. Как уже говорилось, CO — это тот бензин, который гореть начал, но что-то помешало ему это сделать. А помешала ему это сделать нехватка кислорода. В случае бедных смесей кислорода у нас в избытке, и уж если наткнулась молекула бензина на молекулу кислорода, то и вторая молекула кислорода наверняка где-то близко. Поэтому если уж молекула бензина начала гореть (т. е. окисляться), то окислится наверняка. Таким образом, при бедных смесях содержание CO близится к нулю. В случае же с богатой смесью кислорода не хватает никому. Поэтому наряду с возросшим CH будет присутствовать и повышенный CO.
К сожалению, даже при идеальном составе смеси не будет достигаться идеального горения и в трубу станет уходить фактически топливо, от которого еще можно получить полезную работу. Дожигается оно в катализаторе (при его наличии). Механической энергии мы от этого не получаем, но хотя бы не портим экологию.
Как видно, уже зная только два параметра, можно сделать какие-то выводы о том, как работает двигатель.

Газоанализ спешит на помощь

Впрочем, возможности газоанализа на этом отнюдь не исчерпываются, а скорее, только начинаются. Возьмем для рассмотрения такую неисправность, как пропуски воспламенения. Пропуски воспламенения принципиально делятся на два случая: пропуски зажигания, когда по какой-то причине не возникает искры, и нарушение формирования заряда смеси, когда искра есть, но топливо не сгорает. Одной из причин нарушений формирования заряда смеси является неправильная работа форсунок. То есть форсунка не распыляет топливо ровным факелом, а просто подает бензин большой каплей.
Как известно, сам по себе бензин не горит, а горят его пары в смеси с воздухом. Поэтому, если мы имеем каплю чистого бензина, окруженную чистым воздухом, он не загорится. Так или иначе, если мы столкнулись с проблемой пропусков воспламенения, возможны варианты. Самым простым случаем является тот, когда двигатель троит, т. е. один цилиндр просто не работает. Тут определиться достаточно просто: проверить искру, проверить, подается ли топливо. В общем, стандартный набор процедур.
Гораздо хуже, когда пропуски происходят хаотично. Сейчас не сработал первый цилиндр, потом второй и т. д. То есть нет одного явно неработающего цилиндра, с которым можно четко определиться. При такой проблеме проявляется неприятный эффект: вибрации двигателя и автомобиля в целом.


Надо заметить, что причиной вибраций могут быть не только пропуски воспламенения. Например, причиной этого может быть просто обрыв ремня, приводящего в движение балансирный вал, или же просто разбитые подушки крепления двигателя.
Вот здесь газоанализатор практически незаменим, ибо позволяет сэкономить много времени и труда на проверку гипотезы. Если с воспламенением все нормально, то и состав выхлопа будет в норме. Если же пропуски воспламенения присутствуют, это явно отобразится на показаниях.
Во-первых, если топливо не сгорает, оно просто уходит в выхлоп. Это уже резкое повышение CH. Кроме того, при нормальном сгорании смеси выделяется и CO2. Содержание CO2 в воздухе мало; если же смесь не сгорает, то и воздух тоже уходит в выхлоп. Поэтому содержание CO2 в выхлопе будет пониженным. Кроме того, воздух, идущий в выхлоп, резко увеличивает и количество кислорода. Этот метод, естественно, не скажет, то ли дело в зажигании, то ли в формировании смеси.
Но тут уж грешно жаловаться. Подключение мотор-тестера и проверка работы системы зажигания вряд ли будет проблемой для сведущего человека. Да и куда проще искать, когда знаешь, что именно ищешь. Переходя от частного к общему, газоанализ позволяет нам определить некую генеральную линию поиска неисправности.
Как пример можно привести весьма распространенную жалобу клиентов на высокий расход топлива. Тут нелишне заметить, что в первую очередь стоит расспросить хозяина о стиле езды. Правда, как показывает опыт большого количества диагностов, клиенты в подавляющей массе говорят, что ездят спокойно. К сожалению, понятие спокойной езды у всех свое. Посему после расспросов клиента необходимо довериться беспристрастным приборам. А точнее — сначала одному беспристрастному прибору, о пользе которого мы и говорим в этой статье.
Наиболее вероятной причиной большого расхода является, естественно, богатая смесь. Но при этом не стоит забывать, что и бедная смесь может являться причиной той же самой проблемы. Почему это происходит — было сказано выше, но мы повторим. При обедненной смеси все равно происходит неполное сгорание топлива. При этом двигатель не развивает необходимой мощности, и инстинктивное действие водителя — нажать педаль газа сильнее. Получается, что топливо не только не сгорает, но и количество этого несгоревшего топлива увеличивается в результате попыток поддать газку.

Как своими силами снизить токсичность выхлопных газов и пройти ТО

В 80% на токсичность выхлопных газов влияет несколько основных факторов:
1. Топливо (первый и главный фактор)
2. Состояние двигателя (износ, количество загрязнений)
3. Моторное масло (тип, качество, чистота)
4. Состояние воздушного фильтра (сопротивление)

Давайте разберем каждый из факторов.

1. Топливо. Прежде чем ехать на технический осмотр, за несколько дней до этого, следует заливать только качественный бензин с высоким октановым числом. Такой подход резко снизит содержание токсинов в выхлопных газах.

2. Состояние двигателя. Это самый распространенный фактор, который приводит к изменению состава выхлопа. Рекомендуется два раза в год проводить чистку топливной системы и не забывать периодически менять топливный фильтр. Очень сильно на токсичность влияет состояние свечей зажигания, рекомендуется их заменить перед ТО.

3. Моторное масло. Как не странно, качество моторного масла тоже изменяет состав выхлопных газов. Синтетическое моторное масло приводит к снижению токсичности, а минеральное к увеличению. Поэтому, перед прохождением ТО, рекомендуется заменить старое моторное масло на свежее, использовать необходимо только качественное масло, купленное у официальных представителей.

4. Состояние воздушного фильтра. Всем известно что сопротивление воздушного фильтра (загрязнение) вызывает снижение мощности, к избыточному разряжению во впускном коллекторе и увеличению токсичности. Перед прохождением ТО, его также следует заменить на новый!

оценка двигателя

322. Черный или темно-бурый выхлоп указывает на:
— неисправность форсунок (работа двигателя при этом зачастую сопровождается громким стуком);
— неправильную установку топливного насоса высокого давления или его неисправность (передозировка топлива из-за нарушения регулировки одной, нескольких или всех нагнетательных секций);
— загрязнение воздушного фильтра;
— нарушение регулировки опережения нагнетания и впрыска (ошибка при регулировке или вследствие износа топливного насоса высокого давления);
—- нарушенное распыление топлива форсунками (из-за пониженного давления топлива — топливный насос высокого давления; не герметичности форсунок или повреждения топливопроводов высокого давления);
— чрезмерный износ зеркал цилиндров, износ или обгорание поршневых колец;
— нарушение зазоров в клапанном механизме;
— износ распределительного вала.

323. Белый дым — нормальное явление только при работе двигателя в морозы.
Тогда отработавшие газы окрашиваются в белый цвет по причине конденсации содержащегося в них пара. Белый выхлоп, выделяющийся при запуске, но исчезающий при рабочей температуре,
не опасен (значит, не очень хорошо работают свечи накаливания).

324. Некоторые дизельные двигатели могут выделять голубой дым при прогреве.
Как правило, это двигатели с прямым впрыском, которые устанавливают на грузовиках. В иных случаях голубой дым свидетельствует о:
— горении масла (повышенный уровень масла в картере двигателя или износ поршней, цилиндров, направляющих клапанов, поршневых колец или маслоотражательных колпачков);
— слишком низком качестве топлива;
— переохлаждении двигателя.

Читайте также: