Логометр принцип действия кратко

Обновлено: 04.07.2024

ЛОГО́МЕТР [от греч. λόγος – сло­во, мысль, счёт, здесь – (со)от­но­ше­ние и … метр ], уст­рой­ст­во (ме­ха­низм) для из­ме­ре­ния от­но­ше­ния двух элек­трич. ве­ли­чин (обыч­но сил то­ков). Л. со­дер­жит два элек­трич. эле­мен­та (напр., ка­туш­ки с то­ком), соз­даю­щих про­ти­во­по­лож­но на­прав­лен­ные вра­щаю­щие мо­мен­ты, воз­дей­ст­вую­щие на его под­виж­ную часть. При пе­ре­ме­ще­нии под­виж­ной час­ти умень­ша­ет­ся вра­щаю­щий мо­мент, на­прав­ле­ние ко­то­ро­го сов­па­да­ет с на­прав­ле­ни­ем пе­ре­ме­ще­ния, вто­рой (про­ти­во­дей­ст­вую­щий) мо­мент при этом воз­рас­та­ет; рав­но­ве­сие на­сту­па­ет при ра­вен­ст­ве мо­мен­тов и за­ви­сит от уг­ла от­кло­не­ния $α$ под­виж­ной час­ти. Оба мо­мен­та в оди­на­ко­вой сте­пе­ни за­ви­сят от на­пря­же­ния ис­точ­ни­ка то­ка, по­это­му из­ме­не­ние на­пря­же­ния не на­ру­ша­ет рав­но­ве­сия, а сле­до­ва­тель­но, не влия­ет на по­ка­за­ния Л. Ха­рак­тер­ная осо­бен­ность Л. – от­сут­ст­вие ме­ха­нич. си­лы, соз­даю­щей про­ти­во­дей­ст­вую­щий мо­мент (спи­раль­ные пру­жи­ны, рас­тяж­ки и др.). При от­сут­ст­вии воз­дей­ст­вия под­виж­ная часть за­ни­ма­ет слу­чай­ное по­ло­же­ние.


Назначение, устройство и принцип действия логометров


Назначение, устройство и принцип действия логометров

Логометры применяют для измерения температуры в комплекте с Термопреобразователями сопротивлений. При наличии дополнительных устройств они могут осуществлять измерение, запись, регулирование и сигнализацию температуры. Применение логометров наиболее целесообразно при измерении низких минусовых (от -200 °С) и невысоких плюсовых температур (до +500 °С), так как в данном случае они обладают большой надежностью по сравнению с милливольтметрами. Принципиальная схема пирометрического логометра показана на рис. 1.

Пирометрические логометры являются магнитоэлектрическими приборами и состоят из измерительного механизма и измерительной схемы. Измерительный механизм логометра состоит из двух жесткосвязанных между собой скрещенных рамок, вращающихся на одной оси в магнитном поле постоянного магнита. Воздушный зазор между полюсами магнита и сердечником 4 сделан неравномерным, в результате чего магнитная индукция в воздушном зазоре между ними будет непостоянная. Наибольшее значение магнитная индукция будет иметь у середины полюсных наконечников, наименьшее — в зазоре у краев.

Рамки логометров изготовляют из тонкой медной проволоки и соединяют таким образом, чтобы их вращающиеся моменты М1 и М2 были направлены навстречу друг другу. Подвод тока к рамкам осуществляется по трем спиральным пружинам с очень малым противодействующим моментом.

Измерительная схема логометра состоит из двух параллельных цепей (плеч), питаемых от источника постоянного тока.

Действие прибора основано на измерении отношения токов, проходящих в двух параллельных цепях, питаемых от постороннего источника тока, в каждую из которых включено по одной рамке. Таким образом, ток от источника питания, разветвляясь, проходит по двум цепям: через сопротивление R и обмотку одной рамки, через термопреобразователь сопротивления Rt и обмотку Другой рамки. Значение этих токов обратно пропорционально сопротивлениям плеч логометра. Токи, проходящие по соответствующим рамкам, создают вращающие моменты Mi и М2, действующие на рамки в противоположных направлениях. При равенстве сопротивлений в плечах, токи в них будут равны, а следовательно, вращающие моменты Мх и М2 тоже равны и подвижная система находится в равновесии.


Рис. 1. Принципиальная схема логометра

При увеличении сопротивления датчика (за счет его нагревания) величина тока в рамке R2 уменьшится, а вместе с этим уменьшится и момент, создаваемый этой рамкой М2

Равенство моментов нарушится и подвижная система логометра начнет поворачиваться в сторону действия большого момента. Таким образом, рамка R1, по которой протекает теперь больший ток, попадает в область более слабого магнитного поля, что ведет к уменьшению момента, а рамка R2, наоборот, начинает входить в область более сильного магнитного ноля, что ведет к увеличению момента М2. Новое равновесие подвижной системы прибора наступит, когда вращающие моменты рамок сравняются. Следовательно, различным температурам сопротивления датчика будут соответствовать различные углы поворота рамок, зависящие от отношения величины токов, проходящих в рамках.

Так как цепи обеих рамок питаются от одного источника тока, то значительные колебания его напряжения не оказывают существенного влияния на показания лого метра. Однако при большом понижении напряжения возрастает влияние упругости спиральных пружин, подводящих ток к рамкам и сил трения при перемещении подвижной системы, а при увеличении напряжения происходит нагрев током обмотки термометра и рамок прибора, вызывающий изменение соотношения токов в цепях логометра. Исходя из этого отклонение напряжения источника питания логометров не должно превышать ±20 % номинального значения. Для компенсации изменения сопротивления соединительных проводов при колебании температуры окружающей среды предусмотрен третий провод сd.

При трехпроводной схеме сопротивления проводов а и б оказываются включенными в различные цепи измерительной схемы и изменение сопротивления этих проводов, вызванные внешними условиями, взаимно компенсируются.

Для проверки исправности логометров и правильности подгонки сопротивлений соединительных проводов, приборы снабжают контрольным сопротивлением. При включении в измерительную схему прибора контрольного сопротивления вместо датчика, стрелка логометра при правильно подогнанном сопротивлении соединительных проводов должна установиться против контрольной красной отметки на шкале прибора.

Логометры предназначены для измерения температуры в комплекте с термопребразователями сопротивления. Рассмотрим принцип действия логометра.

Р и с. 3.1 Принципиальная схема магнитоэлектрического логометра

Логометр имеет подвижную часть, состоящую из двух жестко скрепленных под небольшим углом рамок (обмоток), поворачивающихся на опорах (кернах) около вертикальной оси в неравномерном магнитном поле постоянного магнита. Действие прибора основано на измерении отношения сил токов, протекающих в двух параллельных электрических цепях, питаемых от источника постоянного тока, в каждую из которых включено по одной рамке. Показания логометра практически не зависят от колебаний напряжения источника питания, что является достоинством этого прибора. На рис. 3.1 показана схема логометра с термопреобразователем сопротивления RT и источником питания Б. Между полюсными наконечниками постоянного магнита, имеющими овальную выточку, расположен стальной цилиндрический сердечник, образующий с ними переменный по ширине воздушный зазор, постоянно уменьшающий магнитную индукцию от середины наконечников к их краям. В зазорах перемещаются одинаковые скрещенные под углом 15-20° рамки RР1 и RР2 из тонкого изолированного провода, жестко скрепленные между собой и с указательной стрелкой прибора.

Измерительная схема логометра состоит из параллельных цепей I и II, питаемых от источника тока Б. В цепь I включены рамка RР1 и резистор R, в цепь II – рамка RР2, термопреобразователь сопротивления RT и соединительная линия Rл. Через рамки логометра RР1 и RР2 протекают токи J1 и J2, обратно пропорциональные сопротивлениям цепей I и II. Они образуют магнитные поля, взаимодействие которых с полем основного магнита создает вращающие моменты M1 и М2, действующие на рамки в противоположных направлениях.

Если сопротивления цепей I и II одинаковы, т. е.

Тогда при симметричном расположении рамок RР1 и RР2 относительно полюсных наконечников вращающие моменты М1 и М2 будут равны. В этом положении при определенном значении RТ подвижная часть логометра находится в состоянии равновесия и стрелка прибора устанавливается посредине шкалы.

При увеличении с повышением измеряемой температуры сопротивления RТ ток J2 в цепи II уменьшится и момент М1 станет больше, чем М2. Под влиянием появившейся разности вращающих моментов подвижная часть логометра начнет поворачиваться в сторону действия большего момента (на рис. 3.1 – по часовой стрелке) до тех пор, пока не наступит новое состояние равновесия. Это равновесие возникает благодаря тому, что рамка RР1 с большей силой тока входит в расширяющуюся часть воздушного зазора, т.е. в область более слабого магнитного поля, постоянно уменьшая тем самым момент M1. Одновременно с этим рамка RР2 с меньшей силой тока входит в сужающуюся часть воздушного зазора, т.е. в более сильное магнитное поле, что ведет к увеличению момента М2. Новое равновесие подвижной части прибора наступит в положении, при котором вращающие моменты рамок сравняются. В этом случае будем иметь

где B1, B2 – магнитные индукции в зонах расположения рамок RР1 и RР2; k1, k2 – постоянные коэффициенты, определяемые геометрическими размерами рамок и числом витков проводов в них.

Размеры обеих рамок и число витков в них одинаковы, поэтому уравнение (1) принимает вид


. (3.4)

Отношение магнитных индукций есть функция угла поворота подвижной части, зависящая от формы полюсных наконечников. Тогда уравнение (15) можно представить в виде


. (3.5)

С учетом значений токов J1 и J2


, (3.6)

а так как сопротивления RР1, RР2, R и Rл являются постоянными, то


. (3.7)


Следовательно, отклонение стрелки логометра зависит только от сопротивления RТ, определяемого температурой преобразователя. Это позволяет для данного типа преобразователя сопротивления производить градуировку шкалы логометра в °С. Кроме того, из уравнений (3) и (5) следует, что каждому значению RТ соответствует определенное отношение независимо от напряжения Е источника питания. Однако для логометра отклонение напряжения источника питания от номинального допускается в пределах ±20%, так как при малом напряжении возрастает влияние упругости проводников, подводящих ток к рамкам, и сил трения при перемещении подвижной части, а при большом происходит нагрев измерительным током обмотки термометра и рамок прибора, вызывающий изменение соотношения токов в цепях логометра.

Цель работы: Изучить принцип действия, конструкции, области применения логометров определить их статические характеристики.

Задание: 1.Изучить принципы действия, конструкции, назначение, условия эксплуатации и области применения логометров.

Краткие теоретические сведения

Устройство и работа логометра

Логометр представляет собой измерительный прибор, показания которого являются функцией отношения токов, протекающих по его рамкам. Принцип действия магнитоэлектрического логометра (см. рисунок 9) основан на взаимодействии токов, протекающих по проводникам рамок, с полем постоянного магнита. Логометр Л-64 имеет две скрещенные под непрямым углом и жестко скрепленные рамки, которые могут поворачиваться в зазоре между цилиндрический сердечником I и наконечниками магнитов.


Угол поворота φ такой подвижной системы является функцией отношения токов I1 и I2, протекающих по рамкам: .

Малые колебания напряжения источника питания (менее 20%) практически не влияют на показания прибора.

Характерной особенностью логометров является то, что противодействующий момент в них создается не механически, а за счет взаимодействия электрического тока с магнитным полем, т.е. имеет такую же природу, что и вращающий момент. Для того, чтобы подвижная система прибора приходила в состояние равновесия, воздушный зазор между полюсными наконечниками постоянного магнита и сердечником I делается неравномерным. Эта конструктивная особенность обеспечивает неравномерность магнитной индукции: в средней части наконечников магнитная индукция имеет наибольшее значение, у краев - наименьшее. Поэтому при одном и том же токе, протекающем через рамку, вращающий момент больше тогда, когда рамка находится ближе к полюсному наконечнику.

Рамки с сопротивлениями r1 и r2 включены в диагональ ab моста таким образом, что протекающие по ним точки, взаимодействуя с магнитным полем, порождают вращающие моменты, направленные в противоположные стороны. К диагонали cd подключен источник постоянного тока напряжением 4 В. Рамки соединены так же с точкой с через сопротивления R4 и R5 . первое из них – манганиновое, второе – медное. Сопротивление R4 предназначено для изменения чувствительности и диапазона измерения, сопротивления

R5 предназначено для температурной компенсации прибора. Остальные сопротивления моста выполнены из манганина.

Мост уравновешен при значении сопротивления Rt, соответствующим середине шкалы. При этом вследствие равенства нулю разности потенциалов в точках a и b падения напряжения на сопротивлениях R2 и R3 , а значит, и токи в рамках, равны, и рамки располагаются симметрично относительно полюсных наконечников. Когда подвижная система находится в состоянии равновесия, вращающие моменты М1 и М2 равны, т.е.

где К1, К2 – постоянные, зависящие от геометрических размеров и числа витков рамок;

В1, В2 – магнитные индукции в зоне расположения рамок;

I1, I2 – токи, протекающие по рамкам.


Рис. 9. Принципиальная электрическая схема логометра типа Л-64.


При отклонении сопротивления Rt от значения, соответствующего средней точке шкалы, равновесие моста нарушается. Так, при увеличении сопротивления Rt ток в рамке r2 уменьшается, а в рамке r1 – увеличивается. Возникающая при этом разность вращающих моментов заставляет подвижную систему поворачиваться до наступления нового состояния равновесия, обусловленного равенством моментов, которое имеет место вследствие неравномерности магнитного поля. Рамка, по которой протекает больший ток, попадает в зону с меньшей магнитной индукцией, и момент, действующий на эту рамку, уменьшается. Другая рамка попадает в зону с большей магнитной индукцией, вследствие чего момент, действующий на нее, увеличивается. Результирующий угол поворота подвижной системы зависит от величины сопротивления термометра сопротивления Rt, т.е. . Ток к рамкам подводится тонкими спиральными волосками, служащими одновременно для возвращения стрелки прибора в начальное состояние при отключении источника питания.

Сопротивление Rk (см. рисунок 9) подключается вместо измеряемого Rt при проверки исправности схемы. При правильной сборке схемы стрелка установится на красной черте, нанесенной на шкалу прибора.

Читайте также: