Метод отраженных волн в сейсморазведке кратко

Обновлено: 30.06.2024


Введение
Сейморазведка- геофизический метод исследования земной
коры, поисков и разведки полезных ископаемых, основанный
на изучении характера распространения упругих волн.
Источники возбуждения упругих волн:
- взрывы,
- невзрывные источники (вибраторы, кувалда, естественные
шумы),
- землетрясения.
Горные породы обладают различными скоростями
распространения упругих волн и плотностями: это вызывает
формирование на границах слоев и отдельных тел отраженных,
преломленных и обменных волн.
Сейсморазведка основана на изучении:
- кинематики волн – времени пробега волны от источника до
приемника;
- динамики волн – интенсивности, формы, частоты,
длительности колебаний.
Методика и техника с/р предназначены для возбуждения
упругих кол-й, улавливание кол-й УВ, преобразование УВ в
энергетические импульсы, их усиление и фиксация на
сейсмограммах.
Обработка сейсмограмм – выделение различных типов волн,
опр-е времени их прихода.
Количественная интерпретация – расчет скорости
распространения УВ и их изменения в разрезе и объеме;
оценка глубины сейсмических границ, их падения и
простирания; построение сейсмогеологического разреза ( с
использованием геологических данных).

2. Методы сейсморазведки

• Выделяется 3 основных метода сейсморазведки:
- метод преломленных волн (МПВ);
- метод отраженных волн (МОВ);
• По решаемым задачам выделяется:
- глубинная с/р;
- нефтегазовая с/р;
- рудная с/р;
- инженерно-геологическая с/р.
• По условиям проведения выделяются:
- наземная с/р;
- морская с/р;
- скважинная с/р;
- подземная с/р.

3. Продольные, поперечные, поверхностные волны

• Продольные и поперечные волны можно представить, толкая пружину
или качая веревку за их конец.
• Длина волны ( ) – повторяющееся расстояние между гребнями или
прогибами,
• Амплитуда волны – максимальное отклонение от стационарной
позиции.
Волна движется с определенной скоростью – сейсмическая скорость – V (км/с).
Число гребней (прогибов), проходящих через фиксированную точку в одну
секунду – частота – f (гц).
V f

• Волна движется с определенной
скоростью – сейсмическая скорость
V
• Число гребней или прогибов,
проходящих через фиксированную
точку в 1 секунду – частота (гц) - f
V f
• Импульс очень короткая серия волн
(самый простой случай – один
гребень и один прогиб). Могут
создаваться взрывами.
• Часто возбуждение колебаний – в
скважинах. Быстрое расширение –
создает сжатие, которое
распространяется во все стороны.
Точки среды возвращаются в
исходное положение – растяжение.
• Сжатие имеет сферическую форму волновой фронт.

5. Основные положения геометрической оптики

• Распространение упругих волн в
горных породах базируется на
принципах геометрической
оптики.
• Фронт волны- поверхность,
ограничивающая области, где
среда деформирована под
воздействием упругой волны и
область, куда волна еще не
дошла.
Вблизи от источника фронт
близок по форме к сфере. На
удалении его можно считать
плоским.
• Сейсмический луч – линия,
перпендикулярная фронту.
Луч
Фронт волны

6. Законы отражения и преломления

• Из принципа Ферма вытекают
законы:
• Закон отражения
sin a1 sin a 2
V1
V2
Если луч – в одной среде (V1), то
a1 a2 Угол падения равен углу
отражения.
• Закон преломления.
sin a1 sin b
V1
V2
a-угол падения, b-угол
преломления.

7. Продольные и поперечные волны

• Т.к. P и S волны по разному
деформируют породы скорость их
прохождения различна. P – волны
приходят раньше S волн.
• Т.к. жидкие среды могут принимать
любую форму –они не
сопротивляются поперечным
деформациям - S волны не
проходят.
• P и S волны создаются
большинством сейсмических
источников. Кроме того, они
sin i1 p
sin i1s
создаются в результате «волновой
отраженные
V1 p
V1s
конверсии.
• P волны – отражаются и
преломляются,
sin i1 p
sin i2 s
преломленные
• S волны – отражаются и
V1 p
V2 s
преломляются

8. Типы волн

27. Уравнение годографа головной преломленной волны

• Двухслойная среда: скорости V1 Vср
• Определим Vг по разностному
годографу:
( x) t1 ( x) - t2 ( x) T
t1(x)-время прихода Пр.волны в точку x
по первому годографу (от ист-ка O1);
t2(x)-время прихода Пр.волны в точку x
по второму годографу (от ист-ка O2);
T – время во взаимных точках (т.е. по
трассе (O1ABO2) и наоборот.
dt1 dt 2
2 cos
x dx dx
x

2 cos
x
x
при 10 - 150 VГ 2

Определение скорости по
встречным годографам

31. Применение метода преломленных волн

32. Применение сейсморазведки в инженерной геофизике

33. Применение сейсморазведки в инженерной геофизике

• При проведении полевых работ отрабатываются сейсмические профили
протяженностью сотни метров. Обработка полевых материалов
осуществляется с использованием системы комплексной обработки
сейсмических материалов RadExPro 2011
В результате обработки полевых материалов МПВ и МОВ-ОГТ получены:
- временной сейсмический разрез (по данным МОВ-ОГТ);
-разрез скоростей продольных волн (по данным сейсмической томографии);
- положение преломляющих границ и значения граничных скоростей

34. Применение сейсморазведки в инженерной геофизике

Полевой выезд в район г. Пушкин. В результате проведенных полевых работ
был выполнен сейсмический профиль длиной порядка 450 м. После обработки
полученных материалов был построен временной сейсмический разрез

35. ИНЖЕНЕРНАЯ СЕЙСМОРАЗВЕДКА МЕТОДОМ СЕЙСМИЧЕСКОЙ ТОМОГРАФИИ

36. 2. Интерпретация данных МПВ способом встречных годографов (КМПВ)

37. 3. Сейсмогеологический разрез по данным КМПВ

Пример сейсмотомографического разреза и
сопоставление теоретических
и наблюдаемых годографов первых вступлений,
рассчитанных в программе XTomo

39. Сейсмотомографические исследования оползневого участка насыпи проектируемой ж/д

40. Сейсмотомографические исследования оползневого участка насыпи проектируемой ж/д

СГК 1 соответствует по данным бурения скважин техногенным насыпным песчаным грунтам.
СГК 2 соответствует слою грунтов, представленных нерасчленяемыми по сейсмическим данным песчано-глинистыми
грунтами (пески, супеси и суглинки)..
СГК 3 и СГК 4 соответствуют скальным породам. Значения скоростей распространения продольных сейсмических волн в
пределах этих комплексов характерны для гранитов и гранито-гнейсов с разной степенью трещиноватости..

41. Сейсмотомографические исследования оползневого участка насыпи проектируемой ж/д

Карта абсолютных отметок прогнозной сейсмогеологической
границы, соответствующей кровле монолитных скальных пород

42. Пример наземной 3D сейсмотомографии

43. Сопоставление данных метода МОВ ОГТ и сейсмотомографии

Разрез по данным МОВ ОГТ
50
Hабс,
50 м
50
40
40
40
30
30
30
20
20
20
10
10
10
0
00
-10
-10
-10
-20
-20
-20
0
50
00
5050100
100100 150 150 150
200
200
200
Пикеты, м
250250 250 300
300300 350
350
350

МЕТОД ОТРАЖЕННЫХ ВОЛН (МОВ) — метод сейсморазведки, основанный на изучении упругих волн, отразившихся от границы раздела двух сред, обладающих разл. волновыми сопротивлениями (см. Волны сейсмические). Теоретические и технические основы МОВ разработаны в СССР В. С. Воюцким (1923), в практику сейсморазведки МОВ начал внедряться с 1935 г. и в настоящее время является основным методом сейсморазведки при поисках и разведке нефтеносных структур разл. амплитуды и степени сложности. Основные особенности МОВ: сравнительно высокая разрешающая способность, т. е. возможность исследовать тонкослоистые среды; возможность регистрации отражений, независимо от того, увеличивается или уменьшается волновое сопротивление при переходе из верхней среды в нижнюю; возможность прослеживания при небольших расстояниях взрыв — прибор одновременно большого количества отражений в значительном интервале глубин: по годографам отраженных волн можно вычислять эффективную скорость, изучать ее распределение с глубиной и по площади, т. е. получить параметры, необходимые для определения положения сейсмических границ. Методика наблюдений в МОВ мало зависит от глубины исследования. Основной системой наблюдений, т. е. системой взаимного расположения пунктов взрыва и точек установки сейсмоприемников, в МОВ является непрерывное профилирование, обеспечивающее корреляцию отраженной волны по кинематическим признакам вдоль всего профиля. Применяется однократное, полуторное и двойное профилирование, реже — дискретное профилирование (см. Сейсмозондирование). Интерпретация в МОВ состоит из нескольких этапов. Производится выделение полезных отраженных волн и их корреляция по всем сейсмограммам, составляющим сейсмический профиль или систему профилей, и построение сейсмических годографов и корреляционных схем. По годографам вычисляются эффективные скорости (V эф ) сейсмических волн, отличающиеся от истинных скоростей в реальных средах вследствие неоднородности последних. Точность вычисления скоростей по годографам и построение графиков и карт эффективных и пластовых скоростей (см. Карт пластовых скоростей) в основном зависит от скоростной характеристики среды. Для повышения точности используется сейсмокаротаж специальных параметрических скважин. Значительно ускоряет и облегчает интерпретацию возможность ввода получаемых в МОВ записей в аналоговые вычислительные машины. Результатом интерпретации данных МОВ являются сейсмические разрезы и карты опорных сейсмических горизонтов. Если опорных горизонтов нет, то строятся условные сейсмические горизонты, осредняющие отдельные гр. отражающих площадок. Точность и надежность построения структурных схем при оптимальной методике зависят в основном от прослеживаемости отражающих границ и точности определения скоростей и определяются особенностями геол. строения р-нов. В благоприятных условиях МОВ обладает большой точностью определения относительных превышений сейсмических границ, что позволяет выделять структуры с амплитудой 30 — 50 м. Ю. И. Изварин, К. А. Некрасова.

Геологический словарь: в 2-х томах. — М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Полезное

Смотреть что такое "МЕТОД ОТРАЖЕННЫХ ВОЛН (МОВ)" в других словарях:

МЕТОД КОРРЕЛЯЦИОННЫЙ ПРЕЛОМЛЕННЫХ ВОЛН (КМПВ) — модификация метода преломленных волн (см. Сейсморазведка), основанная на регистрации первых и последующих вступлений преломлённых волн. При помощи КМПВ определяются глубины, форма сейсмических преломляющих границ и скорость распространения вдоль… … Геологическая энциклопедия

МОВ — метод отраженных волн. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

МОВ — геофиз., нефт. метод отраженных волн (seismic) reflection method … Универсальный дополнительный практический толковый словарь И. Мостицкого

МЕТОД РЕГУЛИРУЕМОГО НАПРАВЛЕННОГО ПРИЕМА (МРНП) — метод сейсморазведки, основанный на переменном разновременном суммировании воспроизводимых сейсмических записей, позволяющем расчленять интерференционную волновую запись на составляющие ее плоские волны с разл. направлениями прихода. МРНП… … Геологическая энциклопедия

Основы обработки сейсморазведочных материалов метода многократных перекрытий (МОГТ) — Метод общей глубинной точки (МОГТ или англ. common depth point, CDP) метод сейсморазведки. Сейсморазведка метод геофизического исследования земных недр имеет множество модификаций. Здесь мы рассмотрим только одну из них, метод… … Википедия

Сейсмическая разведка — сейсморазведка, методы разведочной геофизики, основанные на изучении особенностей распространения упругих (сейсмических) волн в земной коре, с целью исследования её геологического строения. Для С. р. применяют методы отражённых и… … Большая советская энциклопедия

Сейсмическая разведка (сейсморазведка, seismic exploration) - один из ведущих геофизических методов исследования структуры, строения и состава горных пород.

Это раздел разведочной геофизики, основанный на регистрации искусственно возбуждаемых упругих волн и извлечении из них полезной геолого-геофизической информации.

Понятие появилось в начале 1920 х гг.
Сейсмическая разведка используется для создания графического представления подземной геологической структуры Земли, что позволяет разведочным компаниям точно и с минимальными затратами оценивать площадь с точки зрения ее нефтегазодобывающего потенциала.
При помощи сейсморазведки изучается глубинное строение Земли, выделяются месторождения полезных ископаемых (в основном нефти и газа), решаются задачи гидрогеологии и инженерной геологии, проводится сейсмическое микрорайонирование.
Поиск месторождений нефти и природного газа - наиболее эффективная сфера применения сейсморазведки.
Особенно важна роль сейсморазведки при поисках залежей углеводородов на море.
Здесь сейсморазведка является не только практически единственным, но и весьма эффективным методом исследований.
Именно поэтому объемы морских сейсморазведочных работ в мире в настоящее время более чем в 4 раза превышает объемы работ на суше.
При этом объемы сейсморазведочных работ, выполняемых на море, растут из года в год.

Сейсморазведка отличается надежностью, высокой разрешающей способностью, технологичностью и громадным объемом получаемой информации.


На суше площади разведки часто охватывают многие 1000 км 2 .
В основе сейсморазведочных систем лежат огромные сети из тысяч высокочувствительных узлов сейсмических датчиков.
Эти сети датчиков располагаются на поверхности исследуемой области и собирают данные из недр под ними, которые впоследствии преобразуются в изображения.
Эти изображения затем анализируются, чтобы увидеть, где могут находиться резервуары нефти или газа, прежде чем начнется любое разведочное бурение.

Сегодняшний стандартный подход к развертыванию этих сетей заключается в подключении каждого датчика с помощью кабелей.
Огромное количество необходимых кабелей делает развертывание и логистику сложными, а транспортировку и обслуживание дорогостоящими.

В основе сейсмических методов лежит возбуждение упругих волн при помощи технического устройства или комплекса устройств - источника.
Источник создаёт в толще горных пород избыточное давление, которое компенсируется средой в течение некоторого времени.
В процессе компенсации связанные частицы пород совершают периодические колебания, передаваемые в глубь земли упругими волнами.
Важнейшим свойством волны является её скорость, зависящая от литологического состава, состояния горных пород (трещиноватости, выветрелости и т. д.), возраста, глубины залегания.
Распространяясь в объеме горных пород, упругие волны попадают на границы слоев с различными упругими свойствами, изменяют направление, углы лучей и амплитуду, образуются новые волны.
На пути следования волн размещаются пункты приёма, где при помощи сейсмоприемников принимаются колебания частиц и преобразуются в электрический сигнал.

Пункты приёма, применяемые для регистрации волн от одного пункта возбуждения(источника) образуют расстановку.
В зависимости от размерности сейсморазведки расстановки имеют форму прямой линии (2D сейсморазведка) или блока параллельных приёмных линий (3D сейсморазведка).
Графики записанных колебаний(трассы) группируются в сейсмограммы и анализируются для нахождения свойств волн.
Из полученных сейсмограмм извлекается геолого-геофизическая информация о сейсмогеологических границах. Наиболее эффективна сейсморазведка при изучении осадочного чехла древних платформ, поскольку его горизонтально-слоистое строение наиболее просто находится по сейсмическим данным.
С увеличением наклона целевых геологических границ надежность получаемой сейсморазведкой информации падает.

Методы сейсморазведки различаются по типу используемых полезных волн, по стадии геологоразведочного процесса, по решаемым задачам, по способу получения данных, по размерности, по типу источника колебаний и частоте колебаний целевых волн.

По типу используемых волн выделяются:

1. Метод отраженных волн (МОВ)

Основан на выделении волн, однократно-отраженных от целевой геологической границы. Наиболее востребованный метод сейсморазведки, позволяющий изучать геологический разрез с детальностью до 0,5 % от глубины залегания границы.
Используется в сочетании с методикой многократных перекрытий, в которой для каждой точки границы регистрируется большое количество сейсмических трасс.
Избыточная информация суммируется по признаку общей средней или глубинной точки (ОСТ или ОГТ).
Метод общей глубинной точки значительно расширяет возможности МОВ и применяется в большинстве сейсморазведочных работ.

2. Метод преломленных волн (МПВ)

Ориентирован на преломленные волны, которые образуются при падении волны на границу 2 х пластов под определенным углом. При этом образуется скользящая волна, распространяющая со скоростью нижележащего пласта. МПВ используется только для решения специальных задач из-за существенных ограничений метода.

3. Вертикальное сейсмическое профилирование (ВСП)

Разновидность 2D-сейсморазведки, при проведении которой один из 2 х элементов (источник или приемник сейсмических волн) располагается на поверхности, а другой элемент помещается в пробуренную скважину.

Стадии сейсморазведки

  • Глубинное сейсмическое зондирование;
  • Региональная сейсморазведка;
  • Поисковые работы;
  • Детализационные работы;
  • Разведка месторождений;
  • Доразведка и геотехнические исследования.

Направления

- Нефтегазовая сейсморазведка;
- Рудная сейсморазведка;
- Угольная сейсморазведка;
- Инженерная сейсморазведка.

По способу получения данных

- Наземная сейcморазведка;
- Акваториальная сейсморазведка(морская, речная, озёрная и болотная, исследования в транзитной зоне);
- Скважинная сейсморазведка;
- Петрофизика.

По размерности

- 1D — источник и приёмник совмещены;
- 2D — источник и приёмник находятся на одной прямой линии;
- 3D — приёмники расставлены по площади.

По типу источника

По частоте волн

В результате структурных геолого-геофизических исследований практически все перспективные на нефть и газ районы на суше и морском шельфе выявлены. В этих районах, начиная с более перспективных, ведутся площадные поисково-разведочные сейсмические работы методом МОВ - МОГТ.

По условиям формирования и залегания нефтяные месторождения располагаются на глубинах 1,5 - 4 км, а газовые - на глубинах 3 - 6 км.
Главное назначение сейсморазведки - поиск структур, благоприятных нефтегазонакоплению. Их называют ловушками. Это такие зоны осадочных (реже изверженных) пород, в которых имеются пористые породы (коллекторы), например, пески, трещиноватые скальные породы, перекрытые непроницаемыми породами (экранами), например, глинами.
Основными типами ловушек являются: антиклинальные или куполовидные поднятия, приуроченные к сбросам толщи коллекторов, рифогенные (известковые) выступы, соляные купола, зоны выклинивания, стратиграфические несогласия, древние долины и другие.
Все они при высоком качестве проведения полевых работ и цифровой обработке информации визуально прослеживаются на разрезах: временных по данным МОВ (лучше МОГТ) и глубинных (МОВ - МОГТ), на структурных картах по кровле опорных горизонтов, на картах мощностей коллекторов или экранов. Точность в определении глубин должна быть не менее 100 м.
Разведка структур проводится сложными интерференционным системами МОГТ в сочетании с сейсмоакустическими исследованиями поисковых скважин.
Точность в определении изменений мощностей пород в ловушках должна достигать 25 м.

В результате детальной сейсморазведки выявляются местоположение структур и их глубины, где возможно скопление нефти или газа (таких в среднем 1/3).

Прямые поиски нефти и газа в выявленных ловушках - задача очень сложная. Она требует детального анализа кинематики (скоростей) и динамики (затуханий) сейсмических волн (например, отношение является индикатором флюидонасыщенности).

Прямые поиски более эффективны, если сейсморазведка комплексируется с высокоточной гравиразведкой, электромагнитными зондированиями, термическими и ядерными исследованиями в неглубоких скважинах. Разумеется, необходимо вести бурение самых перспективных структур. При благоприятном исходе такие скважины становятся промышленными для добычи нефти и газа.

Осенью 2018 г. Роснефть разработала инновационную технологию в области сейсморазведки, основанную на интерпретации рассеянных волн.

Новая технология позволяет фиксировать и интерпретировать рассеянные волны - особый тип сейсмических волн, которые связаны с местами скопления углеводородов.

Методы сейсморазведки на рассеянных волнах позволяют выявить трещинные зоны и зоны с аномальным пластовым давлением (АПД), что характерно для месторождений Восточной Сибири.


Говоря простым языком сейсморазведки, комплексная интерпретация поля рассеянных волн (метод престековой миграции) базируется на математически точном решении обратной задачи рассеяния в акустическом приближении по данным многократных перекрытий.
При интерпретации поля рассеянных волн из-за отсутствия данных о коллекторах не строится карта качества коллектора целевого горизонта, а выполняются построения карты прогнозных дебитов нефти из трещинно-кавернозных резервуаров.
Параметрами для построения такой карты служат амплитуды рассеянных волн, характеризующие качество трещинно-кавернозного коллектора и начальные дебиты углеводородов из продуктивных пластов.
Для построения карты прогнозных дебитов находится количественная связь между значениями амплитуд рассеянных волн и значениями дебитов углеводородов.
Точность прогноза дебита - порядка 70 %, но вместе с временными разрезами рассеянных волн они могут служить основой при определении точки бурения поисково-разведочных и эксплуатационных скважин в зонах развития трещинно-кавернозных коллекторов.

Это позволяет повысить эффективность разведочного и эксплуатационного бурения на месторождениях со сложным геологическим строением, в которых, по самым скромным оценкам, содержится порядка 30% мировых запасов углеводородов.

На сегодняшний день технология уже применяется на месторождениях Роснефти в Красноярском крае, Иркутской области и Ненецком автономном округе.

Выявление залежей нефти и газа по данным сейсморазведки позволяет повысить эффективность бурения в среднем до 5%.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

1)Классификация методов сейсморазведки

2)Виды сейсморазведочных работ

3)Метод отражённых волн

4)Метод общей глубинной точки

5)Метод преломленных волн

1)Методы сейсморазведки различаются по типу используемых полезных волн, по стадии геологоразведочного процесса, по решаемым задачам, по способу получения данных, по размерности, по типу источника колебаний и частоте колебаний целевых волн.

По типу используемых волн выделяются: Метод отраженных волн (МОВ) – основан на выделении волн, однократно-отраженных от целевой геологической границы. Наиболее востребованный метод сейсморазведки, позволяющий изучать геологический разрез с детальностью до 0,5% от глубины залегания границы. Используется в сочетании с методикой многократных перекрытий, в которой для каждой точки границы регистрируется большое количество сейсмических трасс. Избыточная информация суммируется по признаку общей средней или глубинной точки (ОСТ или ОГТ). Метод общей глубинной точки значительно расширяет возможности МОВ и применяется в большинстве сейсморазведочных работ. Метод преломленных волн (МПВ) – ориентирован на преломленные волны, которые образуются при падении волны на границу двух пластов под определенным углом. При этом образуется скользящая волна, распространяющая со скоростью нижележащего пласта. МПВ используется только для решения специальных задач из-за существенных ограничений метода.

По стадии геологоразведочного процесса различают региональную, поисковую и детальную сейсморазведку.

По решаемым задачам сейсморазведка подразделяется на глубинную, структурную (нефтегазовую) и инженерную.

По способу получения данных выделяют наземную, скважинную, морскую и лабораторную сейсморазведку.

По размерности сейсморазведка различается на 1D, 2D и 3D варианты. В одномерном варианте упругая волна возбуждается и регистрируется вдоль одного единственного вертикального луча – в стволе скважины. Двухмерная сейсморазведка реализуется расстановкой пунктов возбуждения и приема вдоль линейного профиля. Объемная (3D) сейсморазведка проводится при размещении пунктов приема по площади.

По типу источника различается взрывная, вибрационная и невзрывная импульсная сейсморазведка.

По частоте колебаний сейсморазведка классифицируется на низкочастотную, средне-частотную, высокочастотную и сейсмоакустику.

2)Сейсморазведочные работы проводятся по технологии 2Д и ЗД в различных сейсмогеологических и физико-географических условиях, в т.ч. в труднодоступных горных условиях, в переходных зонах и мелководье. Специализированными отрядами выполняются скважинные сейсмические исследования VSP.

Залогом успеха является выбор наиболее эффективной методики исследования для получения качественного материала.

При полевых работах используется современная аппаратура и оборудование, что обеспечивает наивысшее качество работ:

• регистрирующие системы INPUT/OUTPUT- 2000, INPUT/OUTPUT SYSTEM FOUR AC; INTROMARIN, BIZON, Прогресс - T-2; Прогресс - T155

• буровые станки УРБ-2А-2, УРБ-2,5А;

• многоканальные скважинные сейсмические зонды;

• спутниковые системы привязки (GPS).

При проведении сейсморазведочных работ используются взрывные, вибрационные и пневматические источники возбуждения упругих колебаний.

Постоянная оптимизация систем наблюдений, условий возбуждения и приема, в зависимости от геологических задач, является гарантией эффективности работ.

3) Метод отражённых волн (МОВ)— метод сейсморазведки, основанный на изучении упругих волн, отразившихся от границы раздела двух сред, обладающих различными волновыми сопротивлениями. Теоретические и технические основы МОВ разработаны в СССР В. С. Воюцким (1923), в практику сейсморазведки МОВ начал внедряться с 1935 г. и в настоящее время является основным методом сейсморазведки при поисках и разведке нефтеносных структур различной амплитуды и степени сложности. Основные особенности МОВ: сравнительно высокая разрешающая способность, т. е. возможность исследовать тонкослоистые среды; возможность регистрации отражений, независимо от того, увеличивается или уменьшается волновое сопротивление при переходе из верхней среды в нижнюю; возможность прослеживания при небольших расстояниях взрыв — прибор одновременно большого количества отражений в значительном интервале глубин: по годографам отраженных волн можно вычислять эффективную скорость, изучать ее распределение с глубиной и по площади, это значит получить параметры, необходимые для определения положения сейсмических границ. Методика наблюдений в МОВ мало зависит от глубины исследования. Основной системой наблюдений, т. е. системой взаимного расположения пунктов взрыва и точек установки сейсмоприемников, в МОВ является непрерывное профилирование, обеспечивающее корреляцию отраженной волны по кинематическим признакам вдоль всего профиля. Применяется однократное, полуторное и двойное профилирование, реже — дискретное профилирование. Интерпретация в МОВ состоит из нескольких этапов. Производится выделение полезных отраженных волн и их корреляция по всем сейсмограммам, составляющим сейсмический профиль или систему профилей, и построение сейсмических годографов и корреляционных схем. По годографам вычисляются эффективные скорости (Vэф) сейсмических волн, отличающиеся от истинных скоростей в реальных средах вследствие неоднородности последних. Точность вычисления скоростей по годографам и построение графиков и карт эффективных и пластовых скоростей в основном зависит от скоростной характеристики среды. Для повышения точности используется сейсмокаротаж специальных параметрических скважин. Значительно ускоряет и облегчает интерпретацию возможность ввода получаемых в МОВ записей в аналоговые вычислительные машины. Результатом интерпретации данных МОВ являются сейсмические разрезы и карты опорных сейсмических горизонтов. Если опорных горизонтов нет, то строятся условные сейсмические горизонты, осредняющие отдельные границы отражающих площадок. Точность и надежность построения структурных схем при оптимальной методике зависят в основном от прослеживаемости отражающих границ и точности определения скоростей и определяются особенностями геол. строения р-нов. В благоприятных условиях МОВ обладает большой точностью определения относительных превышений сейсмических границ, что позволяет выделять структуры с амплитудой 30 — 50.

4) Метод общей глубинной точки - основной способ сейсморазведки, основанный на многократной регистрации и последующем накапливании сигналов сейсмических волн, отражённых под разными углами от одного и того же локального участка (точки) сейсмические границы в земной коре. Способ ОГТ впервые предложен американским геофизиком Г. Мейном в 1950 (патент опубликован в 1956) для ослабления многократных отражённых волн-помех, в CCCP применяется c конца 60-x гг.

Способ ОГТ применяется при поиске и разведке месторождений нефти и газа в различных сейсмогеологических условиях. Его применение практически повсеместно повысило глубинность исследований, точность картирования сейсмических границ и качество подготовки структур к глубокому бурению, позволило в ряде нефтегазоносных провинций перейти к подготовке к бурению неантиклинальных ловушек, решать в благоприятных условиях задачи локального прогноза вещественного состава отложений и прогнозировать их нефтегазоносность. Способ ОГТ используют также при изучении угольных и рудных месторождений, решении задач инженерной геологии.

Перспективы дальнейшего совершенствования способа ОГТ связаны c разработкой приёмов наблюдений и обработки данных, обеспечивающих существенное повышение его разрешающей способности, детальности и точности восстановления изображений трёхмерных сложнопостроенных геологических объектов; c разработкой способов геолого-геофизической интерпретации динамических разрезов на структурно-формационной основе в комплексе c данными др. методов полевой разведочной геофизики и скважинных исследований.

5)Метод преломлённых волн - метод сейсмической разведки, основанный на регистрации волн, которые преломляются в земной коре в слоях, характеризующихся повышенной скоростью распространения сейсмических волн, и проходят в них значительную часть пути. Возбуждение сейсмических колебаний ведётся на поверхности или в скважинах и шурфах взрывами ВВ или невзрывными источниками сейсмических колебаний. Преломлённые волны регистрируют на поверхности стандартными и специализированными сейсморазведочными станциями, расположенными на значительном удалении от источника или пункта взрыва. Расстояние между источником и приёмником обычно превышают в 1,5-2 раза значение глубины до преломляющей границы. По мере удаления от пункта взрыва число наблюдаемых преломлённых волн возрастает, поскольку регистрируются волны, преломлённые во всё более глубоких слоях земной коры. Основная модификация метода преломленных волн - корреляционный метод преломлённых волн, который основан на изучении первых и последующих вступлений преломлённых волн, исследовании формы их колебаний и их фазовой корреляции (как и в методе отражённых волн). В простых геол. условиях ограничиваются изучением только первых вступлений (метод первых вступлений). При интерпретации данных метода определяют время пробега преломлённой волны от источника её возбуждения до пункта регистрации, вычисляют глубину залегания, наклон поверхности пластов с повышенной скоростью и величину этой скорости. Граничная скорость в преломляющем пласте характеризует его литологический состав, что позволяет в ряде случаев отождествлять преломляющий горизонт с определённой стратиграфической границей. Для вычисления средней скоростей распространения сейсмических волн в толще, перекрывающей преломляющую границу, используются, как правило, данные, полученные методом отражённых волн или сейсмического каротажа.

Метод преломленных волн применяется при региональных исследованиях строения земной коры (изучение рельефа поверхности кристаллического фундамента, структуры осадочной толщи) на глубине до 10-20 км, трассировании тектонических нарушений, а также при инженерно-геологических изысканиях.

Простейшая модификация метода преломленных волн предложена в 1919 в Германии Л. Минтропом, корреляционный метод преломлённых волн - в 1938 в СССР Г. А. Гамбурцевым с участием Ю. В. Ризниченко, И. С. Берзон, А. М. Епинатьевой, Е. В. Каруса. В кон. 70-х гг. в СССР предложена модификация метода преломленных волн - методика общей глубинной площадки, при обработке данных которой используются некоторые принципы сейсморазведки методом отражённых волн по способу общей глубинной точки.

Читайте также: