Объясните принцип действия мультивибратора на оу кратко

Обновлено: 02.07.2024

Всем доброго времени суток! Прошлая статья была посвящена компараторам и триггерам Шмитта на операционных усилителях. Я упоминал, что они служат основой для построения различных видов генераторов колебаний. Среди всех типов генерируемых сигналов можно выделить четыре основных формы импульса: прямоугольная, треугольная, пилообразная и синусоидальная. В соответствии с этими формами импульса получили названия и генераторы сигналов.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Принцип построения импульсных генераторов на ОУ

В предыдущих статьях я рассказывал об импульсных генераторах с различной формой импульсов, выполненных на транзисторах. Для простых устройств их, возможно, применять, но для создания сложных устройств с регулировкой различных параметров их схемы оказываются неоправданно трудоёмкими в настройке и разработке. Поэтому для упрощения схемотехнической реализации применяют генераторы импульсов в основе, которых лежат операционные усилители.

В общем случае для получения импульсов различной формы требуется замкнутая система, которая состоит из трёх основных частей: интегратора, компаратора и логической схемы.

Блок-схема генератора колебаний различной формы



Блок-схема генератора колебаний различной формы.

Хотя схема состоит из трех частей, но довольно часто в простых генераторах применяют один-два операционных усилителя. Для повышения гибкости и универсальности схем генераторов можно добавлять дополнительные ОУ.

Первой рассматриваемым генератором будет мультивибратор, то есть генератор прямоугольных импульсов.

Автоколебательный мультивибратор на ОУ

Автоколебательный мультивибратор или просто мультивибратор называют генератор прямоугольных импульсов. В его основе лежит триггер Шмитта или компаратор с гистерезисом, но в отличие от триггера напряжение в мультивибраторе формируется интегрирующей цепочкой R1C1. Ниже приведена схема мультивибратора на ОУ

Схема автоколебательного мультивибратора на операционном усилителе



Схема автоколебательного мультивибратора на операционном усилителе.

Данный мультивибратор состоит из операционного усилителя DA1, который охвачен положительной обратной связью через резисторы R2R3 и отрицательной обратной связью при помощи интегрирующей цепочки R1C1.

Рассмотрим работу мультивибратора. В основе работы мультивибратора лежит триггер Шмитта, который создается ПОС при помощи резисторов R2R3. Так как опорное напряжение триггера равно нулю, то напряжение верхнего порогового уровня будет равно


2405201601

а нижнего порога переключения триггера


2405201602

Таким образом, в момент подачи питания конденсатор полностью разряжен, то есть на инвертирующем входе ОУ напряжение равно нулю. В тоже время на выходе ОУ, вследствие неидеального ОУ, присутствует некоторое положительное напряжение, часть которого через ПОС R2R3 поступает на неинвертирующий вход ОУ. Далее происходит усиление этого напряжения и на выходе ОУ происходит дальнейший рост напряжения.

Напряжение с выхода ОУ поступает также через цепочку R1C1, но вследствие того, что интегрирующая цепочка задерживает сигнал, то рост напряжения на конденсаторе С1, а следовательно и на инвертирующем входе будет происходить медленнее, чем на неинвертирующем. И в результате разность напряжений на инвертирующем и неинвертирующем входе будет расти, а следовательно будет происходить рост выходного напряжения.

В некоторый момент времени напряжение на конденсаторе UC (а также на инвертирующем входе) достигнет напряжения верхнего порогового уровня UВП триггера Шмитта и выходное напряжение UВЫХ скачком станет равным отрицательному напряжению насыщения UНАС-. В результате чего ток через резистор R1 изменится на противоположный, а конденсатор С1 начнёт разряжаться. Разряд конденсатора будет происходить до напряжения нижнего порога переключения UВП триггера. После этого также скачкообразно произойдёт переключение выходного напряжения с отрицательного насыщения к положительному напряжению насыщения UНАС+ триггера Шмитта. Данные переключения иллюстрирует график расположенный ниже

График напряжений в мультивибраторе



График напряжений в мультивибраторе: на выходе мультивибратора (верхний) и на конденсаторе С1 (нижний).

Частота выходных импульсов мультивибратора зависит от постоянной времени интегрирующей цепочки R1C1, а также от ширины петли гистерезиса и в общем случае определяется следующим выражением


2405201603

Не трудно заметить, что при


2405201604

В случае равенства сопротивлений резисторов в цепи ПОС R2 и R3 соотношения будут выглядеть следующим образом

Улучшение параметров мультивибратора

Стабильность частоты амплитуды генерирования простого мультивибратора, изображённого в начале статьи, во многом определяется стабильностью характеристик насыщения операционного усилителя, поэтому для улучшения параметров выходных импульсов (длительности и амплитуды) необходимо обеспечить стабильность амплитуды выходных импульсов и постоянной времени цепочки R1C1. Ниже приведена схема мультивибратора, в которой сведены к минимуму недостатки предыдущей схемы.

Улучшенная схема мультивибратора



Улучшенная схема мультивибратора.

В данной схеме мультивибратора введены дополнительные элементы: входные резисторы R1 и R3, повышающие входное сопротивление ОУ и двухсторонний параметрический стабилизатор R4VD1VD2, стабилизирующий амплитуду выходных импульсов. Введение резисторов R1 и R3 связано с тем, чтобы увеличить входное сопротивление ОУ, так как они снабжены защитой по входам при больших дифференциальных сигналах. Их величина выбирается на порядок больше, чем сопротивление резисторов R5 и R6 и имеет порядок сотен килом.

Ещё большего улучшения параметров мультивибратора можно добиться, если резистор в интегрирующей RC цепочке заметить транзисторным генератором тока.

Если ставится задача получения несимметричного мультивибратора, то резистор в цепи ООС заменяется двумя параллельными диодно-резисторными цепями, что изображено на рисунке ниже

Схема несимметричного мультивибратора на операционном усилителе



Схема несимметричного мультивибратора на операционном усилителе.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

 Схема ждущего мультивибратора (одновибратора) на операционном усилителе



Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением


2405201606

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна


2405201607

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением


2405201608

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Мультивибратор — это простой генератор прямоугольных импульсов, который работает в режиме автогенератора. Для его работы необходимо лишь питание от батареи, или другого источника питания. Работа симметричного мультивибратора основана на зарядно-разрядных процессах конденсаторов, образующих совместно с резисторами RC-цепочки.

Как работает мультивибратор?

Начинается первый полупериод работы (колебания) мультивибратора.

Когда, в результате перезаряда С1, напряжение на базе VT2 достигнет значения +0,6 вольта относительно эмиттера VT2, транзистор откроется. Поэтому, напряжение заряженного конденсатора С2, через открытый коллекторно-эмиттерный переход VT2 окажется приложенным к эмиттерно-базовому переходу транзистора VT1 обратной полярностью. VT1 закроется.

Начинается второй полупериод работы (колебания) мультивибратора.

Процесс повторяется до момента отключения мультивибратора от источника питания.

Способы подключения нагрузки к симметричному мультивибратору

Нагрузка мультивибратора должна подключаться параллельно одному из коллекторных резисторов, но ни в коем случае не параллельно транзисторному переходу коллектор-эмиттер. Нельзя шунтировать транзистор нагрузкой. Если это условие не выполнять, то как минимум — изменится длительность импульсов, а как максимум – мультивибратор не будет работать. На рисунке ниже показано, как подключить нагрузку правильно, а как не надо это делать.

Для того, чтобы нагрузка не влияла на сам мультивибратор, она должна иметь достаточное входное сопротивление. Для этого обычно применяют буферные транзисторные каскады.

Для подключения к мультивибратору высокоомной динамической головки буферный каскад не нужен. Головка подключается вместо одного из коллекторных резисторов. Должно выполняться единственное условие – ток, идущий через динамическую головку не должен превышать максимальный ток коллектора транзистора.

Разберёмся теперь, какие параметры элементов мультивибратора задают выходные токи и частоту генерации мультивибратора?

Мультивибратор, хоть и называется симметричным, это относится только к схемотехнике его построения, а вырабатывать он может как симметричные, так и не симметричные по длительности выходные импульсы. Длительность импульса (высокого уровня) на коллекторе VT1 определяется номиналами R3 и C2, а длительность импульса (высокого уровня) на коллекторе VT2 определяется номиналами R2 и C1.

Длительность перезаряда конденсаторов определяется простой формулой, где Тау – длительность импульса в секундах, R – сопротивление резистора в Омах, С – ёмкость конденсатора в Фарадах:

Таким образом, если вы уже не забыли написанное в этой статье на пару абзацев ранее:

Полный период колебания мультивибратора – T равен сумме длительностей импульса и паузы:

Частота колебаний F (Гц) связана с периодом Т (сек) через соотношение:

Как правило, в интернете если и есть какие либо расчёты радиоцепей, то они скудные. Поэтому произведём расчёт элементов симметричного мультивибратора на примере.

Как и любые транзисторные каскады, расчёт необходимо вести с конца — выхода. А на выходе у нас стоит буферный каскад, потом стоят коллекторные резисторы. Коллекторные резисторы R1 и R4 выполняют функцию нагрузки транзисторов. На частоту генерации коллекторные резисторы никакого влияния не оказывают. Они рассчитываются исходя из параметров выбранных транзисторов. Таким образом, сначала рассчитываем коллекторные резисторы, потом базовые резисторы, потом конденсаторы, а затем и буферный каскад.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 - графики, поясняющие принцип его работы.

Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.

Рис. 1 - Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность - это отношение периода повторения к длительности импульса Q=Tи /tи . Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой - в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.

Рис. 2 - Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параеметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:

Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно - не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики Rд1 и Rд2 .

Рис. 3 - Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциалла коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик Rд , а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным Eк . Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 - Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение.

Такие схемы называются ждущими мультивибраторами или одновибриторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса.

В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 - Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистра VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается и схема возвращается в исходное состояние.

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Автоколебательный режим

Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.

Схема блокинг-генератора показана на рис. 1.

Рис. 1 - Блокинг-генератор

Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй - транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.

Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.

Мультивибратор на транзисторах

Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.

Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты. Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.

Мультивибратором называется генератор периодически повторяющихся импульсов прямоугольной формы. Мультивибратор является автогенератором и работает без подачи входногсксигнала.

Схема мультивибратора на ОУ представлена на рис. 3.13. Сопоставим ее со схемой рис. 3.12, а. Конденсатор С и резисторы образуют интегрирующую -цепь: при заряде конденсатора открыт диод V1, ток проходит через , при разряде — открыт V2, ток идет через . Источником напряжения Е является выходная цепь ОУ.

Рис. 3.13. Мультивибратор на ОУ (а) и временные диаграммы напряжений в схеме мультивибратора (б)

Компаратор выполнен на ОУ с ПОС через цепь (ср. рис. 3.10). При переключениях компаратора на его выходе происходит коммутация цепей заряда и разряда конденсатора С, т. е. ОУ выполняет сразу несколько функций: источника напряжений заряда и разряда конденсатора, компаратора и ключа.

Рассмотрим работу мультивибратора. Временные диаграммы приведены на рис. . Пусть при источники питания ОУ отключены: . Конденсатор С разряжен и . В момент подключим , При их включении выходное напряжение ОУ ивых отклонится либо в положительном, либо в отрицательном направлении (случайный процесс). Для определенности допустим, что произошло положительное приращение Через цепь это приращение подается на прямой вход ОУ, усиливается и в свою очередь вызывает приращение Аивых. Процесс развивается лавинообразно, в результате в момент U скачком устанавливается .

Начиная с момента , конденсатор С заряжается напряжением через резистор так как к аноду диода V1 приложено положительное напряжение, постоянная времени . Нарастающее по экспоненте напряжение подается на инвертирующий вход ОУ. На прямой вход ОУ через цепочку ПОС подается напряжение

В момент напряжение на конденсаторе достигает значения и происходит срабатывание компаратора. Его переключение протекает лавинообразно (регенеративный процесс) и завершается при . Напряжение на конденсаторе не может измениться скачком и, начиная с момента , происходит перезаряд конденсатора через резистор напряжением с постоянной времени (на диоде прямое напряжение — минус на катоде). Мы отмечаем, что, воздействуя на диод V1 и V2, компаратор осуществляет переключение цепей заряда () и разряда () конденсатора С. При напряжение на прямом входе ОУ

Конденсатор С не успевает разрядиться до напряжения , так как в момент U напряжение на нем достигает значения и снова происходит регенеративное переключение компаратора, при этом устанавливается .

Вновь начинается этап заряда конденсатора С через резистор При напряжении на конденсаторе происходит очередное срабатывание компаратора.

Установившийся процесс начинается при и характеризуется изменением напряжения на конденсаторе от и обратно. Интервал определяет длительность импульса , длительность паузы

Найдем . Для этого воспользуемся анализом схемы заряда конденсатора С, выполненным в § 3.4 [выражения (3.8) и (3.9)].

Для нахождения рассмотрим заряд конденсатора С от источника с постоянной времени . Процесс начинается при (см. рис. 3.13, момент h) и завершается при . В соответствии с (3.9)

Учитывая зависимость от , получим

Интервал паузы найдем при рассмотрении перезаряда конденсатора С от источника с постоянной времени . В соответствии с (3.9)

Отметим, что значения и Q не зависят от параметров ОУ. Это обусловливает высокую стабильность частоты и скважности Q мультивибратора. В реальных мультивибраторах процессы развиваются несколько сложнее, так как ивых ОУ при прямом и обратном насыщении Не вполне одинаковы по величине, имеется напряжение смещения нуля (см. § 2.12), срабатывание компаратора происходит при ненулевом напряжении . Эти факторы несколько снижают стабильность работы схемы.

Рассмотрим способы регулировки частоты и скважности мульти. вибратора.

1. При регулировке частоты f скважность Q не должна изменяться, Можно предложить следующие способы регулировки частоты:

а) изменением емкости конденсатора С. Этот способ применяется редко, так как связан с громоздкими решениями;

б) измеиеиием отношения путем изменения одного из этих сопротивлений. При этом изменяется . Например, при увеличении увеличивается , конденсатор С за время должен заряжаться до большего напряжения его постоянная времени неизменна, поэтому растет. Так же изменяется и , следовательно, частота f уменьшается.

2. При регулировке скважности необходимо поддерживать постоянным значение f, т. е. при увеличении длительности импульса на то же значение необходимо уменьшить длительность паузы. Для этого в схеме рис. 3.16 выполняются в виде потенциометра, средняя точка которого присоединена к инвертирующему входу ОУ, а крайние точки — соответственно к катоду диода V1 и аноду диода V2, При регулировке сдвигается средняя точка потенциометра, но сумма сопротивлений остается неизменной [см. выражения (3.12) и (3.13)].

Мультивибратор — это электронный генератор прямоугольных электрических импульсов. Выполняет различные функции. Например, выполняет связь непосредственная между каскадами усилителей, генерирует звук и осуществляет другие немаловажные функции.

Как работает мультивибратор на транзисторах

Мультивибратор на самом деле работает просто. Во время подключения питания два светодиода периодически загораются и потухают. Частоту переменного переключения светодиодов возможно изменять при помощи емкостей конденсаторов или сопротивления резисторов, подключенных к транзисторам и светодиодам.

Это устройство находится в одном из двух противоположных нестабильных состояний и периодически переходит из одного в другое и снова обратно. Фаза перехода довольно мала относительно большой длительности нахождения в состояниях за счет положительной обратной связи (ПОС), которая охватывает два каскада усиления.


Допустим, что VT1 закрыт, VT2 полностью открыт и насыщен, при этом C1 быстро заряжается током открытого базового перехода VT2 через R1 и VT2 практически до напряжения питания. Когда полностью заряжен конденсатор C1 через резистор R1 ток прекращается, напряжение на C1 = (ток базы VT2) ·R2, а на коллекторе VT1 — питающему напряжению.

Электрическое напряжение на коллекторе VT2 достаточно невелико (что в свою очередь будет равно падению электрического напряжения на насыщенном транзисторе). C2, заряженный ранее в предыдущем состоянии (полярность как по схеме), медленно начинает разряжаться через открытый транзистор VT2 и резистор R3. Текущее напряжение на базе у транзистора VT1 отрицательно и благодаря этому напряжению он прочно удерживается в закрытом состоянии. Закрытое от напряжения состояние транзистора VT1 сохраняется до того, пока конденсатор C2 не будет перезаряжаться через R3 и напряжение на базе VT1 не начнет достигать порога его полного отпирания (около +0,6 В).

При этом VT1 начинает незамедлительно приоткрываться, и напряжение его коллектора начинает стремительно снижаться, что в свою очередь вызывает необратимое начало запирания VT2, напряжение коллектора транзистора VT2 начинает стремительно увеличиваться, что в свою очередь через конденсатор C2 еще больше открывает VT1. По итогу в транзисторном мультивибраторе происходит лавинообразный регенеративный повторяющийся процесс, приводящий к тому, что VT1 переходит в открытое насыщенное состояние, а VT2 в свою очередь запирается.

Электрические колебательные процессы в схеме будут постоянно и периодически повторяться, в зависимости от емкости и сопротивления компонентов и коэффициентов используемых транзисторов.

Какие параметры возможны у деталей

Параметры резисторов R1 и R4 выбираются меньше, чем у пары R3 и R2. Это нужно для того, чтобы зарядка конденсаторов через R1 и R4 была побыстрее, чем разрядка через R3 и R2. Если дольше будет время зарядки конденсаторов, тогда аналогичными будут фронты импульсов. Но соотношения R3/R1 и R2/R4 не должны быть больше, чем текущие коэффициенты усиления используемых транзисторов. В противном случае транзисторы перестанут полностью открываться.

Можно ли собрать схему самостоятельно

Да, можно. Это устройство отлично подойдет для начинающих и для тех, кто интересуется электроникой.

На этой схеме мало деталей, но работает она просто и надежно. Можно собрать схему и навесным монтажом, на монтажной плате или же попробовать свои силы в изготовлении печатной платы — лазерно утюжная технология (ЛУТ).

Из деталей транзисторы КТ315 можно брать любые, близкие по аналогам. Резисторы 0,125 Вт, а конденсаторы — не меньше питающего напряжения. Питать можно от ЛБП (лабораторного блока питания) или от аккумулятора +12 В, зарядного устройства.

По поводу настройки частоты. Можно поменять частоту при помощи емкости и сопротивления. При помощи резисторов намного проще. Достаточно просто поменять обычный резистор на переменный (не подстроечный). Достаточно из контактов 1-2-3 использовать 1-2 или 3-1.

Чем больше сопротивление — тем меньше шаг регулировки. От переменного резистора можно провести провода и визуально наблюдать за изменением частоты.


Печатная плата мультивибратора



Список используемых деталей

C1. C2 47 мкФ 16 В
HL1, HL2 Любые маломощные светодиоды
R1, R2 30 кОм 0,125 Вт
R3, R4 680 Ом 0.125 Вт
VT1, VT2 КТ315

Как еще можно собрать мультивибратор


Эту схему можно спаять и на обычной макетной плате

Или навесным монтажом, но будьте внимательны, чтобы не произошло короткого замыкания — делайте соединения ровными и прямолинейными.

Питание схемы

Схему можно включить как от 12 В, так и от 9 В кроны и даже одного аккумулятора 18650.

На операционных усилителях могут быть собраны как автоколебательные, так и ждущие мультивибраторы:

Рассмотрим принцип работы автоколебательного мультивибратора на операционном усилителе.


Напряжение на выходе интегральной микросхемы может скачкообразно изменяться от минимума до максимума и наоборот. Это происходит при изменении разности входных сигналов. Чтобы получить прямоугольные импульсы на выходе, необходимо, чтобы знак этой разности периодически изменялся в ходе процессов, происходящих в схеме.

Для этого на неинвертирующий вход подаётся напряжение с делителя R2, R3. Это напряжение не меняется в течение полупериода выходного напряжения.

На инвертирующий вход подаётся напряжение с конденсатора C1, который заряжается под действием выходного напряжения. Когда конденсатор заряжается до максимума, меняется разность сигналов, подаваемых на входы. В результате выходное напряжение скачком уменьшается до минимума. С этого момента конденсатор начинает разряжаться, и когда он полностью разрядится, выходное напряжение скачком увеличится до максимума.

Ждущий мультивибратор на ОУ


В ждущих мультивибраторах на операционных усилителях имеется вход, на который поступают импульсы запуска. Каждый запускающий импульс вызывает прямоугольный на выходе схемы. За счёт диода VD1 следующего прямоугольного импульса на выходе не возникает и схема возвращается в исходное состояние.

Читайте также: