Крекинг это в химии определение кратко

Обновлено: 05.07.2024

Не секрет, что бензин получают из нефти. Однако большинство автолюбителей даже не задаются вопросом о том, как происходит этот процесс превращения нефти в топливо для их любимого автотранспорта. Он называется крекингом, с его помощью нефтеперерабатывающие заводы получают не только бензин, но и другие необходимые в современной жизни нефтехимические продукты. Интересна история возникновения этого способа переработки нефти. Изобретателем этого процесса и установки считается русский ученый, а сама установка для этого процесса очень проста и предельно понятна даже не разбирающемуся в химии человеку.

Что представляет собой крекинг

Почему так называется крекинг? Это слово произошло от английского cracking, обозначающего расщепление. По сути это процесс переработки нефти, а также входящих в ее состав фракций. Он производится для того, чтобы получить такие продукты, которые имеют более маленькую молекулярную массу. К таким относится смазочное масло, моторное топливо и другое подобное. Помимо этого, в результате такого процесса производится продукция, необходимая в использовании химической и нефтехимической отраслей.

крекинг это

Крекинг алканов включает сразу несколько процессов, среди которых конденсация и полимеризация веществ. Итогом этих процессов становится образование нефтяного кокса и фракции, закипающей при очень высокой температуре и называемой крекинг-остатком. Температура кипения этого вещества составляет больше 350 градусов. Следует отметить, что, помимо указанных процессов, происходят и другие – циклизация, изомеризация, синтез.

Изобретение Шухова

крекинг нефти

Способ английского химика Бартона

В начале двадцатого века в нефтехимическую отрасль неоценимый вклад внес англичанин Бартон, занимавшийся поиском способов и решений для получения бензина из нефти. Им был найден абсолютно идеальный способ, то есть реакция крекинга, в результате которой выходило наибольшее количество облегченных бензиновых фракций. До этого английский химик занимался переработкой нефтепродуктов, в числе которых был мазут, для извлечения керосина. Решив проблему с получением бензиновых фракций, Бартон запатентовал свой способ получения бензина.

В 1916 году способ Бартона был применен в промышленных условиях, а всего спустя четыре года после этого более восьмисот его установок уже вовсю работали на предприятиях.

Общеизвестна зависимость температуры закипания вещества от давления на него. То есть, если давление на какую-то жидкость весьма высокое, то, соответственно, будет высокой и температура ее закипания. При понижении давления на это вещество, оно может закипеть уже при более меньшей температуре. Именно эти знания использовал химик Бартон, добиваясь наиболее лучшей температуры, чтобы произошла реакция крекинга. Эта температура составляет от 425 до 475 градусов. Конечно, при таком высоком температурном воздействии на нефть она будет испаряться, а работать с парообразными веществами довольно сложно. Поэтому главной задачей английского химика стало недопущение закипания и испарения нефти. Он стал проводить весь процесс под высоким давлением.

термический крекинг

Установка для крекинга

Устройство Бартона состояло из нескольких элементов, в числе которых был котел, функционирующий под высоким давлением. Изготовлен он был из довольно толстой стали, располагался над топкой, та, в свою очередь, была укомплектована дымогарной трубой. Она была направлена вверх к водяному коллектору-охладителю. Затем весь этот трубопровод направлялся к емкости, предназначенной для сбора жидкости. Внизу резервуара размещалась разветвленная труба, каждая трубка которой имела контрольный вентиль.

Как осуществлялся крекинг

Крекинг-процесс происходил следующим образом. Котел заполнялся нефтепродуктом, в частности, мазутом. Постепенно мазут нагревался за счет топки. Когда температура доходила до ста тридцати градусов, из содержимого котла удалялась (испарялась) имеющаяся в нем вода. Проходя по трубе и охлаждаясь, эта вода попадала в сборный резервуар, а оттуда вновь по трубе уходила вниз. В это же время в котле продолжался процесс, во время которого из мазута исчезали другие составляющие – воздух и иные газы. Они проходили тот же путь, что и вода, направляясь в трубопровод.

Избавившись от воды и газов, нефтепродукт был готов к последующему крекингу. Печь растапливали сильнее, температура ее и котла медленно повышалась, пока не достигала 345 градусов. В это время происходило испарение облегченных углеводородов. Проходя по трубе к охладителю, они даже там оставались в состоянии газа, в отличие от водяных паров. Попав в сборную емкость, эти углеводороды следовали в трубопровод, так как выпускной вентиль закрывался и не давал им уйти в канаву. Они возвращались через трубу вновь в емкость, а затем снова повторяли весь путь, не находя выхода.

Соответственно, с течением времени их становилось все больше и больше. Итогом было растущее давление в системе. Когда это давление доходило до пяти атмосфер, легкие углеводороды уже были неспособны испаряться из котла. Углеводороды, сжимаясь, поддерживали равномерное давление в котле, трубопроводе, сборной емкости и холодильнике. Одновременно начиналось из-за высокой температуры расщепление тяжелых углеводородов. В результате они превращались в бензин, то есть в легкий углеводород. Его образование начинало происходить примерно при 250 градусах, легкие углеводороды при расщеплении испарялись, образовывали конденсат в охладительной камере, собираемый в сборном резервуаре. Далее по трубе бензин перетекал в подготовленные емкости, в которых давление было пониженным. Такое давление способствовало удалению газообразных элементов. С течением времени такие газы удалялись, а готовый бензин переливался в нужные резервуары или баки.

реакция крекинга

Чем больше легких углеводородов испарялось, тем более упругим и стойким к температурному воздействию становился мазут. Поэтому после превращения половины содержимого котла в бензин дальнейшая работа приостанавливалась. Помогал в установлении количества полученного бензина специально установленный в установку счетчик. Печка гасилась, трубопровод перекрывался. Вентиль трубопровода, который соединял его с компрессором, наоборот, открывался, пары перемещались в этот компрессор, давление в нем было меньше. Параллельно с этим перекрывалась труба, ведущая к полученному бензину, чтобы оборвать связь его с установкой. Дальнейшие действия заключались в ожидании остывания котла, сливе из него вещества. Для последующего использования после этого котел зачищался от налета кокса, и можно было проводить новый крекинг-процесс.

Этапы переработки нефти и установка Бартона

Следует отметить, что возможность расщепления нефти, то есть крекинг алканов, уже давно была замечена учеными. Однако она не применялась при обычной перегонке, так как это расщепление в такой ситуации было нежелательным. Для этого в процессе был задействован перегретый пар. С его помощью нефть не расщеплялась, но испарялась.

За все время своего существования нефтеперерабатывающая отрасль пережила несколько этапов. Так, с шестидесятых годов XIX века до начала прошлого века нефть подвергалась переработке с целью получения только керосина. Он был тогда материалом, веществом, с помощью которого люди получали освещение в темное время. Примечательно, что во время такой переработки, получаемые из нефти облегченные фракции, считались отходами. Они выливались в канавы и уничтожались сжиганием или другим способом.

Установка крекинга Бартона и его метод послужили основополагающим этапом всей нефтеперерабатывающей сферы. Именно этот способ английского химика позволил добиться более высокого результата получения бензина. Выход этого продукта нефтепереработки, а также других ароматических углеводородов возрос в несколько раз.

Потребность в применении крекинга

В начале двадцатого века бензин был, можно сказать, ненужным продуктом нефтепереработки. Автотранспорта, работающего на этом виде топлива, в то время было очень мало, поэтому и топливо было не востребовано. Но с течением времени автопарк стран неуклонно рос, соответственно, требовался и бензин. Только за первые десять-двенадцать лет двадцатого века потребность в бензине возросла в 115 раз!

крекинг алканов

Получаемый путем простой перегонки бензин, а, точнее, его объемы не удовлетворяли потребителя, да и самих производителей. Поэтому было решено применять крекинг. Это позволило нарастить темп производства. Благодаря этому удалось увеличить количество бензина для нужд государств.

Чуть позже было установлено, что крекинг нефтепродуктов можно было проводить не только лишь на мазуте или солярке. В качестве исходного сырья для этого вполне была годна и сырая нефть. Также производителями и специалистами в этой области было определено, что бензин, полученный способом крекинга, являлся более качественным. В частности, при его использовании в автомобилях они работали более исправно и дольше обычного. Это было связано с тем, что полученный путем крекинга бензин сохранял некоторые углеводороды, сгорающие при обычной перегонке. Эти вещества, в свою очередь, при использовании в двигателях внутреннего сгорания имели свойство воспламеняться и гореть более плавно, в итоге двигатели работали без взрывов топлива.

Каталитический крекинг

Крекинг – это процесс, который можно подразделить на два вида. Он применяется для выработки топлива, например, бензина. В одних случаях может проводиться путем простой термической обработки нефтепродуктов – термический крекинг. В других же случаях возможно осуществление этого процесса не только при помощи высокой температуры, но и с добавлением катализаторов. Такой процесс называется каталитическим.

Используя последний указанный способ переработки, производители получают высокооктановый бензин.

Считается, что этот вид является самым важным процессом, который обеспечивает наиболее глубокую и качественную переработку нефти. Установка каталитического крекинга, внедренная в промышленность в тридцатых годах прошлого века, позволила получить производителям несомненные преимущества для всего процесса. К таким можно отнести эксплуатационную гибкость, относительную простоту совмещения с иными процессами (деасфальтизация, гидроочистка, алкирование и т. д.). Именно благодаря этой универсальности можно объяснить значительную долю использования каталитического крекинга во всем объеме переработки нефти.

Сырье

В качестве сырья при каталитическом крекинге используется вакуумный газойль, представляющий собой фракцию, имеющую пределы кипения от 350 до 500 градусов. При этом окончательная точка кипения устанавливается по-разному и напрямую зависит от содержания металлов. Кроме того, на данный показатель влияет и коксуемость сырья. Она не может быть больше трех десятых процента.

крекинг нефтепродуктов

Предварительно требуется и производится гидроочистка такой фракции, в результате которой удаляются всевозможные сернистые соединения. Также гидроочистка позволяет снизить коксуемость.

У некоторых известных на нефтеперерабатывающем рынке компаний существует несколько осуществляемых ими процессов, при которых происходит крекинг тяжелых фракций. К ним можно отнести коксуемый до шести-восьми процентов мазут. Помимо этого, сырьем могут быть остатки гидрокрекинга. Самым, наверное, редким и, можно сказать, экзотическим сырьем считается прямогонный мазут. Подобная установка (технология миллисекунд) имеется в Республике Беларусь на Мозырском нефтеперерабатывающем заводе.

Буквально до последнего времени, когда использовался каталитический крекинг нефтепродуктов, применялся аморфный шариковый катализатор. Он представлял собой трех-пятимиллиметровые шарики. Сейчас же для этой цели применяются катализаторы крекинга объемом не больше 60–80 мкм (цеолитсодержащий микросферический катализатор). Состоят они из цеолитного элемента, располагающегося на алюмосиликатной матрице.

Термический способ

По обыкновению, термический крекинг используется для переработки нефтепродуктов, если нужно получить в итоге продукт с более маленькой молекулярной массой. Например, к таким можно отнести непредельные углеводороды, нефтяной кокс, легкие моторные топлива.

Направление этого способа переработки нефти находится в зависимости от молекулярной массы и природы сырья, а также непосредственно от условий, при которых происходит сам крекинг. Это было подтверждено химиками с течением времени. Одними из главнейших условий, которые влияют на быстроту и направление протекания термического крекинга, считаются температура, давление и длительность процесса. Последний получает видимую фазу при трехстах–трехстах пятидесяти градусах. При описании этого процесса используется кинетическое уравнение крекинга первого порядка. На результат крекинга, а точнее, на состав его продуктов оказывает влияние перемена давления. Причиной этому служит перемена скорости и характеристик вторичных реакций, к которым относятся, как уже упоминалось ранее, полимеризация и конденсация, которыми сопровождается крекинг. Уравнение реакции термического процесса выглядит так: С20Н42 = С10Н20 + С10 Н22. Влияние оказывает на итог и результат еще объем реактивов.

установка каталитического крекинга

Нужно заметить, что крекинг нефти, осуществляемый перечисленными способами, не является единственным. В производственной деятельности нефтеперерабатывающие предприятия используют и многие другие виды этого процесса переработки. Так, в определенных случаях используется так называемый окислительный крекинг, осуществляемый с использованием кислорода. Применяется в производстве и электрический крекинг. С помощью этого метода производители получают ацетилен путем пропуска сквозь электричество метана.

Что такое крекинг нефти

Добыча нефти и газа является ведущей отраслью экономики десятков стран. Спрос же на данные полезные ископаемые остается крайне высоким, что и неудивительно, поскольку они используются практически во всех сферах современного промышленного производства.

В частности, нефть, обладая сложным химическим составом и уникальными физическими свойствами, используется не только в качестве сырья для изготовления автомобильного топлива, но и во многих иных областях, в том числе и бурно развивающихся на данный момент. В этой связи добыча этого полезного ископаемого только растет.

В современных условиях в промышленности практически не используется сырая нефть. Для получения необходимых нефтепродуктов применяются специальные методы нефтепереработки. Это крайне сложные и технологичные процессы. Дело в том, что получить необходимый продукт из сырой нефти практически невозможно. Сначала происходит первичная ее перегонка, в результате получается разделение на фракции, после чего они подвергаются вторичной переработке. Одним из наиболее популярных ее методов является крекинг, речь о котором пойдет далее в данной статье.

История возникновения

Такое ограниченное применение этого полезного ископаемого продолжалось вплоть до XIX столетия, когда впервые был разработан метод его первичной переработки. Однако до начала XX века в практических целях использовался только керосин для освещения улиц и жилищ. При этом более легкие фракции не находили применения и считались отходами нефтепереработки.

Данная ситуация в корне изменилась с изобретением автомобиля, в котором применялся двигатель внутреннего сгорания. С развитием автомобилизации требовалось все больше моторного топлива, которое можно было получить, используя только углубленные методы нефтеперегонки.

Изначально первая нефтеперерабатывающая установка для осуществления данного технологического процесса была сконструирована нашими соотечественниками – учеными Шуховым и Гавриловым. Произошло это в 1891 году, однако объективной массовой потребности в ней на тот момент не было.

Продолжателем дела Шухова и Гаврилова стал британский инженер Бартон, который значительно усовершенствовал метод российских ученых, что позволило получать бензин довольно высокого качества.

В промышленных масштабах крекинг начал использоваться в США в начале 20-х годов. В то же время в Советском Союзе первые нефтеперегонные установки такого типа появились лишь на десятилетие позже.

На сегодняшний день данный метод (в значительно более усовершенствованных вариантах) является одним из основных технологических процессов, применяемых в нефтеперерабатывающей промышленности.

Суть крекингового процесса

В целом, под крекингом следует понимать такую переработку нефти или ее тяжелых фракций, при которой происходит разрыв углеродных цепей, то есть из веществ с высокой молекулярной массой образуются продукты с низкой. Данный процесс предполагает следующие химические реакции:

  • конденсация;
  • полимеризация;
  • изомеризация;
  • дегидрирование.

Исходным сырьем для крекинга, по большей части, выступают тяжелые нефтяные фракции, такие как мазут, керосин или газойль. В самом начале использования данного метода именно они и применялись. Однако позже было открыто, что в качестве сырья допустимо применять и сырую нефть. Это обстоятельство позволило унифицировать и ускорить производственный процесс. Однако использование мазута и газойля до сих пор остается актуальным.

Преимущества крекинга заключаются в том, что он позволяет получать более качественное топливо с большим октановым числом, чем это происходит при прямой нефтеперегонке. Кроме моторного топлива, данный технологический процесс предполагает образование крекингового остатка и нефтяного кокса – продуктов нефтепереработки, которые имеют широкое применение в химической промышленности.

Современные технологии позволяют применять в промышленных целях различные виды крекинга. К числу наиболее популярных методов относятся термический и каталитический.

Кроме этого, в химической промышленности используют и иные способы. Так, для получения ацетилена применяется метод электрического крекинга, суть которого заключается в том, что через электризованную среду пропускают метан. Также используют окислительный метод, где данный процесс сопровождается подачей чистого кислорода. Однако в контексте данной статьи больший интерес все же представляют термический и каталитический крекинг.

Каталитический крекинг

Суть его заключается в том, что процесс переработки происходит при помощи специальных веществ, обеспечивающих большую скорость реакции и качество выведенных нефтепродуктов, которые называются катализаторами.

На сегодняшний день ими являются алюмосиликаты, в частности, цеолитсодержащий микросферический катализатор, который представляет собой частицы, имеющие размер до 150 мкм.

Основным сырьем для данного вида переработки выступает прямогонный тяжелый газойль, а также иные фракции, которые имеют температуру закипания более +350 градусов по шкале Цельсия. Технологически каталитический крекинговый процесс осуществляется при нормальном атмосферном давлении.

Более четверти от общего объема выхода составляет газойль, при этом не очень хороший, что, впрочем, не препятствует тому, чтобы использовать его в качестве дизельного топлива.

Кроме этого, заметен выход изобутана и бутиленов, а также других газообразных предельных углеводородов. В их число входит пропилен, который используется в производстве полипропилена, широко применяемого в промышленности.

В целом, каталитический крекинг позволяет расщеплять фракции практически без потерь (не более 1,5%), именно поэтому он является наиболее распространенным способом углубленной нефтепереработки.

Термический метод

Данный способ характеризуется тем, что на выходе получаются продукты с меньшим октановым числом, такие как:

  • легкое топливо для ДВС;
  • непредельные углеводороды;
  • кокс.

Большая часть автомобильного бензина получается в результате применения данного метода.

Исходным сырьем для него выступает мазут, который, как правило, проходит предварительную подготовку, а также иные фракции.

Технологический процесс заключается в перегонке сырья при высокой температуре и давлении. В зависимости от частных особенностей, оно может составлять от 2 до 7 МПа.

Что такое крекинг нефти

Технологическая схема

Процесс переработки нефти и ее фракций происходит в специальных установках. В зависимости и метода крекинга, их конструкционные особенности могут в значительной степени различаться между собой.

Однако, учитывая, что большая часть нефти и ее фракций перерабатывается посредством термокаталитических реакций, следует остановиться именно на технологической схеме метода с применением катализаторов.

Сам процесс заключается в следующем: вакуумный газойль подается в специальную печь (реактор), где сырье нагревается до высоких температур (порядка +550 градусов по шкале Цельсия).

Испаряясь, конденсат начинает контактировать с катализатором, находящимся в состоянии взвеси. Затем полученные продукты в парообразном состоянии выводятся из реактора, где в нижней части ректификационной колонны проходят очистку от частиц катализатора и кокса. Затем происходит сепарация, после чего продукты крекинга выводятся из установки.

Реакторный блок

Наиболее значимой частью крекинговой установки является реакторный блок, где и происходят основные химические реакции.

В нефтеперерабатывающей промышленности используется несколько видов реакторных блоков:

  • реактор Гудри;
  • реактор с движущим слоем катализатора;
  • реактор с кипящим слоем катализатора;
  • лифт-реактор.

Различаются данные реакторные установки методом подачи и агрегатным состоянием катализатора.

Циклоны

Промышленные аппараты, используемые для того, чтобы очистить пар и газ от посторонних фракций, называются циклонами. Они применяются во многих отраслях производства, в том числе и в нефтепереработке.

В крекинговой установке есть пара циклонов. Там они служат для того, чтобы очистить пары нефтепродуктов, полученных в результате реакции, от катализаторной пыли, находящейся в состоянии взвеси. Циклонные сепараторы находятся вне реактора, а сама очистка является одним из завершающих этапов каталитического крекинга.

В нефтехимия, нефтяная геология и органическая химия, треск это процесс, посредством которого сложен органический молекулы Такие как керогены или длинная цепь углеводороды распадаются на более простые молекулы, такие как легкие углеводороды, путем разрушения углерод-углерод облигации в предшественниках. В ставка растрескивания и конечных продуктов сильно зависят от температура и наличие катализаторы. Растрескивание - это поломка большого алкан на меньшие, более полезные алкены. Проще говоря, крекинг углеводородов - это процесс разрыва длинной цепочки углеводородов на короткие. Этот процесс требует высоких температур. [1]

Каталитический крекинг в псевдоожиженном слое дает высокий выход бензин и СУГ, а гидрокрекинг является основным источником реактивное топливо, Дизельное топливо, нафта, и снова дает LPG.


Содержание

История и патенты

Среди нескольких вариантов методов термического крекинга (известных как "Шуховский процесс взлома", "Процесс крекинга Бертона"," Процесс взлома Бертона-Хамфриса "и" Процесс взлома Даббса ") Владимир ШуховПервый изобрел и запатентовал русский инженер в 1891 г. (Российская Империя, патент № 12926, 7 ноября 1891 г.). [2] Одна установка использовалась в ограниченном объеме в России, но развитие не продолжалось. В первом десятилетии ХХ века американские инженеры Уильям Мерриам Бертон и Роберт Э. Хамфрис независимо друг от друга разработали и запатентовали процесс, аналогичный патенту США 1 049 667 от 8 июня 1908 г. Среди его преимуществ было то, что и конденсатор, и котел постоянно находились под давлением. [3]

В своих более ранних версиях это был периодический процесс, а не непрерывный, и многие патенты должны были последовать в США и Европе, хотя не все были практичными. [2] В 1924 г. делегация из американского Sinclair Oil Corporation побывал в Шухове. Sinclair Oil явно хотела предположить, что патент Бертона и Хамфриса, используемый Standard Oil, был получен из патента Шухова на крекинг нефти, как описано в российском патенте. Если бы это удалось установить, это могло бы укрепить позиции конкурирующих американских компаний, желающих аннулировать патент Бертона-Хамфриса. В случае, если Шухов убедил американцев в том, что в принципе метод Бертона очень похож на его патенты 1891 года, хотя его собственный интерес в этом вопросе заключался в первую очередь в том, чтобы установить, что «российская нефтяная промышленность может легко построить установку для крекинга в соответствии с любой из описанных систем, при этом обвиняется американцами в бесплатном заимствовании ". [4]

В то время, всего через несколько лет после Русская революция и жестокий Гражданская война в РоссииСоветский Союз отчаянно пытался развивать промышленность и зарабатывать иностранную валюту, поэтому их нефтяная промышленность в конечном итоге получила большую часть своих технологий от иностранных компаний, в основном американских. [4] Примерно в то время флюид-каталитический крекинг изучается и разрабатывается и вскоре заменил большинство процессов чисто термического крекинга в индустрии переработки ископаемого топлива. Замена не была полной; многие типы крекинга, включая чистый термический крекинг, все еще используются, в зависимости от природы исходного сырья и продуктов, необходимых для удовлетворения рыночных требований. Термический крекинг остается важным, например, при производстве нафты, газойля и кокса, и для различных целей были разработаны более сложные формы термического крекинга. К ним относятся висбрекинг, паровой крекинг, и коксование. [5]

Методики взлома

Термическое растрескивание

Уильям Мерриам Бертон разработал один из первых процессов термического крекинга в 1912 году, который работал при 700–750 ° F (370–400 ° C) и абсолютном давлении 90 фунтов на квадратный дюйм (620 кПа) и был известен как Процесс Бертона. Вскоре после этого, в 1921 году, C.P. Dubbs, сотрудник Универсальные нефтепродукты Компания разработала несколько более совершенный процесс термического крекинга, который работал при 750–860 ° F (400–460 ° C) и был известен как Процесс дублирования. [7] Процесс Dubbs широко использовался многими нефтеперерабатывающие заводы до начала 1940-х годов, когда начали применяться каталитический крекинг. [1]

Паровой крекинг

Паровой крекинг - это нефтехимический процесс, в котором насыщенный углеводороды распадаются на более мелкие, часто ненасыщенные углеводороды. Это основной промышленный метод производства зажигалок. алкены (или обычно олефины), включая этен (или же этилен) и пропен (или же пропилен). Установки парового крекинга - это установки, в которых сырье, такое как нафта, сжиженный нефтяной газ (СНГ), этан, пропан или же бутан подвергается термическому крекингу с использованием пара в группе печей пиролиза для получения более легких углеводородов.

При паровом крекинге газообразное или жидкое углеводородное сырье, например нафта, СУГ или же этан разбавляется паром и кратковременно нагревается в печи без кислорода. Обычно температура реакции очень высока, около 850 ° C, но реакции позволяют протекать очень непродолжительное время. В современных крекинг-печах время пребывания сокращается до миллисекунд для повышения выхода продукции, в результате чего скорость газа достигает скорость звука. После достижения температуры крекинга газ быстро гасят, чтобы остановить реакцию в транспортной линии. теплообменник или внутри закалочного коллектора с использованием закалочного масла. [ нужна цитата ] [8]

Продукты, получаемые в реакции, зависят от состава сырья, отношения углеводородов к водяному пару, а также от температуры крекинга и времени пребывания в печи. Сырье легких углеводородов, такое как этан, LPG или свет нафта дают потоки продуктов, богатые более легкими алкенами, включая этилен, пропилен и бутадиен. Сырье с более тяжелыми углеводородами (полный спектр и тяжелая нафта, а также другие продукты нефтепереработки) дает некоторые из них, но также дает продукты, богатые ароматические углеводороды и углеводороды, подходящие для включения в бензин или же горючее. Типичные потоки продуктов включают пиролизный бензин (pygas) и BTX.

Жидкий каталитический крекинг


Процесс каталитического крекинга предполагает наличие твердые кислотные катализаторы, обычно кремнезем-глинозем и цеолиты. Катализаторы способствуют образованию карбокатионы, которые претерпевают процессы перегруппировки и разрыва связей C-C. По сравнению с термическим растрескиванием, кошачье растрескивание происходит при более низких температурах, что позволяет экономить энергию. Кроме того, при работе при более низких температурах выход алкенов снижается. Алкены вызывают нестабильность углеводородного топлива. [9]

Каталитический крекинг в псевдоожиженном слое является широко используемым процессом, и современный нефтеперерабатывающий завод обычно включает кот взломщик, особенно на НПЗ в США, из-за высокого спроса на бензин. [10] [11] [12] Впервые этот процесс был использован примерно в 1942 году, и в нем используется порошковый катализатор. Во время Второй мировой войны у союзных сил было достаточно материалов, в отличие от сил Оси, которые испытывали острую нехватку бензина и искусственного каучука. Первоначальные реализации процесса были основаны на низкой активности глинозем катализатор и реактор, в котором частицы катализатора были взвешены в восходящем потоке исходных углеводородов в псевдоожиженный слой. [ нужна цитата ]

Бензин, произведенный в установке FCC, имеет повышенную октановое число но менее химически устойчив по сравнению с другими компонентами бензина из-за его олефиновый профиль. Олефины в бензине ответственны за образование полимерный депозиты в хранилище танки, топливные каналы и форсунки. FCC LPG - важный источник C3-C4 олефины и изобутан которые являются важным кормом для алкилирование процесс и производство полимеров, таких как полипропилен. [ нужна цитата ]

Гидрокрекинг

Гидрокрекинг - это процесс каталитического крекинга, которому способствует присутствие добавок. водород газ. В отличие от гидроочисткагидрокрекинг использует водород для разрыва связей C-C (гидроочистка проводится перед гидрокрекингом для защиты катализаторов в процессе гидрокрекинга). В 2010 году 265 × 10 6 тонн нефти было переработано по данной технологии. Основное сырье - вакуумный газойль, тяжелая фракция нефти. [13] [14]

Продуктами этого процесса являются насыщенные углеводороды; в зависимости от условий реакции (температура, давление, активность катализатора) эти продукты варьируются от этан, СУГ на более тяжелые углеводороды, состоящие в основном из изопарафины. Гидрокрекингу обычно способствует бифункциональный катализатор, который способен перегруппировываться и разрушаться. углеводородные цепи а также добавление водорода в ароматика и олефины производить нафтены и алканы. [13]

Основные продукты гидрокрекинга: реактивное топливо и дизель, но также производятся фракции нафты с низким содержанием серы и СНГ. [15] Все эти продукты имеют очень низкое содержание сера и другие загрязняющие вещества. Это очень распространено в Европе и Азии, потому что в этих регионах существует высокий спрос на дизельное топливо и керосин. В США более распространен каталитический крекинг в псевдоожиженном слое, потому что потребность в бензин выше.

Процесс гидрокрекинга зависит от природы исходного сырья и относительных скоростей двух конкурирующих реакций, гидрирования и крекинга. Тяжелое ароматическое сырье превращается в более легкие продукты в широком диапазоне очень высоких давлений (1000–2000 фунтов на квадратный дюйм) и довольно высоких температур (750–1500 ° F, 400–800 ° C) в присутствии водорода и специальных катализаторов. [13]

Таким образом, основными функциями водорода являются:

  1. предотвращение образования полициклических ароматических соединений, если сырье имеет высокое содержание парафинов,
  2. уменьшение образования смол,
  3. уменьшение примесей,
  4. предотвращение скопления кокса на катализаторе,
  5. преобразование соединений серы и азота, присутствующих в исходном сырье, в сероводород и аммиак, и
  6. достижение высокого цетановое число топливо. [нужна цитата]

Основы

За пределами промышленного сектора растрескивание связей C-C и C-H встречается редко. химические реакции. В принципе, этан может подвергаться гомолиз:

Поскольку энергия связи C-C настолько высока (377 кДж / моль), [16] эта реакция не наблюдается в лабораторных условиях. Более распространенные примеры реакций крекинга включают ретро-Реакции Дильса-Альдера. Показательным является термическое растрескивание дициклопентадиен давать циклопентадиен.

Нефть – это маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным неприятным запахом. Нефть легче воды и не растворима в ней. Она встречается во многих местах земного шара, пропитывая пористые горные породы на различной глубине.

У нефти есть удивительная способность – образовывать на поверхности воды тончайшие пленки: чтобы покрыть микронной пленкой 1 км 2 требуется всего 10 л нефти.

Большой вред приносит загрязнение нефтью и нефтепродуктами водоемов.

Состав

Нефть – смесь газообразных, жидких и твердых углеводородов (всего более 100 различных соединений). Кроме углеводородов в нефти еще содержатся в небольшом количестве органические соединения, содержащие O, N, S и др. Имеются также высокомолекулярные соединения в виде смол и асфальтовых веществ.

Состав нефти еще зависит от месторождения. Но все они обычно содержат три вида углеводородов:

парафины, в основном нормального соединения,

По мнению большинства ученых, нефть представляет собой геохимически измененные остатки некогда населявших земной шар растений и животных. Эта теория органического происхождения нефти подкрепляется тем, что в нефти содержатся некоторые азотистые вещества – продукты распада веществ, присутствующих в тканях растений.

Есть и теории о неорганическом происхождении нефти : образовании ее в результате действия воды в толщах земного шара на раскаленные карбиды металлов (соединения металлов с углеродом) с последующим изменением получающихся углеводородов под влиянием высокой температуры, высокого давления, воздействия металлов, воздуха, водорода и др.

При добыче из нефтеносных пластов, залегающих в земной коре иногда на глубине нескольких километров, нефть либо выходит на поверхность под давлением находящихся на нем газов, либо выкачивается насосами.

Нефтяная отрасль промышленности сегодня – это крупный народно-хозяйственный комплекс, который живет и развивается по своим законам.

Что значит нефть сегодня для народного хозяйства страны?

сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей;

источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт);

сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.

Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн т/год нефти, а также большое количество других производственных объектов.

Из нефти вырабатывают реактивное топливо

На предприятиях нефтяной отрасли промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек. За последние десятилетия в структуре топливной отрасли промышленности произошли коренные изменения, связанные с уменьшением доли угольной отрасли промышленности и ростом отраслей по добыче и переработке нефти и газа. Если в 1940 г. они составляли 20,5%, то в 1984 г. – 75,3% от суммарной добычи минерального топлива. Теперь на первый план выдвигается природный газ и уголь открытой добычи. Потребление нефти для энергетических целей будет сокращено, напротив, расширится ее использование в качестве химического сырья. В настоящее время в структуре топливно-энергетического баланса на нефть и газ приходится 74%, при этом доля нефти сокращается, а доля газа растет и составляет примерно 41%. Доля угля 20%, оставшиеся 6% приходятся на электроэнергию.

Первичная переработка нефти

Переработку нефти впервые начали братья Дубинины на Кавказе.

Первичная переработка нефти заключается в ее перегонке.

Перегонку производят на нефтеперерабатывающих заводах после отделения нефтяных газов.

Нефть нагревают в трубчатой печи до 350 С, образовавшиеся пары вводят в ректификационную колонну снизу.

Ректификационная колонна имеет горизонтальные перегородки с отверстиями - тарелки .

Схема переработки нефти методом ректификации

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Сначала из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом, можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.

Основные фракции переработки нефти методом ректификации

Газолиновая фракция , собираемая от 40 до 200 °С, содержит углеводороды от С 5 Н 12 до С 11 Н 24 . При дальнейшей перегонке выделенной фракции получают газолин ( t кип = 40–70 °С), бензин ( t кип = 70–120 °С) – авиационный, автомобильный и т.д.

Лигроиновая фракция , собираемая в пределах от 150 до 250 °С, содержит углеводороды от С 8 Н 18 до С 14 Н 30 . Лигроин применяется как горючее для тракторов. Большие количества лигроина перерабатывают в бензин.

Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

Газойлевая фракция ( t кип. >275°С), по-другому называется дизельным топливом .

М азут – о статок после перегонки нефти – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле.

Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения.

В результате получают:

Соляровые масла (дизельное топливо).

Смазочные масла (автотракторные, авиационные, индустриальные и др.).

Вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине).

Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.).

После отгонки летучих компонентов из мазута остается гудрон . Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках.

Продукты переработки нефти

РИФОРМИНГ

(вторичная переработка нефти)

Бензина, получаемого при перегонке нефти, не хватает для покрытия всех нужд. В лучшем случае из нефти удается получить до 20% бензина, остальное – высококипящие продукты.

В связи с этим перед химией стала задача найти способы получения бензина в большом количестве. Удобный путь был найден с помощью, созданной А.М. Бутлеровым теории строения органических соединений. Высококипящие продукты разгонки нефти непригодны для употребления в качестве моторного топлива. Их высокая температура кипения обусловлена тем, что молекулы таких углеводородов представляют собой слишком длинные цепи. Если расщепить крупные молекулы, содержащие до 18 углеродных атомов, получаются низкокипящие продукты типа бензина.

Основным способом переработки нефтяных фракций являются различные виды крекинга. Впервые (1871–1878) крекинг нефти был осуществлен в лабораторном и полупромышленном масштабе сотрудником Петербургского технологического института А.А. Летним. Первый патент на установку для крекинга заявлен Шуховым в 1891 г. В промышленности крекинг получил распространение с 1920-х гг.

Крекинг – это термическое разложение углеводородов и других составных частей нефти. Чем выше температура, тем больше скорость крекинга и больше выход газов и ароматических углеводородов.

Крекинг нефтяных фракций кроме жидких продуктов дает первостепенно важное сырье – газы, содержащие непредельные углеводороды (олефины).

Различают следующие основные виды крекинга:

жидкофазный (20–60 атм, 430–550 °С), дает непредельный и насыщенный бензины, выход бензина порядка 50%, газов 10%;

парофазный (обычное или пониженное давление, 600 °С), дает непредельно-ароматический бензин, выход меньше, чем при жидкофазном крекинге, образуется большое количество газов;

пиролиз нефти – разложение органических веществ без доступа воздуха при высокой температуре (обычное или пониженное давление, 650–700 °С), дает смесь ароматических углеводородов (пиробензол), выход порядка 15%, более половины сырья превращается в газы;

деструктивное гидрирование (давление водорода 200–250 атм, 300–400 °С в присутствии катализаторов – железа, никеля, вольфрама и др.), дает предельный бензин с выходом до 90%;

каталитический крекинг (300–500 °С в присутствии катализаторов – AlCl 3 , алюмосиликатов, МоS 3 , Сr 2 О 3 и др.), дает газообразные продукты и высокосортный бензин с преобладанием ароматических и предельных углеводородов изостроения.

каталитический риформинг – превращение низкосортных бензинов в высокосортные высокооктановые бензины или ароматические углеводороды.

Читайте также: