Многоклеточность прогрессивный этап эволюции материи кратко

Обновлено: 05.07.2024

Все живые организмы подразделяются на неклеточных (вирусы) и клеточных (все остальные). Несмотря на то что филогенетические взаимоотношения между ними неясны, вирусы как облигатно-парази-тические формы (см. § 18.3), возможно, возникли от более высокоорганизованных организмов за счет упрощения в процессе адаптации к паразитизму. В то же время не исключена возможность существования вирусов как фрагментов нуклеиновых кислот еще на предбиологическом этапе эволюции и приобретения ими основных свойств живых организмов позже, при попадании в клетки. Клеточные организмы подразделяются на про- и эукариот. Эукариоты, вероятно, произошли от прокариот (см. § 1.5).

13.5.1. Типы питания и основные группы живых организмов в природе

Древние эукариоты, будучи одноклеточными, по характеру питания специализировались на группы организмов, активно добывающих пищу путем ее поиска и захвата, и формы, добывающие продукты питания за счет их всасывания из среды. Первый способ питания называют голозойным, второй — голофитным.

Прогрессивная эволюция первого способа питания сопровождает возникновение царства Животные Animalia и весь их последующий филогенез. Поэтому главными чертами животного организма являются способность к перемещению, активному захвату и переработке пищи. Второй способ питания, наоборот, предусматривает приобретение клетками дополнительных защитных оболочек, усложняющих их захват и переваривание и, следовательно, неподвижность. Клетки части организмов, эволюционирующих по этому пути, приобрели клеточную стенку из полисахарида хитина, позволяющую всасывание высокомолекулярных органических веществ. Такие организмы перешли к сапрофитному питанию, т. е. к потреблению разлагающихся органических веществ, и дали начало филогенезу царства Грибы Fungi.

Клеточная стенка других организмов построена из целлюлозы, позволяющей всасывать из среды лишь воду, углекислый газ и неорганические ионы. Приобретение ими способности к фотосинтезу явилось ключевым моментом в

прогрессивной эволюции царства Растения Plantae.

Подробнее остановимся на филогенезе царства Животные. Важнейшим прогрессивным событием в эволюции животных является возникновение многоклеточности.

13.5.2. Происхождение многоклеточных животных

Прежде всего необходимо определить понятие многоклеточное животное. Важнейшими чертами многоклеточности являются следующие: 1) тело животного состоит из большого количества клеток; 2) клетки дифференцированы на половые и соматические, а последние различаются также по структуре и функциям; 3) клетки расположены в организме в несколько слоев; 4) клетки интегрированы в целостную систему благодаря существованию жидкостной внутренней среды и нервной системы.

В процессе эволюции первая характеристика многоклеточности достигается наиболее просто: среди простейших уже имеется огромное количество видов колониальных организмов. Остальные черты многоклеточности связаны с возникновением многослойности, обеспечивающей как различные условия существования клеткам, расположенным на поверхности и внутри тела, так и появление внутренней среды, объединяющей их воедино. На рис. 13.10 представлены различные варианты объединения клеток в надклеточные комплексы. Ясно, что только интеграция клеток в шаровидную структуру дает им возможность оказаться в разных условиях, дифференцироваться и взаимодействовать друг с другом.

Рис. 13.10. Варианты объединения клеток в надклеточные образования:

I —нитевидная колония клеток, II —колония в виде однослойного пласта клеток, III — двуслойная колония клеток, IV— сферический многоклеточный организм с клетками разных типов

Родоначальником многоклеточных в настоящее время считают шаровидную колонию жгутиковых, половые клетки которых перемещались в глубь колонии, а

соматические первично выполняли как функцию перемещения всей колонии в пространстве, так и пищеварения за счет переваривания фагоцитированных пищевых частиц, захваченных из воды.

Осуществление одной и той же клеткой функций движения и пищеварения малоэффективно. С этим связана последующая специализация клеток в направлении преимущественно пищеварения или обеспечения движения. Результатом является возникновение фагоцитобласта (внутреннего слоя амебовидных клеток, занимающихся пищеварением) и кинобласта (наружного слоя клеток со жгутиками, обеспечивающими движение).

Стойкая дифференцировка соматических клеток по функциям и строению, возникшая первоначально на фоне выделения двух клеточных слоев, явилась ключевым моментом в происхождении многоклеточных. Именно с двуслойностью связано появление жидкой внутренней среды, через которую клетки обмениваются химическими сигналами, а также дальнейшее обособление и специализация части поверхностных клеток в направлении восприятия внешних раздражителей и передача возбуждения на другие клетки, располагающиеся в отдалении от них. Таким образом возникают предпосылки к формированию нервной системы.

Гипотетический предок многоклеточных животных назван фагоцителлой (рис. 13.11). Он плавал в толще воды за счет биения ресничек кинобласта, а питался, захватывая взвешенные в среде частички пищи и переваривая их клетками фагоцитобласта. На более поздних этапах эволюции происходили многочисленные адаптации потомков фагоцителлы к многообразным условиям существования при оседании их на дно или при перемещении к поверхности, а также при изменении источников питания (захват мелких или крупных, живых или мертвых пищевых частиц).

Рис. 13.11. Этапы происхождения многоклеточности: I , II —сферические колонии жгутиковых, III — V— фагоцителлы разной степени сложности; 1 —кинобласт, 2 —

рыхлый фагоцитобласт, 3— скопление чувствительных клеток на переднем конце тела, 4— ротовое отверстие, 5— половые клетки, 6—эпителизованный фагоцитобласт

Большое значение в эволюции потомков фагоцителлы имели также изменения характера движения: пассивное движение или прикрепленный образ жизни обусловливают лучевой тип симметрии, в то время как активное перемещение в определенном направлении предусматривает формирование двубоковой, или билатеральной, симметрии. В результате возникло огромное многообразие форм многоклеточных животных.

Представления о происхождении многоклеточных, изложенные здесь, являются развитием гипотезы И.И. Мечникова (1877—1880) о том, что многоклеточность возникла на базе шаровидных колоний жгутиковых, часть клеток которых иммигрировала внутрь для переваривания пищевых частиц, в результате чего оформилась дифференцировка на экто- и энтодерму.

13.5.3. Основные этапы прогрессивной эволюции многоклеточных животных

Важным шагом в эволюции многоклеточных животных явилось возникновение третьего зародышевого листка — мезодермы. Мезодерма обеспечивает возможность дифференцировки мышечной, соединительной тканей и скелета, а также многоклеточных половых желез, в которых созревающие гаметы оказываются надежно защищены от неблагоприятных средовых воздействий. Практически все трехслойные животные ведут активно подвижный образ жизни, благодаря чему приобретают билатеральный тип симметрии. Вместе с тем у трехслойных животных с интенсивным обменом веществ, активно перемещающихся с помощью мышц, возникают проблемы с выведением большого количества продуктов диссимиляции из тканей — производных мезодермы, в то время как эктодермальные и энтодермальные клетки выделяют их за счет диффузии соответственно либо наружу, либо в просвет пищеварительной полости. Поэтому именно у трехслойных впервые появляется и прогрессивно эволюционирует

Следующий значительный этап эволюции животных — возникновение вторичной полости тела, или целома, первоначально функционирующего как гидростатический скелет, а также выполняющего половую и выделительную функции в связи с тем, что продукты диссимиляции и половые клетки попадают в целом и только потом выделяются наружу (см. § 14.5).

Рис. 13.12. Главные направления эволюции групп в животном царстве: 1 —прогрессивное направление, 2— адаптивное направление, 3— узловые моменты в прогрессивной эволюции; каждому узловому моменту соответствует его характеристика, обозначенная в правом столбце

Существенным этапом дальнейшей эволюции многоклеточных является возникновение регуляторного типа эмбрионального развития (см. разд. 8.3.1 и 8.3.2), в результате которого в развивающемся зародыше доминирует целостность морфогенетических процессов над их составляющими. Благодаря этому зародыш развивается относительно автономно в соответствии со своей генетической программой и способен компенсировать даже серьезные повреждения. Организмы, характеризующиеся такими особенностями, относят к группе вторичноротых, в отличие от первичноротых, у которых эмбриональное развитие протекает по мозаичному типу (см. разд. 8.3.1).

Наиболее крупные систематические группировки в царстве Животные называют типами. За период существования жизни на Земле их было не менее 35. К настоящему времени некоторые из них вымерли; сейчас на Земле обитают животные

Важным шагом в эволюции многоклеточных животных стало возникновение тканей. У двухслойных животных имеются варианты эпителиальной ткани, а появление третьего зародышевого листка, мезодермы, обеспечивает возможность дифференцировки мышечной, соединительной тканей и скелета, а также многоклеточных половых желез, в которых созревающие гаметы оказываются надежно защищены от неблагоприятных воздействий среды. Практически все трехслойные животные ведут активно подвижный образ жизни, благодаря чему приобретают билатеральный тип симметрии.

Следующий этап прогрессивной эволюции — сегментация тела, возникающая параллельно и независимо как у первичноротых, так и у вторичноротых. Она привела к дальнейшей активации двигательной функции организмов. В обеих группах поэтому закономерно появляется скелет: наружный хитиновый у первично- и внутренний — осевой в виде хорды или позвоночного столба, черепа и скелета подвижных конечностей — у вторичноротых (рис. 13.28).

Вместе с тем у трехслойных животных с интенсивным обменом веществ, активно перемещающихся с помощью мышц, возникают проблемы с выведением большого количества продуктов диссимиляции из тканей — производных мезодермы, в то время как эктодермальные и


Рис. 13.28. Главные направления эволюции групп в животном царстве. Возможные филогенетические связи основных современных групп животных и узловые морфологические преобразования, сопровождающие их происхождение

энтодермальные клетки выделяют их за счет диффузии соответственно либо наружу, либо в просвет пищеварительной полости. Поэтому именно у трехслойных впервые появляется и прогрессивно эволюционирует выделительная система.

Следующий значительный этап эволюции животных — возникновение вторичной полости тела, или целома, первоначально функциони-

рующего как гидростатический скелет, а также выполняющего половую и выделительную функции в связи с тем, что продукты диссимиляции и половые клетки попадают в целом и только потом выделяются наружу (см. п. 14.5). Первичная полость тела низкоорганизованных многоклеточных не имеет собственной стенки, а целом имеет стенку мезодер-мальной природы.

Существенный этап дальнейшей эволюции многоклеточных — возникновение регуляторного типа эмбрионального развития (см. пп. 8.3.1 и 8.3.2), в результате которого в развивающемся зародыше доминирует целостность морфогенетических процессов над их составляющими. Благодаря этому зародыш развивается относительно автономно в соответствии со своей генетической программой и способен компенсировать даже серьезные повреждения. Организмы, характеризующиеся такими особенностями, относят к группе вторичноротых, в отличие от первичноротых, у которых эмбриональное развитие протекает по мозаичному типу (см. п. 8.3.1). Наиболее крупные систематические группировки в царстве Животные называют типами. За период существования жизни на Земле их было не менее 35. К настоящему времени некоторые из них вымерли; сейчас на Земле обитают животные 26 типов.

Интересно, что к концу протерозойской эры (2,7 млрд лет назад) на Земле уже существовали представители всех типов животного мира и основные узловые моменты в прогрессивной эволюции животных ими были пройдены. Число классов животного мира в этот период на Земле было больше, чем в настоящее время.

Существование разнообразных живых организмов на Земле на протяжении около 3 млрд лет, а также возникновение человека как биосоциального существа определяет в настоящее время картину современного органического мира.

первые многоклеточные организмы, Согласно одной из наиболее принятых гипотез, они начали группироваться в колониях или в симбиотических отношениях. С течением времени взаимодействие между членами колонии стало сотрудничать и приносило пользу всем.

Постепенно каждая ячейка проходила процесс специализации для конкретных задач, увеличивая степень зависимости от своих партнеров. Это явление имело решающее значение в эволюции, позволяя существовать сложным существам, увеличивать их размеры и принимать различные системы органов..


Многоклеточные организмы - это организмы, состоящие из нескольких клеток, таких как животные, растения, некоторые грибы и т. Д. В настоящее время существует множество теорий, объясняющих происхождение многоклеточных существ, основанных на одноклеточных формах жизни, которые впоследствии были сгруппированы.

  • 1 Почему многоклеточные организмы?
    • 1.1 Размер ячейки и объемное соотношение поверхности (S / V)
    • 1.2 Очень большая ячейка имеет ограниченную поверхность обмена
    • 1.3 Преимущества многоклеточного организма
    • 1.4 Недостатки существования многоклеточного организма
    • 3.1 Колониальная и симбиотическая гипотеза
    • 3.2 Гипотеза синцития

    Почему многоклеточные организмы?

    Переход от одноклеточных к многоклеточным организмам является одним из самых волнующих и обсуждаемых вопросов среди биологов. Однако, прежде чем обсуждать возможные сценарии, которые привели к многоклеточности, мы должны спросить себя, почему необходимо или полезно быть организмом, состоящим из множества клеток.

    Размер ячейки и отношение объема поверхности (S / V)

    Средняя клетка, которая является частью тела овоща или животного, имеет диаметр от 10 до 30 микрометров. Организм не может увеличиваться в размерах, просто увеличивая размер отдельной клетки из-за ограничений, накладываемых взаимосвязью между поверхностью и объемом..

    Различные газы (такие как кислород и углекислый газ), ионы и другие органические молекулы должны входить и выходить из клетки, пересекая поверхность, ограниченную плазменной мембраной.

    Оттуда он должен распространяться по всему объему клетки. Таким образом, соотношение между поверхностью и объемом ниже в больших ячейках, если сравнить его с тем же параметром в больших ячейках.

    Очень большая ячейка имеет ограниченную поверхность обмена

    Следуя этим рассуждениям, мы можем прийти к выводу, что поверхность обмена уменьшается пропорционально увеличению размера ячейки. Давайте использовать в качестве примера 4 см куб, объемом 64 см. 3 и поверхность 96 см 2 . Соотношение будет 1,5 / 1.

    Напротив, если мы возьмем один и тот же куб и разделим его на 8 кубов по два сантиметра, соотношение будет 3/1.

    Поэтому, если организм увеличивает свой размер, что полезно в нескольких аспектах, таких как поиск пищи, передвижение или бегство от хищников, предпочтительно делать это путем увеличения числа клеток и, таким образом, поддерживать подходящую поверхность для обменные процессы.

    Преимущества многоклеточного организма

    Преимущества многоклеточного организма выходят за рамки простого увеличения размера. Многоклеточность позволила увеличить биологическую сложность и сформировать новые структуры.

    Это явление позволило эволюции очень сложных путей сотрудничества и взаимодополняемости поведения между биологическими объектами, которые составляют систему.

    Недостатки многоклеточного организма

    Несмотря на эти преимущества, мы находим примеры - как у нескольких видов грибов - потери многоклеточности, возвращающейся к наследственному состоянию одноклеточных существ.

    Когда между клетками организма происходит сбой систем сотрудничества, могут возникнуть негативные последствия. Самый показательный пример - рак. Тем не менее, есть несколько способов, которыми в большинстве случаев удается обеспечить сотрудничество.

    Какими были первые многоклеточные организмы?

    По словам некоторых авторов, начало многоклеточности уходило в глубокое прошлое, более 1000 миллионов лет назад (например, Selden & Nudds, 2012)..

    Поскольку формы переходов плохо сохранились в окаменелостях, мало что известно о них, а также о физиологии, экологии и эволюции, что затрудняет процесс разработки реконструкции зарождающейся многоклеточности..

    На самом деле, неизвестно, были ли эти первые окаменелости животными, растениями, грибами или какой-либо из этих линий. Окаменелости характеризуются как плоские организмы с большой поверхностью / объемом.

    Эволюция многоклеточных организмов

    Поскольку многоклеточные организмы состоят из нескольких клеток, первым шагом в эволюционной эволюции этого состояния должна быть группировка клеток. Это может произойти по-разному:

    Колониальная и симбиотическая гипотеза

    Эти две гипотезы предполагают, что первоначальным предком многоклеточных существ были колонии или одноклеточные существа, которые установили симбиотические отношения друг с другом..

    Пока не известно, был ли агрегат образован из клеток с дифференциальной генетической идентичностью (таких как биопленка или биопленка) или из стволовых и дочерних клеток - генетически идентичны. Последний вариант более вероятен, поскольку в связанных клетках генетические конфликты интересов исключены.

    Переход существ, состоящих из одной клетки, к многоклеточным организмам включает в себя несколько этапов. Первое - это постепенное разделение труда внутри клеток, которые работают вместе. Некоторые принимают соматические функции, а другие становятся репродуктивными элементами.

    Таким образом, каждая ячейка становится все более зависимой от своих соседей и приобретает специализацию в конкретной задаче. Отбор отдавал предпочтение организмам, сгруппированным в этих примитивных колониях, по сравнению с теми, которые остались в одиночестве..

    В настоящее время исследователи ищут возможные условия, которые привели к образованию этих групп, и причины, которые могут привести к их предпочтению - перед лицом одноклеточных форм. Используются колониальные организмы, которые могут помнить гипотетические колонии предков.

    Синцитио гипотеза

    Синцитий - это клетка, которая содержит несколько ядер. Эта гипотеза предполагает формирование внутренних мембран в предковом синцитии, что позволяет создавать множество компартментов в одной клетке..

    Происхождение многоклеточных организмов

    Данные, которые в настоящее время используются, указывают на то, что многоклеточное состояние появилось независимо более чем в 16 эукариотических линиях, включая животных, растения и грибы..

    Применение новых технологий, таких как геномика и понимание филогенетических отношений, позволило нам предположить, что многоклеточность пошла по общему пути, начиная с кооптации генов, связанных с приверженностью. При создании этих каналов достигается связь между клетками.


    Все виды животные, наземные растения и большинство грибы многоклеточные, как и многие водоросли, тогда как некоторые организмы частично одноклеточные и частично многоклеточные, например слизевые формы и социальные амебы, такие как род Диктиостелиум. [2] [3]

    Содержание

    Эволюционная история

    Вхождение

    Многоклеточность независимо развивалась у эукариот как минимум 25 раз, [7] [8] а также в некоторых прокариоты, подобно цианобактерии, миксобактерии, актиномицеты, Magnetoglobus multicellularis или же Methanosarcina. [3] Однако сложные многоклеточные организмы эволюционировали только в шести эукариотический группы: животные, грибы, бурые водоросли, красные водоросли, зеленые водоросли, и наземные растения. [9] Он неоднократно развивался для Хлоропластида (зеленые водоросли и наземные растения), один или два раза для животных, один раз для бурых водорослей, трижды для грибы (хитриды, аскомицеты и базидиомицеты) [10] и, возможно, несколько раз для слизевые формы и красные водоросли. [11] Первые свидетельства многоклеточности взяты из цианобактерии-подобные организмы, жившие 3–3,5 миллиарда лет назад. [7] Для воспроизводства истинные многоклеточные организмы должны решить проблему регенерации всего организма из стволовые клетки (т.е. сперма и яйцо ячеек), вопрос, который изучается в эволюционная биология развития. Животные развили значительное разнообразие типы клеток в многоклеточном теле (100–150 различных типов клеток) по сравнению с 10–20 у растений и грибов. [12]

    Потеря многоклеточности

    В некоторых группах произошла потеря многоклеточности. [13] Грибы преимущественно многоклеточные, хотя ранние расходящиеся линии в основном одноклеточные (например, Микроспоридии), и было множество случаев возврата к одноклеточности грибов (например, Сахаромикотина, Криптококк, и другие дрожжи). [14] [15] Это могло также произойти в некоторых красные водоросли (например., Порфиридий), но не исключено, что они примитивно одноклеточные. [16] Утрата многоклеточности также считается вероятной в некоторых странах. зеленые водоросли (например., Хлорелла обыкновенная и немного Ulvophyceae). [17] [18] В других группах, обычно паразитов, произошло снижение многоклеточности по количеству или типам клеток (например, микозойные, многоклеточные организмы, которые ранее считались одноклеточными, вероятно, чрезвычайно редки. книдарийцы). [19]

    Многоклеточные организмы, особенно долгоживущие животные, сталкиваются с проблемой: рак, который возникает, когда клетки не могут регулировать свой рост в рамках нормальной программы развития. Во время этого процесса можно наблюдать изменения морфологии тканей. Рак у животных (многоклеточные животные) часто описывается как потеря многоклеточности. [20] Ведется дискуссия о возможности существования рака у других многоклеточных организмов. [21] [22] или даже у простейших. [23] Например, галлы растений были охарактеризованы как опухоли, [24] но некоторые авторы утверждают, что у растений не развивается рак. [25]

    Разделение соматических и половых клеток

    В некоторых многоклеточных группах, которые называются Вейсманисты, разделение стерильных Соматическая клетка линия и половая клетка линия развивалась. Однако развитие вейсманистов относительно редко (например, позвоночные, членистоногие, Volvox), поскольку большая часть видов обладает способностью к соматический эмбриогенез (например, наземные растения, большинство водорослей, многие беспозвоночные). [26] [27]

    Гипотезы происхождения

    Файл: The-Simplest-Integrated-Multicellular-Organism-Unveiled-pone.0081641.s003.ogv

    "> Воспроизвести медиа

    Одна из гипотез происхождения многоклеточности заключается в том, что группа функционально-специфичных клеток агрегировалась в подобную слизню массу, называемую Grex, который перемещался как многоклеточная единица. Это по сути то, что слизевые формы делать. Другая гипотеза состоит в том, что примитивная клетка претерпела деление ядра, став тем самым ценоцит. Затем вокруг каждого ядра (а также клеточного пространства и органелл, занятых в нем) образуется мембрана, в результате чего образуется группа связанных клеток в одном организме (этот механизм наблюдается в Дрозофила). Третья гипотеза состоит в том, что при разделении одноклеточного организма дочерние клетки не могли разделиться, что привело к скоплению идентичных клеток в одном организме, который впоследствии мог развить специализированные ткани. Это то, что растение и животное эмбрионы делать так же как колониальный хоанофлагелляты. [28] [29]

    Поскольку первые многоклеточные организмы были простыми, мягкими организмами без костей, раковин или других твердых частей тела, они плохо сохранились в летописи окаменелостей. [30] Одним исключением может быть демосубка, который, возможно, оставил химический след в древних породах. Самые ранние окаменелости многоклеточных организмов включают оспариваемые Грипания спираль и окаменелости черных сланцев Палеопротерозойский Ископаемое Франсвильской группы B Формирование в Габон (Габонионта). [31] В Формация Доушантуо дал микрофоссилии возрастом 600 миллионов лет с признаками многоклеточных свойств. [32]

    До не давнего времени, филогенетический реконструкция прошла анатомический (особенно эмбриологический) сходства. Это неточно, так как живые многоклеточные организмы, такие как животные и растения удалены от своих одноклеточных предков более чем на 500 миллионов лет. Такое течение времени позволяет обоим расходящийся и сходящийся время эволюции, чтобы имитировать сходства и накапливать различия между группами современных и вымерших видов-предков. Современная филогенетика использует сложные методы, такие как аллоферменты, спутниковая ДНК и другие молекулярные маркеры для описания черт, общих для отдаленно родственных линий. [ нужна цитата ]

    Эволюция многоклеточности могла происходить разными путями, некоторые из которых описаны ниже:

    Симбиотическая теория

    Эта теория предполагает, что первые многоклеточные организмы произошли от симбиоз (кооперация) разных видов одноклеточных организмов, каждый из которых выполняет разные роли. Со временем эти организмы станут настолько зависимыми друг от друга, что не смогут выжить независимо, что в конечном итоге приведет к объединению их геномов в один многоклеточный организм. [33] Каждый соответствующий организм станет отдельной линией дифференцированных клеток внутри вновь созданного вида.

    Этот вид сильно зависимого симбиоза можно наблюдать часто, например, во взаимоотношениях между рыба-клоун и Морские анемоны Ритерри. В этих случаях крайне сомнительно, что какой-либо вид выживет очень долго, если другой вымрет. Однако проблема этой теории заключается в том, что до сих пор не известно, как ДНК каждого организма может быть объединена в один геном составить их как единый вид. Хотя теоретически такой симбиоз имел место (например, митохондрии и хлоропласты в клетках животных и растений -эндосимбиоз), это случалось крайне редко, и даже тогда геномы эндосимбионтов сохранили элемент различия, отдельно реплицируя их ДНК во время митоз вида-хозяина. Например, два или три симбиотических организма, образующие совокупность лишайник, хотя и зависят друг от друга в плане выживания, они должны воспроизводиться по отдельности, а затем реформироваться, чтобы снова создать один индивидуальный организм.

    Клеточная (синцитиальная) теория

    Эта теория утверждает, что один одноклеточный организм с множеством ядра, мог развиться внутренняя мембрана перегородки вокруг каждого своего ядра. [34] Многие протисты, такие как инфузории или же слизевые формы может иметь несколько ядер, оказывающих поддержку этому гипотеза. Однако простого присутствия нескольких ядер недостаточно для подтверждения теории. Множественные ядра инфузорий отличаются друг от друга и имеют четко дифференцированные функции. В макронуклеус обслуживает потребности организма, а микронуклеус используется для полового размножения с обменом генетическим материалом. Формы для слизи синцития формируются из отдельных амебоидных клеток, как синцитиальные ткани некоторых многоклеточных организмов, а не наоборот. Чтобы считаться действительной, эта теория нуждается в наглядном примере и механизме образования многоклеточного организма из уже существующего синцития.

    Колониальная теория

    Колониальная теория Геккель, 1874, предполагает, что симбиоз многих организмов одного вида (в отличие от симбиотическая теория, что предполагает симбиоз разных видов) привело к созданию многоклеточного организма. По крайней мере, некоторые из них, как предполагается, возникли на суше, многоклеточность возникает за счет разделения и последующего соединения клеток (например, ячеистые слизевые формы), тогда как для большинства многоклеточных типов (тех, которые развились в водной среде) многоклеточность возникает как следствие того, что клетки не могут разделиться после деления. [35] Механизм образования последней колонии может быть настолько простым, насколько и неполным. цитокинез, хотя многоклеточность также обычно рассматривается как клеточная дифференциация. [36]

    ColonialFlagellateHypothesis.jpg

    Теория синзооспор

    Некоторые авторы предполагают, что возникновение многоклеточности, по крайней мере, у Metazoa, произошло в результате перехода от временного к пространственному. дифференциация клеток, а не через постепенную эволюцию клеточной дифференциации, как утверждается в ГеккельС Теория гастреи. [38]

    GK-PID

    Около 800 миллионов лет назад [39] незначительное генетическое изменение в одной молекуле, называемое гуанилаткиназа домен взаимодействия с белками (GK-PID), возможно, позволил организмам перейти от одного клеточного организма к одной из многих клеток. [40]

    Роль вирусов

    Гены заимствованы из вирусы и мобильные генетические элементы (МГЭ) были недавно определены как играющие решающую роль в дифференцировке многоклеточных тканей и органов и даже в половом размножении, в слиянии яйцеклеток и сперматозоидов. [41] [42] Такие слитые клетки также участвуют в мембранах многоклеточных животных, таких как те, которые предотвращают проникновение химических веществ через плацента и разделение тела мозга. [41] Выявлены два вирусных компонента. Первый синцитин, который произошел от вируса. [43] Второй выявленный в 2007 году называется EFF1, который помогает формировать кожу Caenorhabditis elegans, часть целого семейства белков FF. Феликс Рей из Института Пастера в Париже построил трехмерную структуру белка EFF1. [44] и показано, что он выполняет работу по связыванию одной клетки с другой при вирусных инфекциях. Тот факт, что все известные слитые молекулы клеток имеют вирусное происхождение, предполагает, что они были жизненно важны для систем межклеточной коммуникации, которые обеспечивали многоклеточность. Без способности слияния клеток могли бы образоваться колонии, но ничего, даже столь сложного, как губка, было бы невозможно. [45]

    Гипотеза доступности кислорода

    Эта теория предполагает, что кислород, доступный в атмосфере ранней Земли, мог быть ограничивающим фактором для появления многоклеточной жизни. [46] Эта гипотеза основана на корреляции между возникновением многоклеточной жизни и повышением уровня кислорода в это время. Это произошло бы после Великое окислительное событие (GOE), но до последнего повышения уровня кислорода. Миллс [47] делает вывод, что количество кислорода, присутствующего во время Эдиакарский не является необходимым для сложной жизни и, следовательно, вряд ли явился движущим фактором возникновения многоклеточности.

    Гипотеза снежного кома Земли

    А снежный ком Земля это геологическое событие, при котором вся поверхность Земли покрыта снегом и льдом. Самый последний снежный ком на Земле произошел во время Криогенный период и состоял из двух глобальных оледенений, известных как Стуртиан и Мариноанец оледенения. Сяо [48] предполагает, что между периодом времени, известным как "Скучный миллиард"и Земля-снежок, у простой жизни могло быть время для инноваций и развития, что позже могло бы привести к эволюции многоклеточности. Гипотеза Земли-снежного кома в отношении многоклеточности предполагает, что кирогенский период в истории Земли мог быть катализатором эволюции сложной многоклеточной жизни. [49] предполагает, что период между гляцием Стурта и более поздним гляцием Марино позволил планктонным водорослям доминировать в морях, уступив место быстрому разнообразию жизни как для растений, так и для животных. Вскоре после мариноанцев сложная жизнь быстро возникла и разнообразилась в так называемых Кембрийский взрыв.

    Гипотеза хищничества

    Гипотеза хищничества предполагает, что для того, чтобы избежать поедания хищников, простые одноклеточные организмы развили многоклеточность, что затрудняет их употребление в качестве добычи. Herron et al [50] провели лабораторные эксперименты по эволюции одноклеточной зеленой водоросли, C. reinhardtii, используя парамеций в качестве хищника. Они обнаружили, что в присутствии этого хищника C. reinhardtii действительно развивает простые многоклеточные функции.

    Преимущества

    Многоклеточность позволяет организму превышать пределы размеров, обычно налагаемые распространение: одиночные клетки с увеличенным размером имеют пониженное отношение поверхности к объему и им трудно усваивать достаточное количество питательных веществ и транспортировать их по клетке. Таким образом, многоклеточные организмы обладают конкурентный преимущества увеличения размера без его ограничений. У них может быть более продолжительная продолжительность жизни, поскольку они могут продолжать жить, когда умирают отдельные клетки. Многоклеточность также позволяет увеличивать сложность, позволяя дифференциация типов клеток в одном организме.

    Однако вопрос о том, можно ли считать это преимуществами. Подавляющее большинство живых организмов одноклеточные, и даже с точки зрения биомассы одноклеточные организмы гораздо более успешны, чем животные, но не растения. [51] Вместо того, чтобы рассматривать такие черты, как более продолжительная продолжительность жизни и больший размер, как преимущество, многие биологи рассматривают их только как примеры разнообразия с соответствующими компромиссами.

    Читайте также: