Обратимая функция это кратко

Обновлено: 05.07.2024

Что такое обратная функция? Как найти функцию, обратную данной?

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо :

1) В формулу функции вместо y подставить x, вместо x — y:

2) Из полученного равенства выразить y через x:

Найти функцию, обратную функции y=2x-6.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая. Для построения прямой берём две точки.

\[\begin</p>
<p> y = 2x - 6\\ \begin> x&\vline& 0&\vline& 3\\ \hline y&\vline& < - 6>&\vline& 0 \end \end\]

\[\begin</p>
<p> y = 0,5x + 3\\ \begin> x&\vline& 0&\vline& < - 6>\\ \hline y&\vline& 3&\vline& 0 \end \end\]

obratnaya-funkciya

Однозначно выразить y через x можно в том случае, когда уравнение x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).

Теорема (необходимое и достаточное условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.

Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции — также [0;∞).

\[<y^2></p>
<p> = x, \Rightarrow y = \pm \sqrt x .\]

то есть на промежутке [0;∞) y=√x — функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:

vzaimno-obratnye-funkcii

В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции.

1 комментарий

Для физических задач говорить об обратной функции, думаю, можно лишь для безразмерных у и х. При различии их размерностей, значит, и осей их графиков, надо для обратной функции поворачивать и оси.
Тогда лучше говорить о выражении аргумента х в явном виде, не упоминая об обратной функции. Значит, надо функцию у=ах/С+в, где х и С имеют, например, одинаковую размерность (например, кг), представить в виде уравнения ах/С+в-у=0. Из него можно выразить в явном виде у или х. Тогда либо у, либо х надо будет считать функцией с собственной координатной осью с собственной размерностью. При этом ось функции обычно является вертикальной.
Вопрос: можно ли считать выраженные в явном виде функции у и х обратными?

Функция \(y=f(x)\), x ∈ X является обратимой , если любое своё значение она имеет только в одной точке множества \(X\) (когда разным значениям аргумента соответствуют разные значения функции).

Пусть функция \(y=f(x)\), x ∈ X является обратимой, и E ( f ) = Y . Каждому \(y\) из \(Y\) соответствует единственное значение \(x\), при котором f ( x ) = y . Тогда получим функцию, определённую на \(Y\) и имеющую значения на множестве \(X\). Таким образом построенная функция будет являться обратной по отношению к функции \(y=f(x)\), x ∈ X , и её обозначают x = f − 1 ( y ) , y ∈ Y .

Если функция \(y=f(x)\) возрастает на множестве \(X\), и область значений функции есть множество \(Y\), то обратная функция x = f − 1 ( y ) , y ∈ Y возрастает на множестве \(Y\).

если функция \(y=f(x)\) убывает на множестве \(X\), и область значений функции есть множество \(Y\), то обратная функция x = f − 1 ( y ) , y ∈ Y убывает на множестве \(Y\).

Пользуясь формулой \(y = f(x)\), следует выразить \(x\) через \(y\), а в полученной формуле \(x = g(y)\) заменить \(x\) на \(y\), а \(y\) на \(x\).

Функция y = x 2 возрастает на промежутке 0 ; + ∞ ) . Делаем вывод, что обратная функция существует. Если значения \(x\) принадлежат промежутку 0 ; + ∞ ) , то x = y . Заменим \(x\) на \(y\), а \(y\) на \(x\), получим обратную функцию y = x , x ∈ 0 ; + ∞ ) . Обратная функция определена на промежутке 0 ; + ∞ ) и её график симметричен графику функции y = x 2 , x ∈ 0 ; + ∞ ) относительно прямой \(y=x\).

Допустим, что у нас есть некая функция y = f ( x ) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g ( y ) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f ( x ) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g ( y ) тогда, когда y = f ( x ) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g , будут взаимно обратными.

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y = f ( x ) , которые записываются как раз с помощью этих выражений.

Нахождение взаимно обратных функций

Допустим, нам нужно найти решение уравнения cos ( x ) = 1 3 . Его решениями будут все точки: x = ± a rс c o s 1 3 + 2 π · k , k ∈ Z

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Условие: какая функция будет обратной для y = 3 x + 2 ?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

Мы получим x = 1 3 y - 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x - функцией. Переставим их, чтобы получить более привычную форму записи:

Ответ: функция y = 1 3 x - 2 3 будет обратной для y = 3 x + 2 .

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Условие: определите, какая функция будет обратной для y = 2 x .

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y = log 2 x .

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y = f ( x ) и x = g ( y ) , являющихся взаимно обратными.

  1. Первое свойство мы уже вывели ранее: y = f ( g ( y ) ) и x = g ( f ( x ) ) .
  2. Второе свойство вытекает из первого: область определения y = f ( x ) будет совпадать с областью значений обратной функции x = g ( y ) , и наоборот.
  3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
  4. Если y = f ( x ) является возрастающей, то и x = g ( y ) будет возрастать, а если y = f ( x ) убывает, то убывает и x = g ( y ) .

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f ( x ) = a x и x = g ( y ) = log a y . Согласно первому свойству, y = f ( g ( y ) ) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

А вот равенство x = f ( g ( x ) ) = log a a x = x будет верным при любых действительных значениях x .

Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса - π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin ( a r c sin x ) = x при x ∈ - 1 ; 1 и a r c sin ( sin x ) = x при x ∈ - π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

Графики взаимно обратных функций

Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1 .

Графики для функций с a > 1 и a 1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

График главной ветви косинуса и арккосинуса выглядит так:

График главной ветви арктангенса и тангенса:

График главной ветви арккотангенса и котангенса будет таким:

Если же вам требуется построить обратные ветви, отличные от главных, то обратную тригонометрическую функцию при этом мы сдвигаем вдоль оси O y на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π 2 ; 3 π 2 , то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Определение. Функция называется обратимой, если для любых двух различных чисел и , принадлежащих , числа и также различны.

Пример 1.

\[x_1\ne x_2\Rightarrow 3x_1\ne3x_2\Rightarrow 3x_1+1\ne 3x_2+1.\]

Пример 2. .

y=\sin x,\ x\in[-\pi/2,\pi/2]

Пример 3. .

Пример 4. .

y=<\rm tg></p>
<p>Пример 5. \, x,\ x\in(-\pi/2,\pi/2)
.

y=<\rm ctg></p>
<p>Пример 6. \, x,\ x\in(0,\pi)
.

Обратимость всех этих функций — частный случай следующей теоремы

Теорема. Строго монотонная функция обратима.

Функция является обратимой в том и только в том случае, если любая прямая, перпендикулярная оси ординат, имеет с ее графиком не более одной общей точки.

Определение. Пусть функция обратима, — ее область определения, — множество ее значений. Для каждого числа обозначим через такое число из множества , что (такое число существует и притом только одно). Мы получили новую функцию с областью определения и множеством значений . Эта функция называется обратной функции .

Пример 7. .

Выяснить, обратима ли эта функция, и если обратима, то найти обратную.

\[\begin</p>
<p> f(q)=p,\\ 5q-2=p,\\ q=(p+2)/5,\\ \varphi(x)=(x+2)/5. \end\]

Функция обратима, — обратная функция.

Теорема. Графики взаимно обратных функций в одной и той же координатной плоскости симметричны относительно биссектрисы первой и третьей четверти.

\Gamma_f,\Gamma_<\varphi></p>
<p>Доказательство. Пусть функция  с областью определения  и множеством значений  имеет обратную функцию  . Пусть
— графики функций и соответственно. Точка принадлежит точка . Осталось доказать, что точки и симметричны относительно биссектрисы первой и третьей четверти. Эта биссектриса состоит из точек , где — любое вещественное число. Чтобы доказать, что точки и симметричны относительно биссектрисы, достаточно проверить, что биссектриса является серединным перпендикуляром отрезка , то есть что любая точка равноудалена от точек и .

Задача. Докажите, что функция необратима. Найдите функцию, обратную на промежутке и постройте ее график.

Читайте также: