Объясните роль полиплоидии в создании новых сортов растений кратко

Обновлено: 30.06.2024

Чрезвычайно ценным источником изменчивости для селекции растений служит полиплоидия.

Увеличение числа наборов хромосом у культурных растений сыграло выдающуюся роль в эволюции видов и селекции. Народная селекция, не зная самого явления полиплоидии, давно использовала ее как источник изменчивости в создании ряда таких ценнейших культур, как пшеница, овес, хлопчатник, картофель, а также в цветоводстве.

Изучение полиплоидии позволило овладеть этим источником изменчивости растений. Успехи теоретических исследований не замедлили сказаться на получении искусственных полиплоидов у сельскохозяйственных культур.

Число искусственно созданных полиплоидов с каждым годом прогрессивно нарастает. В настоящее время только у ржи получено несколько десятков тетраплоидов.

Применение колхицина ускорило получение полиплоидов. При этом успех зависит от способа обработки тканей, вида растения, стадии воздействия. Раствором колхицина разной концентрации обрабатывают семена, проростку точки роста взрослого растения, а также воздействуют через корневую систему.

Автополиплоидия и аллополиплойдия имеют разную ценность в селекционной работе. Удвоение числа хромосом от диплоидного к тетраплоидному часто сопровождается увеличением размера или ускорением темпа деления клеток, что ведет к изменению размеров растения и его органов, размера и веса семян, химического состава, а также к повышению устойчивости к заболеваниям и т. д. Так, например, вес 1000 зерен тетраплоидной ржи сорта Стальной составляет 45—50 г, а диплоидной того же сорта — 28—30 г. Вес 1000 зерен тетраплоидной гречихи, полученной В. В. Сахаровым, составляет 23—35 г, диплоидной — 16—29 г, и т. д. В настоящее время советскими генетиками получены полиплоиды у ряда сельскохозяйственных культур: сахарной свеклы, проса, кок-сагыза, опийного мака, льна, перечной мяты, редиса, кукурузы, земляники и других растений.

Вместе с тем автополиплоиды часто характеризуются снижением фертильности. Хотя каждое семя у полиплоида крупнее, чем у исходной формы, но количество семян на растении может быть меньше. Причины этого кроются в основном в нарушении мейоза. Однако это препятствие преодолимо. Полиплоид не является готовым сортом — он требует дальнейшей тщательной селекции, а возможно, и скрещивания с другими полиплоидами, а также последующего отбора гибридных форм.

В селекции широко используются как естественные аллополиплоиды, так и экспериментально полученные от скрещивания разных видов и родов. Полиплоидия особенно эффективна при низкой урожайности стандартных сортов. При высокой урожайности сортов она хотя и дает прибавку урожая, но не столь разительную. Вместе с тем полиплоидия (автополиплоидия) часто сопровождается изменением хозяйственно ценных признаков. Например, автополиплоиды ржи имеют более прочную солому (что препятствует полегаемости), но при этом пониженную фертильность. Однако снижение фертильности автополиплоидов может быть преодолено либо путем селекции, либо путем создания искусственной популяции, составленной из линий автополиплоидов разного происхождения. Такие самовоспроизводящиеся, синтетические, популяции автополиплоидов могут сохраняться в течение нескольких поколений без заметного снижения урожайности. Следует подчеркнуть, что автополиплоидия вызывает больший эффект у перекрестноопылителей, чем у самоопыляющихся растений.

Современные цитогенетические исследования открыли новый путь, раскрывающий широкие перспективы для селекции, — использование в сельскохозяйственном производстве триплоидных форм. Триплоидные растения обычно являются или стерильными, или в большинстве своем имеют низкую фертильность. Однако в ряде случаев триплоидные растения отличаются повышенной мощностью и урожайностью по вегетативной массе, по весу корнеплода, например, у сахарной свеклы.

Японскими генетиками была разработана система скрещивания тетраплоидного (2n = 44) и диплоидного (2n = 22) арбуза. Гибриды между ними являются триплоидными, а поэтому бессемянными; они имеют очень крупные плоды и большую устойчивость к заболеваниям.

Однако важно подчеркнуть, что выращивание триплоидных растений, в частности арбузов, требует определенной системы семеноводства: во-первых, необходимо получение и селекция тетраплоидных линий, которые должны поддерживаться в чистоте; во-вторых, для получения высокоурожайных триплоидов требуется подбирать линии автотетраплоидов и диплоидов из разных сортов с высокими комбинационными свойствами, дающими при скрещивании гетерозис; в-третьих, триплоидные семена в плодах образуются чаще в результате такого скрещивания, когда тетраплоид является женским растением, а диплоид — мужским. Реципрокная комбинация скрещивания не дает семян. Это еще раз показывает, что совместимость геномов с цитоплазмой и степень нарушения мейоза зависят от направления скрещивания.

Пыльца тетраплоидов оказывается менее жизнеспособной, чем яйцеклетки.

Для того чтобы выяснить, с какой вероятностью у арбуза могут встречаться плоды с семенами, следует познакомиться с ходом мейоза у триплоидных растений. У триплоида в первом делении мейоза образуются не биваленты, а триваленты, при расхождении которых анафазе две хромосомы могут отойти к одному полюсу, а третья — противоположному. В результате такого деления образуются гаметы с числом хромосом от 11 до 22; частота появления каждого класса гамет вычисляется по уравнению (1 + 1) 11 . Фертильными могут быть только два сорта гамет — с 11 и с 22 хромосомами, гаметы с промежуточным числом хромосом окажутся стерильными. Следовательно, фертильных гамет будет 0,5 11 X 2, т. е. 0,1%, а стерильных остальные 99,9%. На основании такого расчета в потомстве триплоида следует ожидать, как правило, бессемянные плоды. Плод триплоидного арбуза развивается партенокарпически в силу стимуляции его веществами, привносимыми пыльцой, попадающей на рыльце пестика. Если изолировать цветки триплоидного арбуза от пыльцы, то завязь не развивается.

Мы подробно остановились на примере получения триплоидного арбуза для того, чтобы иллюстрировать разные аспекты использования полиплоидии в практических целях.

Таким образом, получение полиплоидов дает в руки селекционера формы, измененные в качественном и количественном отношениях, Однако, следует иметь в виду, что искусственно полученные полиплоиды являются лишь исходным материалом для отбора, с ними необходимо вести дальнейшую селекционную работу, приспосабливая их к требованиям производства, климату и агротехнике.

При изучении генетики полиплоидов в практических целях крайне важно для каждого вида растений установить 1) совместимость геномов между собой и цитоплазмой, 2) изменение характера Доминирования и взаимодействия генов при умножении числа геномов.

Действие мутантных генов в гетерозиготном состоянии, превышающих и понижающих жизнеспособность и продуктивность растений.

При получении полиплоидов в селекционных целях необходимо иметь в виду следующее:

  1. полиплоиды перспективнее получать от сортов, имеющих высокую продуктивность в условиях данного района возделывания, и от гибридов между специально подобранными сортами разного происхождения и инбредных линий, обладающих высокими комбинационными свойствами;
  2. полиплоидия не для всех видов растений может быть успешной в хозяйственных целях;
  3. методика экспериментального получения полиплоидов различна для разных видов.

Искусственно создаваемая полиплоидия дает в руки селекционера средство, позволяющее сокращать время эволюции растения в культуре.

В заключение рассмотрения источников изменчивости в селекции следует подытожить ряд общих положений о ее значении в эволюции культурных растений. Первичным источником эволюции культурных растений являются мутации всех типов, которые при гибридизации и в процессе отбора комбинируются в системы генотипов. Поэтому эволюция культурных растений протекает на основе отобранных систем генотипов в условиях возделывания.

В ряде случаев установлено, что вновь получаемые мутанты оказываются не новыми для данной культуры, т. е. в том или ином виде они уже известны в мировой коллекции сортов. Под руководством Г. Штуббе в ГДР ведутся широкие исследования по сопоставлению спонтанных и экспериментально полученных мутантов у ячменя, томатов, сои с имеющимися в культуре разновидностями. И оказывается, что, например, 170 известных мутантов для ячменя укладываются в существующую систему признаков 192 ясно различимых разновидностей. Сходная картина установлена для томатов, львиного зева и других растений. Отсюда Г. Штуббе делает очень важный вывод о том, что все естественное многообразие форм, например, ячменя, может быть воспроизведено путем экспериментального получения мутаций с последующей комбинацией их при скрещиваниях и отборе. Автор считает, что уже сейчас экспериментально созданное многообразие мутантов и известное природное многообразие форм ячменя, собранных в мировой коллекции, ничем существенным не отличаются. И действительно, ряд экспериментальных мутаций генетически идентифицируется при локализации с таковыми у существующих разновидностей ячменя, томатов, сои и львиного зева.

Из этого видно, что закон гомологических рядов Н. И. Вавилова получает реальное воплощение в анализе эволюции культурных растений.

Накопленный в процессе эволюции фонд мутаций культурных растений еще не означает, что для получения новых мутаций уже достигнут предел. В процессе селекции культурных растений многие аллели различных генов и их комбинаций, наверное, не были еще оценены искусственным отбором, так как они редко спонтанно мутируют. Поэтому индуцирование мутаций остается главным источником наследственной изменчивости для отбора в селекции культурных растений.

Полиплоидия – это увеличение количества хромосомных наборов в клетках растений или животных, которое кратно одинарному числу хромосом.

Гаметы в основном гаплоидны (имеют один набор хроматид), соматические – диплоидны. Если клетки живого организма содержат больше 2 наборов хромосом, то его называют полиплоидом. Триплоиды включают 3 набора, тетраплоиды – 4, пентаплоиды – 5. Особи, с нечетным набором хромосом, не могут давать потомства. Это связано с тем, что их гаметы не имеют полного набора хромосом и не способны к делению.

Полиплоидия

Как возникает полиплоидия

Полиплоидия — одна из форм изменчивости. Обеспечивает видовое разнообразие, когда потомство приобретает новые черты, отличаясь фенотипически от родителей.

Основное условие — отсутствие расхождения хромосом в мейозе. При этом половая клетка будет иметь диплоидный хромосомный набор. Если ее скрестить с гаплоидной клеткой получится триплоид, если же произойдет слияние между клетками с одинаковым количеством хромосомных наборов – образуется тетраплоидная зигота.

У каких организмов встречается полиплоидия? Среди диких видов растений, особенно цветковых, полиплоидия наблюдается часто (полиплоидов примерно половина). Поскольку растения могут размножаться вегетативно, полиплоидность не мешает им давать потомство, в отличие от животных.

В животном мире такое явление редкое, поскольку нерасхождение хромосом в мейозе приводит к генетическим ошибкам. Полиплоидия у животных характерна для некоторых гермафродитов (представители типа Черви) и особей, которые размножаются без оплодотворения. Плоидность простейших отличается колоссальным количеством наборов хромосом (около ста).

Роль полиплоидии в образовании видов

Около 75% нынешних сортов культурных растений — полиплоиды. Это овощи и фрукты, злаки, а также цитрусовые и лекарственные растения. Популярные триплоиды: арбузы и виноград без косточек. Данные виды доказывают стерильность триплоидных организмов, поскольку не могут давать потомства.

Полиплоидия нашла применение среди селекционеров, которые создают новые сорта растений. В основе метода лежит искусственное увеличение хромосомных наборов в клетках живых организмов, которое всегда кратно гаплоидному набору. Вследствие этого идет интенсивный рост клеток и особи в целом.

На сегодняшний день выведено много новых, плодовитых и устойчивых сортов. Для получения желаемого результата, применяют такой мутаген, как колхицин. Он препятствует расхождению хромосом во время деления.

Мутации с увеличением числа хромосом возникают также под влиянием температуры, радиации, или вследствие перемены внутреннего состояния клетки. Таким образом, под влиянием внешних факторов не образуется веретено деления, и процесс распределения генетической информации между дочерними клетками останавливается. Причиной возникновения полиплоидии может стать эндомитоз – идет удвоение количества хромосом, но само ядро не делится.

Клеточная полиплоидия делает растения более стойкими к переменам окружающей среды, и воздействию чужеродных агентов. Такая выносливость обусловлена тем, что в случае гибели нескольких гомологичных хромосом, большинство все же продолжают функционировать.

Используют для селекции также аллополиплоидные организмы. Хромосомные наборы таких особей различаются: набором генов, формой или количеством хромосом. Так, скрещивание растений различных родов, к примеру, ржи и пшеницы, дает в результате гибрида с одинарным набором ржи и одинарным набором пшеницы. Данное потомство не будет способно к дальнейшему воспроизведению себе подобных, только увеличение числа хромосом обоих растений даст возможность возобновить репродуктивную функцию.

Значение полиплоидии

Полиплоидия сыграла огромную роль в эволюции диких и окультуренных растений (предполагают, что 30% растений появились благодаря полиплоидии). Свидетельством роли полиплоидии в эволюционном становлении растительного мира служат полиплоидные ряды. В таком случае представители одного рода формируют эуплоидный ряд с увеличением количества хромосомных наборов.

Усовершенствованная морфология и физиология полиплоидных растений дает им возможность заселять новые места, которые недоступны другим видам из-за неблагоприятные внешние условия.

Многие века человек неосознанно вел отбор полиплоидных видов, которые приносили большие урожаи, были выносливы к плохим погодным условиям и действию патогенных микроорганизмов. Овладение методом экспериментального образования полиплоидов дало возможность внедрить высокопродуктивные виды, например, триплоидную сахарную свеклу, или перечную мяту.

Полиплоидия также встречается при патологическом разрастании ткани, образовании злокачественных опухолей.

В метафазе начинает формироваться митотический аппарат, после его формирования хромосомы начинают перемещаться в экваториальную плоскость клетки; это движение хромосом называется метакинез.

В метафазе хромосомы максимально спирализованы. Центромеры хромосом располагаются в экваториальной плоскости клетки независимо друг от друга. Полюсные нити веретена деления тянутся от полюсов клетки к хромосомам, а хромосомальные — от центромер (кинетохоров) — к полюсам. Совокупность хромосом в экваториальной плоскости клетки образует метафазную пластинку.

Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки. При расхождении хромосом хромосомальные микротрубочки укорачиваются, а полюсные — удлиняются. При этом полюсные и хромосомальные нити скользят вдоль друг друга.

2. Вопрос

Каковы причины комбинативной изменчивости?

КОМБИНАТИВНАЯ ИЗМЕНЧИВОСТЬ возникает при перекомбинации (перемешивании) генов отца и матери в результате кроссинговера при мейозе (гомологичные хромосомы тесно сближаются и меняются участками); независимого расхождения хромосом при мейозе; случайного слияния гамет при оплодотворении.

3. Вопрос

Что представляют собой полиплоиды?

Полиплоидия — это кратное увеличение гаплоидного набора хромосом, возникающее при нарушении расхождения хромосом к полюсам клетки при мейоэе или митозе. В результате возникает клетка с удвоенным числом хромосом, которая может стать началом будущего полиплоидного организма. Клетки с разным числом гаплоидных наборов хромосом называют триплоидными (Зn), тетраплоидными (4n), гексаплоидными (6n), октаплоидными (8n) и т д. Полиплоидия приводит к изменению признаков организма, поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений.

Вопросы и задания

С какой целью применяется межсортовая и отдаленная гибридизация? Почему бесплодны межвидовые гибриды?

Гибридизация может быть межсортовой (скрещивание особей разных сортов одного вида) и межвидовой — отдаленной (скрещивание особей, принадлежащих разным видам). Гибридизация позволяет увеличить наследственную изменчивость путем получения новых комбинаций генов в результате скрещивания.

Однако отдаленные гибриды не дают потомства. Причины бесплодия связаны с нарушением нормального хода мейоза из-за различия хромосом родительских видов

2. Вопрос

Объясните роль полиплоидии в создании новых сортов растений.

Для преодоления бесплодия у межвидовых гибридов используют полиплоиды. В результате каждая хромосома получает своего гомолога, а гаметы несут по одному гаплоидному набору хромосом. Полученный гибрид не расщепляется на родительские формы и дает плоды.

3. Вопрос

Как достигается эффект гетерозиса? Выскажите предположение о его причинах.

При скрещивании чистых линий — генетически однородного потомства одной исходной самоопыляющейся особи — наблюдается снижение жизнеспособности и урожайности. Преодолеть такие последствия возможно при перекрестном опылении разных чистых линий. В результате гибриды отличаются от родительских линий урожайностью и жизнеспособностью. Такое явления называется — Гетерозисом (гибридной силой). Причиной гетерозиса является восстановление гетерозиготности гомозиготных гамет.

4. Вопрос

Назовите продуктивные сорта сельскохозяйственных культур, выведенных отечественными селекционерами.

Современные сорта озимой пшеницы для черноземной полосы: Тарасовская остистая, Росинка тарасовская, Престиж, Северодонецкая юбилейная.

Распространенные урожайные сорта пшеницы яровой: московская — 35, воронежская — 10;


Что такое полиплоидия?

Сам термин "полиплоидия" означает наличие множества полных наборов генетической информации. Большинство существ с половым способом размножения имеют четное количество хромосом: один набор от мамы и один набор от папы. Важно помнить, что эти комплекты похожи, но они не идентичны.

полиплоидия примеры

Виды полиплоидии

Вот некоторые из наиболее распространенных типов:

  • Гаплоид означает, что есть только один набор хромосом, но организм все равно может воспроизводиться. Бактерии и другие одноклеточные организмы обычно гаплоидны. Иногда встречаются многоклеточные гаплоидные существа, которые обычно являются насекомыми или другими беспозвоночными.
  • Моноплоид означает критерий, который должен иметь два набора хромосом, но случайно получил только один. Моноплоиды обычно стерильны, то есть не способны к репродукции.

клетки растений

Полиплоидия в растениях

У каких организмов встречается полиплоидия? Чаще всего она наблюдается в царстве растений. Тысячи лет селективного культивирования и селекции растений привели к созданию плодородных пищевых растений, которые обычно являются тетраплоидными и гексаплоидными.

виды полиплоидии

Если сравнить диплоидные и тетраплоидные разновидности одного и того же типа растений, очень часто тетраплоидные растения растут все более и более продуктивно. Полиплоидия в селекции играет очень важную роль в наше время.

Полиплоидия у животных

Среди животных она часто наблюдается у рыб и амфибий. В общем, существует генетическая предвзятость для плоидных чисел у животных. Тростники с неравным количеством хромосом, или хромосом, содержащих неправильные хромосомы, обычно не могут производить потомство.

роль полиплоидии

Что такое полиплоидия? Какие конкретные примеры видообразования можно привести у растений и животных?

Триплоиды

Прежде чем разбираться с полиплоидией, нужно немного понять, как тела создают новые клетки. Все человеческие клетки диплоидные, поэтому, когда создаются гаметы, они должны быть гаплоидными, или иметь только один набор хромосом, чтобы новый организм снова мог быть диплоидным. Однако во время этого процесса иногда что-то идет не так. Наиболее распространенным явлением является то, что иногда одна новая гамета получает две копии хромосом. Это может произойти, когда самки производят яйцеклетки. Когда яйцо с двумя наборами хромосом сливается с нормальным гаплоидным сперматозоидом, результирующая клетка имеет три набора хромосом, то есть она триплоидная.

полиплоидия у рыб

Теперь каждая клетка в этом новом организме будет триплоидной. Для большинства животных это крайне вредно, и организм не выживет. Растения, как правило, лучше переносят полиплоидию и даже процветают с такими интенсивными генетическими изменениями.

Еще примеры

Вот некоторые примеры полиплоидии у растений и животных. Ученые предположили, что две трети цветущих растений являются полиплоидами. Большинство папоротников и трав – это полиплоиды, а также картофель, яблоки, клубника. Бананы представляют собой интересный пример. Бананы являются триплоидами, и обычно триплоидные организмы не могут воспроизводить себя, то есть они стерильны. Это означает, что вы не можете получить семена бананов, чтобы посеять больше бананов. Фермеры отрезают побеги со стороны растения, прежде чем они производят фрукты и заканчивают свой цикл, и высаживают новое поколение.

Что такое полиплоидия? Это наследуемое состояние, обладающее более чем двумя полными наборами хромосом. Полиплоиды распространены среди растений, а также среди определенных групп рыб и амфибий. Например, некоторые саламандры, лягушки и пиявки являются полиплоидами. Многие из этих полиплоидных организмов хорошо адаптированы к окружающей среде.

Полиплоидные предки

Существует гораздо меньше видов полиплоидных животных, чем растений. Точная причина этого не совсем известна. Некоторые ученые считают, что это может быть связано с увеличением сложности строения организмов животных по сравнению с растениями. Другие предполагают, что полиплоидия может препятствовать образованию гамет, делению клеток или регуляции генома. Однако есть некоторые исключения. Примерами полиплоидии в животном мире являются рыбы, рептилии и насекомые.

у каких организмов встречается полиплоидия

Фактически недавние результаты исследований генома показывают, что многие виды, которые в настоящее время являются диплоидами, включая людей, были получены из полиплоидных предков. Эти виды, которые пережили древние генотипические дупликации, а затем редукцию генома, называются палеополиплоидами.

Преимущества полиплоидии

В большом числе полиплоидных клеток растений, рыб и лягушек, очевидно, должны быть некоторые преимущества. Общим примером в растениях является наблюдение гибридной энергии, или гетерозиса, в результате чего полиплоидное потомство двоих диплоидных предшественников, является более энергичным и здоровым, чем любой из двух диплоидных родителей. Существует несколько возможных объяснений этого наблюдения. Первый заключается в том, что принудительное спаривание гомологичных хромосом предотвращает рекомбинацию между геномами исходных предшественников, эффективно поддерживая гетерозиготность в течение поколений.

олиплоидия в селекции

Эта гетерозиготность предотвращает накопление рецессивных мутаций в геномах последующих поколений, тем самым поддерживая гибридную энергию. Другим важным фактором является избыточность генов в клетках растений. Поскольку у полиплоидного потомства в два раза больше копий какого-либо конкретного гена, потомство защищено от пагубных последствий рецессивных мутаций. Это особенно важно во время стадии гаметофита.

Другим преимуществом, обеспечиваемым избыточным положением генов, является способность диверсифицировать функцию генов с течением времени. Другими словами, дополнительные копии генов, которые не требуются для нормальной функции организма, могут в конечном итоге использоваться по-новому и совершенно по-разному, что приводит к новым возможностям. В эволюционном выборе они играют чуть ли не решающую роль. Полиплоиды важны в происхождении новых видов растений.

Полиплоидные формы и мутанты в селекции растений

Полиплоидные формы это метод создания исходного материала для селекции цветочных культур, который играет важную роль. Полиплоидные сорта созданы более чем у 300 видов. Метод имеет большие потенциальные возможности.

Полиплоидия – наследственные изменения, связанные с увеличением числа целых хромосомных наборов.

У цветочных растений существуют природные полиплоидные виды, например, у тагетеса отклоненного 48 хромосом, тогда как у тагетеса прямостоячего их только 24. Есть полиплоидные виды у львиного зева, петунии, бегонии всегдацветущей, крокусов, нарциссов, ирисов и др. У некоторых видов увеличение числа хромосом способствует улучшению декоративных качеств, например укрупнению цветка и увеличению высоты.

Искусственное получение полиплоидов

Для искусственного получения полиплоидов применяют те же факторы, которые вызывают их появление в природе: температурные воздействия, ионизирующие излучения, механические повреждения, химические вещества и др. Однако наиболее эффективно воздействие алкалоида колхицина во время клеточного деления.

Колхицин останавливает деление в клетках растений в тот момент, когда хромосомы удвоились (разделились продольно), но еще не разошлись. Он парализует образование веретена, и таким образом, деление и расхождение хромосом к полюсам становятся невозможными — появляются клетки с удвоенным числом хромосом. После прекращения действия колхицина в клетке снова начинается митотическое деление, но уже с удвоенным набором хромосом.
Поскольку колхицин влияет только на делящиеся клетки, им обрабатывают прорастающие семена, растущие плоды и проростки, пробуждающиеся почки, молодые бутоны, формирующиеся клубнепочки, клубни, листовые меристемы и др.

После тщательного отбора из многих тысяч полиплоидных форм декоративных растений удалось вывести только несколько сотен хороших сортов, сочетающих высокие декоративные качества с хорошей плодовитостью. Кроме того, полиплоиды некоторых культур обладают устойчивостью к болезням, вредителям и неблагоприятным погодным условиям.

Искусственные мутации растений

Мутанты также служат исходным материалом для селекции. Их получают с помощью ионизирующей радиации или химических мутагенов. Мутации представляют собой внезапные наследственные изменения в хромосомах или генах.

Полиплоидные формы и мутанты в селекции растений

Искусственно получила мутации у декоративных растений немецкий ученый Э. Штайн в 1918 г., облучая проростки и цветочные почки львиного зева. Данный метод широко применяют, особенно у вегетативно размножаемых растений в сочетании с культурой ткани. Таким образом создано много сортов георгин, хризантем, гвоздик и бегонии.

Для индуцирования мутаций используют различные виды ионизирующих излучений: корпускулярные (протоны, альфа-частицы, электроны, нейтроны) и электромагнитные (ультрафиолетовое, рентгеновское). Для рентгеновского облучения применяют как медицинские, так и специальные рентгеновские установки. При облучении пыльцы эффективны такие источники ультрафиолетового излучения, как ртутно-кварцевые лампы, для корпускулярных излучений—колонки и реакторы.

Известно более 400 химических веществ, обладающих мутагенным действием, однако активность большинства из них низка. Лишь с 1960 г. после открытия И. А. Рапопортом сверхмощных мутагенов (супермутагены), вызывающих у растений 100% и более наследственных изменений, химические мутагены заняли равное место с ионизирующими излучениями в индуцированном мутагенезе.

Многие химические мутагены дают тот же спектр мутаций, что и облучение. То, что химические мутагены вызывают, главным образом, генные мутации, очень ценно для селекционной работы, так как мутантные организмы сохраняют высокую жизнеспособность и плодовитость.

Для получения нового исходного материала вегетативно размножаемых растений черенки, луковицы, листья, столоны, бульбочки, чешуи луковиц и другие органы облучают или обрабатывают химическими мутагенами. При работе с растениями, размножаемыми семенами, обрабатывают семена, бутоны, пыльцу.

Изменения наследственности у мутантов иногда настолько велики, что можно ожидать появления признаков или свойств, отсутствующих у сортов данного вида либо встречающихся очень редко.

Сочетание метода мутагенеза с гибридизацией — наиболее перспективный путь в селекции цветочных культур. Такое сочетание ускоряет процесс создания новых сортов.

Читайте также: