Кратко раскройте сущность следующих процессов жизнедеятельности клетки обмен веществ

Обновлено: 05.07.2024

Метаболизм является основой всей жизнедеятельности организмов, а обмен веществ неотделим от катализа ферментов. Ферменты — это каталитически активные организмы, продуцируемые живыми клетками. По сути, подавляющее большинство ферментов — это белки, некоторые — РНК, то есть рибонуклеиновая кислота, носитель генетической информации.

Белки с ферментативной активностью подразделяются на простые белки и связывающие белки. Простые белковые ферменты состоят из аминокислот и не содержат других веществ (таких как пепсин). Белковые ферменты состоят из простых белков и кофакторов, таких как лактатдегидрогеназа, трансаминаза и так далее. Простая белковая часть, из которой состоит фермент, называется ферментным белком или основным ферментом, а простетическая часть называется коферментами. Связывающий фермент обычно представляет собой комбинацию первичного фермента и кофермента и становится целым ферментом, который функционирует как фермент.

Роль ферментов в организме

В организме содержится множество ферментов, которые контролируют многие метаболические процессы: метаболизм, питание и преобразование биоэнергии. Большинство реакций, тесно связанных с жизненными процессами, являются реакциями, катализируемыми ферментами.

Роль ферментов в катализе

Самая важная роль фермента — катализ. Он позволяет упорядоченно осуществлять сложный метаболизм веществ в клетках, адаптируя метаболизм веществ к нормальным физиологическим функциям. Если дефицит или активность фермента ослаблены из-за генетических дефектов или по другим причинам, каталитическая реакция фермента может быть ненормальной, что приведет к нарушению метаболизма вещества или даже к заболеванию.

Каталитический механизм фермента в основном включает кислотно-основной катализ и ковалентный катализ. Кислотно-основной катализ относится к каталитическому действию переноса протона для ускорения реакции. Ковалентный катализ означает, что субстрат или часть субстрата образует ковалентную связь с катализатором и затем переносится на второй субстрат. Многие реакции переноса группы, катализируемые ферментами, осуществляются путем ковалентного катализа.

В организме человека имеется большое количество ферментов, которые сложны по структуре и разнообразны. Например, когда люди жуют рис и приготовленные на пару булочки, то чем дольше они жуют, тем слаще вкус. Это обьясняется следующим образом: крахмал в рисе гидролизуется до мальтозы под действием амилазы слюны, секретируемой ротовой полостью.

Следовательно, люди, которые больше жуют во время еды, могут хорошо смешивать пищу и слюну, что полезно для пищеварения. Кроме того, белок, который человеческое тело принимает из пищи, должен быть гидролизован до аминокислот с помощью различных протеолитических ферментов в пищевой промышленности, таких как пепсин, а затем конкретные аминокислоты выбираются другими ферментами для восстановления необходимых белков в определенном порядке. Здесь происходит множество сложных химических реакций.

Как ферменты снижают энергию активации реакции?

Каталитический механизм фермента заключается в снижении энергии активации реакции. Химическая реакция может быть проведена, потому что часть молекул субстрата была активирована, чтобы стать активированными молекулами, и чем больше активированных молекул, тем выше скорость реакции. Комплекс фермент-субстрат реагирует с образованием продукта, высвобождая фермент, который связывается с другой молекулой субстрата и увеличивает скорость химической реакции за счет уменьшения активации реакции.

Ферменты могут ускорить химическую реакцию, но не могут изменить точку равновесия химической реакции. Это означает, что фермент способствует прямой реакции и обратной реакции в той же пропорции, поэтому роль фермента заключается в сокращении времени, необходимого для достижения равновесия.


Метаболизм – обмен веществ и энергии - представляет собой по классическим определениям, с одной стороны, обмен веществами и энергией между организмом и окружающей средой, а, с другой стороны, совокупность процессов превращения веществ и трансформации энергии, происходящих непосредственно в самих живых организмах. Как известно, обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи. В обмене веществ, контролируемом многоуровневыми регуляторными системами, участвует множество ферментных каскадов, обеспечивающих совокупность химических реакций, упорядоченных во времени и пространстве. Данные биохимические реакции, детерминированные генетически, протекают последовательно в строго определенных участках клеток, что, в свою очередь обеспечивается принципом компартментации клетки. В конечном итоге в процессе обмена поступившие в организм вещества превращаются в собственные специфические вещества тканей и в конечные продукты, выводящиеся из организма. В процессе любых биохимических трансформаций освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции, а именно: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэнергетических) химических соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез из этих предшественников белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Поскольку первоначальные представления об обмене веществ возникли в связи с изучением процессов обмена между организмом и внешней средой и лишь впоследствии эти представления расширились до понимания путей трансформации веществ и энергии внутри организма, до настоящего времени принято выделять соответственно внешний, или общий, обмен веществ и внутренний или промежуточный, обмен веществ. В свою очередь как во внутреннем, так и во внешнем обмене веществ различают структурный (пластический) и энергетический обмен. Под структурным обменом понимают взаимные превращения различных высоко- и низкомолекулярных соединений в организме, а также их перенос (транспорт) внутри организма и между организмом и внешней средой. Под энергетическим обменом понимают высвобождение энергии химических связей молекул, образующейся в ходе реакций и ее превращение в тепло (большая часть), а также использование энергии на синтез новых молекул, активный транспорт, мышечную работу (меньшая часть). В процессе обмена веществ часть конечных продуктов химических реакций выводится во внешнюю среду, другая часть используется организмом. В этом случае конечные продукты органического обмена накапливаются или расходуются в зависимости от условий существования организма, называясь запасными или резервными веществами.

Как указывалось выше совокупность химических превращений веществ, которые происходят непосредственно в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление крупных органических молекул, осуществляемое у всех высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в химических связях органических молекул, и резервированием ее в форме энергии фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Анаболизм, напротив, представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Процессы катаболизма и анаболизма происходят в клетках одновременно, неразрывно связаны друг с другом и являются обязательными компонентами одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии. Катаболические и анаболические реакции различаются, как правило, локализацией в клетке. Например, окисление жирных кислот до углекислого газа и воды осуществляется с помощью набора митохондриальных ферментов, тогда как синтез жирных кислот катализирует другая система ферментов, находящихся в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно. При этом все превращения органических веществ, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии.

Согласно современным представлениям расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих три главные стадии катаболизма. На первой стадии полимерные органические молекулы распадаются на составляющие их специфические структурные блоки - мономеры. Так, полисахариды расщепляются до гексоз или пентоз, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов и нуклеозидов, липиды — до жирных кислот и глицерина. Эти реакции протекают в основном гидролитическим путем и количество энергии, освобождающейся на этой стадии, не превышает 1% от всей выделяемой в ходе катаболизма энергии, и почти целиком используется организмом в качестве тепла.

На второй стадии катаболизма продуктами химических реакций становятся еще более простые молекулы, унифицированные для углеводного, белкового и липидного обмена. по своему типу (гликолиз, катаболизм аминокислот, β-окисление жирных кислот соответственно). Принципиальным является то, что на второй стадии катаболизма образуются продукты, которые являются общими для обмена исходно разных групп веществ. Эти продукты представляют собой ключевые химические соединения, соединяющие разные пути метаболизма. К таким соединениям относятся, например, пируват (пировиноградная кислота), образующийся при распаде углеводов, липидов и многих аминокислот, ацетил-КоА, объединяющий катаболизм жирных кислот, углеводов и аминокислот, a-кетоглутаровая кислота, оксалоацетат (щавелевоуксусная кислота), фумарат (фумаровая кислота) и сукцинат (янтарная кислота), образующиеся при трансформации аминокислот. Продукты, полученные на второй стадии катаболизма, вступают в третью стадию, которая известна как цикл трикарбоновых кислот (терминальное окисление, цикл лимонной кислоты, цикл Кребса). На третьем этапе ацетил-КоА и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат, подвергаются окислению в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2. Именно в ходе второй и третьей стадий катаболизма освобождается и аккумулируется в виде АТФ практически вся энергия химических связей подвергнутых диссимиляции веществ. При этом осуществляется перенос электронов от восстановленных нуклеотидов на кислород через дыхательную цепь, сопровождающийся образованием конечного продукта – молекулы воды. Транспорт электронов в дыхательной цепи сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

Главным катаболическим процессом в обмене веществ принято считать биологическое окисление - совокупность реакций окисления, протекающих во всех живых клетках, - а именно дыхание и окислительное фосфорилирование. Интегральной характеристикой биологического окисления служит так называемый дыхательный коэффициент (RQ), который представляет собой отношение объема выделенного организмом углекислого газа к объему одновременно поглощенного кислорода. При окислении углеводов объем расходуемого кислорода соответствует объему образующегося углекислого газа и поэтому дыхательный коэффициент в этих случаях равен единице. При окислении жиров и белков такое соответствие отсутствует, поскольку кроме окисления углерода до углекислого газа часть кислорода расходуется на окисление водорода с образованием воды. Вследствие этого величины дыхательного коэффициента в случае окисления жиров и белков составляют соответственно около 0, 7 и 0, 8. Подавляющая часть белкового азота при окислении белка в организме переходит в мочевину. Поэтому по дыхательному коэффициенту и данным о количестве выделяемой мочевины можно определять соотношение участвующих в биологическом окислении углеводов, жиров и белков.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма. Тем не менее, только часть получаемой при окислении белков, жиров и углеводов энергии используется для синтеза АТФ, другая, значительно большая, превращается в теплоту. Так, при окислении углеводов 22, 7% энергии химических связей глюкозы в процессе окисления используется на синтез АТФ, а 77, 3% в виде тепла рассеивается в тканях. Аккумулированная в АТФ энергия используемая в дальнейшем для механической работы, химических, транспортных, электрических процессов в конечном счете тоже превращается в теплоту. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Общий баланс энергии организма определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при лабораторной калориметрии, может отличаться от величины физиологической калорической ценности, поскольку некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Очевидно, что калорическая ценность, дыхательный коэффициент и величина теплообразования для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4, 1; липидов — 9, 3; белков — 4, 1; величина теплообразования (в ккал на 1 литр потребленного кислорода) для углеводов составляет 5, 05; липидов — 4, 69; белков — 4, 49.

Процесс анаболизма по аналогии с катаболическими процессами также проходит три стадии. При этом исходными веществами для анаболических процессов служат продукты второй стадии и промежуточные соединения третьей стадии катаболизма. Таким образом вторая и третья стадии катаболизма являются в то же время первой, исходной стадией анаболизма и химические реакции, протекающие в данном месте и в данное время, выполняют по сути двойную функцию. С одной стороны, они являются основой завершающего этапа катаболизма, а с другой — служат инициацией для анаболических процессов, поставляя вещества-предшественники для последующих стадий ассимиляции. Подобным образом, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Тем не менее следует подчеркнуть, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано прежде всего с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, поскольку их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. Поэтому в ходе эволюции были выработаны другие, специфические для анаболизма реакции, где синтез олиго- и полимерных соединений сопряжен с затратой энергии макроэргических соединений, прежде всего – АТФ.

Одним из основных свойств живых систем считается их открытость. При этом постоянно происходит взаимообмен веществ, энергии и информации с внешней средой. Сегодня на уроке познакомимся с особенностями обмена веществ организмов. Подробно остановимся на энергетическом обмене. Рассмотрим, как осуществляется питание клетки, фотосинтез и хемосинтез.

План урока:

Метаболизм

Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования. Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза.

С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.

Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно.

Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции.

Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул.

Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции.

Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается.

Соответственно, диссимиляция – это процесс,заключающийся в разложении веществ с освобождением энергии.

Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен.

Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении.

Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты.

Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты.

Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям.

Энергетический обмен

Диссимиляция или энергетический обмен проходит в несколько этапов. Познакомимся с ними на схеме.

  • Подготовительный этап энергетического обмена проходит в цитоплазме растительных клеток, простейших, в пищеварительной системе животных, а кроме того и человека. При этом питательные соединения под воздействием пищеварительных ферментов разлагаются до мономеров. Вследствие этого образуется незначимый объем энергии, рассеивающейся как тепло. На представленном этапе энергетического обмена синтеза АТФ не происходит.
  • Вторым этапом диссимиляции веществ считается бескислородный или анаэробный. Проходит данная стадия в цитоплазме клеток, заключается в разложении мономеров, образовавшихся на предварительной стадии.

Примером подобного процесса считается гликолиз – многоступенчатое расщепление глюкозы. Мономеры углеводов подвергаются распаду в отсутствии кислорода с освобождением энергии, определенное количество которой расходуется для формирования АТФ.

При протекании ряда последовательных этапов гликолиза совершается разложение молекулы глюкозы на две молекулы пировиноградной кислоты. Чаще всего, пировиноградная кислота затем преобразуется в молочную кислоту. Вследствие этих реакций в ходе гликолиза из АДФ, а также фосфорной кислоты синтезируются 2 молекулы АТФ.

Следует учесть, что по такому принципу гликолиз протекает в клетках животных и человека.

В растительных клетках, в отдельных дрожжевых грибах, у бактерий бескислородный этап осуществляется как спиртовое брожение.

В реакции спиртового брожения могут вступать всевозможные соединения. Например, углеводы, органические кислоты, спирты, аминокислоты и многие другие. Широкое распространение получили реакции расщепления глюкозы при молочнокислом, а также спиртовом брожении.

У молочнокислых бактерий спиртовое брожение сопровождается ферментативным расщеплением глюкозы и продуктом является молочная кислота.

Суммарные уравнения молочнокислого и спиртового брожения рассмотрим на рисунке.

Вследствие бескислородной стадии энергетического обмена вещества распадаются не до конечных продуктов, а до соединений с запасом энергии. Поэтому они переходят в следующий этап – кислородный.

3. Третья стадия энергетического обмена получила название аэробного или кислородного.В течение данных реакций осуществляется последующее разложение органических соединений до конечных продуктов. Характерен он только аэробным организмам, использующим для метаболизма кислород.

Происходит кислородный распад в митохондриях, поэтому именуется еще клеточным дыханием. Протекает оно в несколько поочередных стадий. Основным признаком клеточного дыхания является участие кислорода в распаде соединений.

В процессе клеточного дыхания осуществляется дальнейшее окисление пировиноградной кислоты с формированием двуокиси углерода и воды.

Данный этап считается заключительным, поэтому при клеточном дыхании выделяется внушительное число энергии в виде 36 молекул АТФ.

Вследствие процесса энергетического обмена веществ при окислении одной молекулы глюкозы формируется 38 молекул АТФ. Эта энергия используется на другие химические реакции. К примеру, у человека каждая молекула АТФ расщепляется и вновь создается 2400 раз в сутки, то есть средняя продолжительность жизни АТФ менее минуты.

Питание клетки

Для протекания метаболизма в клетке необходимы различные питательные вещества, которые организм получает в результате питания.

Все живые организмы различаются по тому, какую пищу они используют. Некоторые организмы способны сами производить вещества, другие же в процессе питания клетки потребляют уже готовые.

Различают несколько разновидностей организмов по способу питания клетки:

1. Автотрофы сами производят органические вещества. Для осуществления процессов синтеза они используют простые неорганические соединения – углекислый газ и воду. Источником энергии для протекания ассимиляции в клетке у автотрофов является солнечный свет или энергия химических взаимодействий.

Организмы, использующие солнечный свет для формирования органических соединений получили название фототрофы. Этим существам характерен фотосинтез, протекающий в хлоропластах. Соответственно, фототрофами являются все зеленые растения. Помимо этого, примером фототрофов считаются цианобактерии, зеленые и пурпурные бактерии.

Организмы, которые для производства органических соединений используют энергию химических взаимодействий, называются хемотрофами.

Хемотрофами являются некоторые бактерии, к примеру, железобактерии, серобактерии, нитрифицирующие бактерии.

Гетеротрофы используют в пищу готовые органические вещества. Вследствие такого питания гетеротрофы получают энергию, требуемую для жизненных процессов, а также служат источником строительного материала для клеточных структур. Гетеротрофами являются все животные, грибы и большинство бактерий.

Вдобавок есть организмы, применяющие для питания клетки автотрофный и гетеротрофный способ. К этим организмам относится эвглена зеленая. У нее есть хлоропласты и она может сама производить вещества для питания клетки как автотрофы. Однако в темноте, ее питание осуществляется гетеротрофным способом как у животной клетки.

Фотосинтез

Одним из примеров ассимиляции является процесс фотосинтеза у растений.

Фотосинтез происходит в фотосинтезирующем пигменте хлорофилле хлоропластов листа. Данный пигмент считается чрезмерно активным соединением и реализует поглощение света, начальный запас энергии, также последующая ее трансформация в химическую энергию.

Принято выделять световую и темновую фазы фотосинтеза. Остановимся детальнее на них.

Световая фаза совершается в мембранах хлоропластов. Наступает световая фаза фотосинтеза с поглощения кванта света молекулой хлорофилла. Один из электронов хлорофилла переводится на высочайший энергетический уровень и вступает в возбужденном состоянии. Электроны с большим избытком энергии активизируют разложение воды. Данная процедура, протекающая на начальной стадии фотосинтеза, приобрела наименование фотолиз воды.

В итоге распада совершается отдача гидроксид-ионом (OH - ) своего электрона, а также превращение его в радикал (OH). Радикалы объединяются и формируют воду, свободный кислород. Далее в процессе светового фотосинтеза электрон от гидроксид-иона снова попадает в молекулу хлорофилла, замещая удалившийся электрон. Вследствие этого освобождается энергия, идущая для формирования АТФ.

В процессе световой фазы фотосинтеза совершается превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ. В данной фазе фотосинтеза осуществляется выброс кислорода, являющегося второстепенным продуктом. Он может употребляться дальше растительными клетками при дыхании или выделяться в биосферу.

2. В момент темновой фазы фотосинтеза проистекают трудоемкие ферментативные взаимодействия. Основой считается трансформация молекул углекислого газа до органических соединений. Протекает данная стадия в строме хлоропластов в присутствии продуктов световой реакции.

Основным признаком темновой фазы фотосинтеза считается отсутствие солнечного света.

Начинается данная стадия с проникновения углекислого газа в листья через устьица. Затем он соединяется со своеобразным веществом – акцептором, которым выступает при фотосинтезе пятиуглеродный сахар – рибулозодифосфат. Вследствие этого формируется нестойкое соединение, разлагающиеся на 2 молекулы фосфороглицериновой кислоты. Эти молекулы подвергаются воздействию продуктов светового фотосинтеза, в частности АТФ.

Впоследствии, посредством некоторых переходных стадий, создаются углеводы, а также прочие органические соединения. Данный процесс трансформации углекислого газа в углеводы в темновой фазе фотосинтеза приобрел наименование цикла Кальвина.

В темновом фотосинтезе энергия макроэргических связей АТФ трансформируется в химическую энергию органических соединений. Данные вещества служат пищей для гетеротрофов.

Соответственно, первостепенными веществами темнового и светового фотосинтеза считаются кислород, а также углеводы.

Благодаря данному процессу возможно существование всех живых существ на Земле. Ведь он является одним источником свободного кислорода.

Хемосинтез

Помимо фотосинтеза имеется еще один процесс автотрофной ассимиляции – хемосинтез, типичный отдельным видам микроорганизмов.

Основой энергии для хемосинтеза здесь служит не свет, а окисление отдельных неорганических соединений. Открытие хемосинтеза у таких организмов как бактерии принадлежит русскому ученому С.Н. Виноградскому.

Важнейшей группой данного типа питания считаются нитрифицирующие бактерии. Они могут окислять возникающий при гниении остатков аммиак до нитрита, а также до нитрата. Вследствие этого совершается освобождение энергии, нужной нитрифицирующим бактериям для жизненных функций.

Хемотрофные нитрифицирующие бактерии массово встречаются в природной среде. Они находятся в почве, в различных водоемах. Исполняемые ими процессы считаются частью круговорота азота.

Серобактерии – это еще одни существа, способом питания которых является хемосинтез. Вследствие этого они окисляют сероводород и накапливают в своих клетках серу.

К серобактериям относятся многие автотрофные пурпурные, а также зеленые бактерии.

Серобактерии являются разрушителями горных пород, в связи с формированием серной кислоты в ходе питания. Выделяемая ими едкая жидкость активизирует порчу различных сооружений.

Многочисленные типы серобактерий в ходе питания образуют всевозможные производные серы. Это способствует очищению промышленных сточных вод.

В процессе питания железобактерии переводят железо (II) в железо (III). Освободившаяся энергия употребляется с целью восстановления углекислого газа до органических соединений.

Хемосинтетики – единственные организмы, жизнь которых не связана с освещением. Соответственно они способны существовать в различных местах, осваивая глубины океана или недра земли.


Видеоурок знакомит с жизнедеятельностью клетки. Вы узнаете, что клеткам для нормального существования необходимо питание и дыхание, благодаря чему происходит их рост и развитие. А после дифференциации клетки и выполнения ею определенных функций она делится. В данном уроке приводятся следующие понятия: цитоплазма, движение цитоплазмы, экологические факторы, питание клетки, дыхание клетки, деление клетки, хромосомы, хроматиды.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Жизнедеятельность клетки: рост, развитие, деление"

Клетка — наименьшая единица жизни.

Каждая клетка питается, дышит, реагирует на воздействие внешней среды, выделяет ненужные ей вещества, размножается, то есть живет.

В состав цитоплазмы входят органические и неорганические вещества многих видов. Основное вещество цитоплазмы — вода.

В ней находятся обязательные клеточное компоненты ― органеллы, каждый из которых выполняет какие-то определенные функции.

Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия.

Одно из важнейших проявлений жизнедеятельности клетки — движение цитоплазмы. Благодаря движению цитоплазмы ко всем частям клетки доставляются нужные ей вещества.

Движение цитоплазмы можно наблюдать под микроскопом в клетках листа элодеи. С этим водным растением вы уже знакомы. Элодею часто выращивают в аквариумах.

Чтобы увидеть движение цитоплазмы, надо приготовить препарат с живыми клетками и рассмотреть при увеличении в 300 раз. Для этого окуляр микроскопа должен иметь 20-кратное увеличение, а объектив — 15-кратное (20 х 15 = 300).

Зеленые пластиды клеток листа элодеи, перемещаясь вместе с цитоплазмой, позволяют увидеть медленное движение бесцветной цитоплазмы.

Движение цитоплазмы может замедляться или ускоряться под воздействием экологических факторов окружающей среды — света, температуры, снабжения кислородом, водой.


Если зеленый лист элодеи подсветить ярким светом или положить в слегка подогретую каплю воды, то цитоплазма в клетках такого листа будет двигаться быстрее.

И наоборот, при охлаждении листа скорость движения цитоплазмы замедляется. В этом проявляется реакция живых клеток растения на изменение условий среды обитания.

Движение цитоплазмы свойственно как клеткам растений, так и клеткам животных. Например, благодаря цитоплазматическому потоку перемещается микроскопический одноклеточный организм ─ амёба. Водится он в прудах, во влажной почве, а также во внутренностях животных.

Цитоплазма одной живой клетки обычно не изолирована от цитоплазмы других живых клеток, расположенных рядом. В клеточных оболочках есть поры, через которые нити цитоплазмы соединяются с соседними клетками.

Нередко живые растущие клетки всех органов растения меняют форму. Их оболочки округляются и местами отходят друг от друга. В этих участках межклеточное вещество разрушается, клетки разъединяются. Возникают межклетники, заполненные воздухом.

Так происходит при варке клубней картофеля. В спелых плодах арбузов и томатов, рассыпчатых яблоках клетки также легко разъединяются.


Любая живая клетка питается, то есть захватывает из внешней среды съедобные для себя вещества (в виде отдельных молекул или больших групп молекул ― пищевых частиц, иногда даже целых клеток меньшего размера) и так или иначе использует эти вещества.

Питанием называют совокупность процессов, которые включают поступление в организм, переваривание, всасывание и усвоение им пищевых веществ. В процессе питания организмы получают химические соединения, используемые ими для всех процессов жизнедеятельности.

Питание клетки происходит в результате целого ряда сложных химических реакций. В ходе этих реакций неорганические вещества, поступившие в клетку из внешней среды (углекислый газ, минеральные соли, вода), преобразуются в органические и входят в состав тела самой клетки в виде белков, сахаров, жиров, масел и др.

Большая часть веществ, поступающих из окружающей среды, расходуется не для получения энергии, а на синтез новых веществ, необходимых клетке или организму.

Помимо поступления различных питательных веществ в клетку в ней происходит и другой немаловажный процесс ― дыхание.

Дыхание клетки — это сложный процесс химических реакций, дающих клетке энергию. Реакции протекают в цитоплазме и митохондриях (специальных органеллах ― энергетических станциях клетки).

В ходе этих реакций поступившие в клетку органические вещества (углеводы, липиды, аминокислоты) окисляются кислородом до углекислого газа и воды. В итоге происходит выделение энергии, которая используется клеткой и всем организмом по мере необходимости.

В результате питания и дыхания происходит рост и развитие клетки.

Клетка возникает благодаря делению другой клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы.

В старой клетке обычно имеется одна большая вакуоль, поэтому цитоплазма, в которой находится ядро, прилегает к клеточной оболочке, а молодые содержат много мелких вакуолей. Молодые клетки, в отличие от старых, способны делиться.

Клетка увеличивается в размере (растягивается), а затем дифференцируется. Так происходит ее развитие. То есть в ней появляются какие-то отличия от других клеток. В результате чего клетки начинают выполнять определенные возложенные на них функции.

После дифференциации клетка снова делится. Согласно клеточной теории, возникновение новых клеток происходит путём деления предыдущей, материнской клетки.

Жизнь клетки от момента её появления и до собственного деления, включая само деление, а также гибель клетки называется жизненным циклом клетки.

В результате деления происходит рост организмов.

Деление клетки — сложный процесс, состоящий из ряда этапов, последовательно идущих друг за другом. Главную роль в нем играют события, происходящие в ядре.

Сначала ядро увеличивается, и в нём становятся хорошо заметны тельца (обычно цилиндрической формы) — это хромосомы.


Хромосомы — это очень важные структуры. В них заложена вся необходимая информация об организме. Они передают наследственные признаки от клетки к клетке.

В результате сложного процесса каждая хромосома как бы копирует себя. Образуются две одинаковые части.

Так же происходит изменение и других клеточных структур. Исчезает ядерная оболочка и ядрышко.

Благодаря специальным структурам хромосомы выстраиваются на экваторе клетки. Эти структуры тянут хромосомы с двух сторон к полюсам клетки.

При этом каждая хромосома расщепляется на две хроматиды ─ половинки двойной хромосомы.

Таким образом у двух полюсов клетки оказывается одинаковый генетический наследственный материал. Такой же, как был в клетке до начала деления.

В каждой вновь образованной клетке формируются ядерные оболочки и ядрышки. Ядро молодой клетки располагается в центре.

Всё содержимое также равномерно распределяется между двумя новыми клетками.

Благодаря делению клеток и их растяжению осуществляется рост организма. Например, растения, в отличие от других живых существ, растут всю жизнь. Отсюда и происходит их название ─"растения".

Обмен веществ и энергии считается основным свойством живой природы, потому что благодаря ему обеспечивается рост, развитие, процессы жизнедеятельности и взаимодействие живого организма с окружающей средой.

№ 2. Что происходит в процессе пластического и энергетического обмена?

В процессе пластического обмена происходит синтез из простых веществ более сложных (растрачивается энергия, а образуются вещества). Сопровождается поглощением энергии.

В процессе энергетического обмена происходит распад веществ на простые (вода, углекислый газ), выделение и запас энергии в виде АТФ.

№ 3. Какие функции в организме выполняют белки?

В организме белки выполняют несколько функций:

Двигательная (сокращение мышечных клеток);

Транспортная (переносят вещества через клеточную мембрану);

Сигнальная (передают информацию между тканями, органами и клетками);

Строительная (участвуют в образовании органоидов, клеток, межклеточного вещества);

Регуляторная (контролируют процессы метаболизма);

Ферментативная (катализаторы, которые ускоряют биохимические реакции);

Энергетическая (дополнительный источник энергии);

Запасающая (запасаются для питания клеток);

Защитная (предохраняют организм, уничтожая чужеродные частицы);

Рецепторная (удерживают регуляторы на поверхности или внутри клетки).

№ 4. Какую роль играют жиры?

Жиры – это органические соединения, которые состоят из жирных кислот и глицерина. Они являются важным источником энергии, компонентом структурных элементов клетки (ядра, цитоплазмы и мембраны), предохраняют органы от потери тепла, а от механических повреждений – внутренние органы.

№ 5. Каковы функции углеводов?

Углеводы входят в состав протоплазмы, клеточных и субклеточных структур, а потому выполняют опорную функцию, участвуют в пластических процессах метаболизма. Также углеводы являются непосредственным источником энергии для организма.

№ 6. Как в организме происходит обмен белков, жиров и углеводов?

Белковый обмен – это процесс использования и преобразования белков в организме человека. Белки продуктов, употребленных в пищу, в процессе пищеварения распадаются в ЖКТ до отдельных аминокислот. Потом они всасываются в кровяное русло и по нему разносятся к клеткам, в которых происходит синтез уже новых белков, свойственных организму человека.

Обмен жиров – это процесс преобразования и использования жиров. Под действием ферментов поджелудочной железы и тонкого кишечника жиры всасываются в лимфу в ворсинках тонкого кишечника. После этого с током лимфы они попадают в кровоток, а далее в клетки. Расщепляются жиры до воды и углекислого газа и выводятся через почки и легкие.

Углеводный обмен – это процесс преобразования и использования углеводов. Они поступают в организм человека в виде разных соединений, например, фруктоза, крахмал, сахароза или гликоген. Вещества распадаются в процессе пищеварения до простого вещества – сахара глюкозы, а потом с помощью ворсинок тонкого кишечника попадают в кровь. Основная часть сахара глюкозы окисляется до воды и углекислого газа, которые потом выводятся из организма через почки и легкие. Часть его преобразуется в полисахарид гликоген, а потом откладывается в мышцах и печени.

№ 7. Какие функции выполняет в организме вода?

Вода служит универсальным растворителем для питательных и минеральных веществ (витаминов, аминокислот). Она является необходимой для нормальной работы мышечной и пищеварительной системы. Вода считается идеальной средой для безопасного и быстрого выведения продуктов жизнедеятельности организма, включая токсины. Не менее важна и терморегуляторная функция воды, а также функция переноса электронов по всему организму.

№ 8. Почему концентрация солей во внутренней среде организма и клетках должна поддерживаться на определённом уровне?

Если в клетках концентрация солей будет выше, чем в тканевой жидкости, то вода начнёт поступать в клетки. Соответственно, из-за этого будет нарушена их работа, они начнут разбухать. Если в клетках концентрация солей будет ниже, чем в тканевой жидкости, то вода будет покидать клетки, что чревато их обезвоживанием.

№ 9. Какие элементы относятся к макроэлементам, а какие — к микроэлементам?

Макроэлементы: кальций, хлор, сера, калий, фосфор, магний, натрий, йод.

Микроэлементы: фтор, кобальт, молибден, цинк, хром, селен, марганец, железо.

Стр. 235

№ 1. Объясните, почему каждому человеку необходимо знать свой уровень сахара в крови.

Зная уровень сахара, можно контролировать показатели инсулина в крови, его налаженную выработку. Если сахар будет повышаться, значит, работа организма нарушена и это опасно развитием сахарного диабета.

Читайте также: