Классификация компьютерных систем кратко

Обновлено: 02.07.2024

Существует достаточно много систем классификации компьютеров, каждая из которых применяется в зависимости от требований конкретного пользователя.

Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

Структура — совокупность элементов и их связей.

Различают структуры технических, программных и аппаратно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей

При этом пользователь интересуется не конкретной технической и программной реализацией отдельных модулей, а общими вопросами организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

Архитектура ЭВМ — это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение.

Конкретная реализация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры — схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

Перечисленные специалисты рассматривают понятие архитектуры в более узком смысле. Для них наиболее важные структурные особенности сосредоточены в наборе команд ЭВМ, разграничивающем аппаратные и программные средства.

Пользователи ЭВМ рассматривают архитектуру через более высокоуровневые аспекты, касающиеся их взаимодействия с ЭВМ (человеко-машинного интерфейса), начиная со следующих групп характеристик ЭВМ, определяющих ее структуру:

— технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достовер-ности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

— характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

— состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Важнейшими характеристиками ЭВМ являются быстродействие и производительность.

Эти характеристики тесно связаны.

Быстродействие характеризуется числом определенного типа команд, выполняемых ЭВМ за одну секунду.

Производительность — это объем работ (например, число стандартных программ), выполняемый ЭВМ в единицу времени.

Определение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения.

Одной из альтернативных единиц измерения быстродействия была и остается величина, измеряемая в MIPS (Million Instructions Per Second — миллион операций в секунду). В качестве операций здесь обычно рассматриваются наиболее короткие операции типа сложения.

При решении научно-технических задач в программах резко увеличивается удельный вес операций с плавающей точкой. Для больших однопроцессорных машин в этом случае используеться характеристика быстродействия, выраженная в MFPOPS (Million Floating Point Operations Per Second — миллион операций с плавающей точкой в секунду).

Для персональных ЭВМ этот показатель практически не применяется из-за особенностей решаемых задач и структурных характеристик ЭВМ.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Надежность — это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного времени (стандарт ISO (Международная организация стандартов) -2382/14-78). На надежность влияет компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли).

Точность — возможность различать почти равные значения (стандарт ISO — 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью ЭВМ, которая в зависимости от класса ЭВМ может составлять 32, 64 и 128 двоичных разрядов.

Достоверность — свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.

Первое направление является традиционным — применение ЭВМ для автоматизации вычислений. Отличительной особенностью этого направления является наличие хорошей математической основы. Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она зародилась примерно в шестидесятые годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Такое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и на сегодняшний день она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др. Для выполнения этих работ в настоящее время применяются в основном ПЭВМ.

Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д.

В рамках этого направления во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы.

Статьи к прочтению:

Урок 7Классификация компьютерных сетей


Похожие статьи:

Программы — это упорядоченные последовательности команд. Конечная цель любой компьютерной программы — управление аппаратными средствами. Даже если на…

Операционная система составляет основу программного обеспечения ПК. Операционная система представляет комплекс системных и служебных программных средств,…

После краткого вводного обзора перейдем к основным понятиям и их определениям. Прежде всего, дадим определение операционной системы.

Операционная система ( ОС, в англоязычном варианте - operating system ) – базовое системное программное обеспечение , управляющее работой компьютера и являющееся посредником ( интерфейсом ) между аппаратурой ( hardware ), прикладным программным обеспечением ( application software ) и пользователем компьютера ( user ). Фактически операционная система с точки зрения пользователя– это как бы продолжение аппаратуры, надстройка над ней, обеспечивающая более удобное, надежное и безопасное использование компьютеров и компьютерных сетей.

Основные цели работы операционной системы следующие.

  1. Обеспечение удобства, эффективности, надежности, безопасности выполнения пользовательских программ. Для пользователя самое главное – чтобы его программа работала, вела себя предсказуемо , выдавала необходимые ему правильные результаты, не давала сбоев, не подвергалась внешним атакам. Вычислительную среду для такого выполнения программ и обеспечивает операционная система.
  2. Обеспечение удобства, эффективности, надежности, безопасности использования компьютера. Операционная система обеспечивает максимальную полезность и эффективность использования компьютера и его ресурсов, обрабатывает прерывания, защищает компьютер от сбоев, отказов и хакерских атак . Эта деятельность ОС может быть не столь заметной для пользователя, но она осуществляется постоянно.
  3. Обеспечение удобства, эффективности, надежности, безопасности использования сетевых, дисковых и других внешних устройств, подключенных к компьютеру. Особая функция операционной системы, без которой невозможно использовать компьютер, - это работа с внешними устройствами. Например, ОС обрабатывает любое обращение к жесткому диску, обеспечивая работу соответствующего драйвера (низкоуровневой программы для обмена информацией с диском) и контроллера (специализированного процессора, выполняющего команды ввода-вывода с диском). Любая "флэшка", вставленная в USB- слот компьютера, распознается операционной системой, получает свое логическое имя (в системе Windows – в виде буквы, например, G) и становится частью файловой системы компьютера на все время, пока она не будет извлечена (демонтирована).
  4. Подчеркнем особую важность среди функций современных ОС обеспечения безопасности, надежности и защиты данных. Следует учитывать, что компьютер и операционная система работают в сетевом окружении, в котором постоянно возможны и фактически происходят атаки хакеров и их программ, ставящие своей целью нарушение работы компьютера, "взлом" конфиденциальных данных пользователя, хранящихся на нем, похищение логинов, паролей, использование компьютера как "робота" для рассылки реклам или вирусов и др. В связи с этим в 2002 г. фирма Microsoft объявила инициативу по надежным и безопасным вычислениям (trustworthy computing initiative ), целью которой является повышение надежности и безопасности всего программного обеспечения, прежде всего – операционных систем. В данном курсе мы будем подробно останавливаться на том, какие действия по обеспечению надежности, безопасности и защите данных предпринимают современные ОС.

Компоненты компьютерной системы

Чтобы лучше понять место и роль операционной системы в процессе вычислений, рассмотрим компьютерную систему в целом. Она состоит из следующих компонентов:

  1. Аппаратура (hardware) компьютера, основные части которой – центральный процессор (Central Processor Unit - CPU ), выполняющий команды (инструкции) компьютера; память (memory),хранящая данные и программы, и устройства ввода- вывода, или внешние устройства (input-output devices, I/O devices ), обеспечивающие ввод информации в компьютер и вывод результатов работы программ в форме, воспринимаемой пользователем-человеком или другими программами. Часто на программистском слэнге аппаратуру называют "железом".
  2. Операционная система (operating system) – основной предмет нашего курса; системное программное обеспечение, управляющее использованием аппаратуры компьютера различными программами и пользователями.
  3. Прикладное программное обеспечение (applications software) – программы, предназначенные для решения различных классов задач. К ним относятся, в частности, компиляторы, обеспечивающие трансляцию программ с языков программирования, например, C++, в машинный код (команды); системы управления базами данных (СУБД ); графические библиотеки, игровые программы, офисные программы. Прикладное программное обеспечение образует следующий, более высокий уровень, по сравнению с операционной системой, и позволяет решать на компьютере различные прикладные и повседневные задачи.
  4. Пользователи (users) – люди и другие компьютеры. Отнесение пользователя-человека к компонентам компьютерной системы - вовсе не шутка, а реальность: любой пользователь фактически становится частью вычислительной системы в процессе своей работы на компьютере, так как должен подчиняться определенным строгим правилам, нарушение которых приведет к ошибкам или невозможности использования компьютера, и выполнять большой объем типовых рутинных действий – почти как сам компьютер. Одна из важных функций ОС как раз и состоит в том, чтобы избавить пользователя от большей части такой рутинной работы (например, резервного копирования файлов ) и позволить ему сосредоточиться на работе творческой. Другие компьютеры в сети также могут играть роль пользователей ( клиентов ) по отношению к данному компьютеру, выступающему в роли сервера, используемого, например, для хранения файлов или выполнения больших программ.

Девизом фирмы Sun Microsystems еще в 1982 г., при ее создании, стал афоризм " The network is the computer " ( Сеть – это компьютер ). Эту истину следует помнить всем пользователям компьютеров и их операционных систем и шире использовать возможности компьютерных сетей, распределяя различные функции между ее различными компьютерами (или хостами – hosts, как на компьютерном слэнге принято называть компьютеры в сети). Изолированный от сети компьютер ныне – это "каменный век". Отсюда – неразрывная связь операционных систем и сетей.

Общая картина функционирования компьютерной системы

Общая картина функционирования компьютерной системы

Пользователям компьютера доступны верхние уровни программного обеспечения – системные и прикладные программы (например, компиляторы, текстовые редакторы, системы управления базами данных ). Эти программы взаимодействуют с операционной системой, которая, в свою очередь , управляет работой компьютера.

Классификация компьютерных систем

Для того, чтобы представить себе разнообразие и масштабируемость операционных систем, рассмотрим прежде всего классификацию современных компьютерных систем, для которых разрабатываются и используются ОС – от суперкомпьютеров до мобильных устройств, - и суммируем требования к ОС для этих классов компьютеров.

Суперкомпьютеры (super-computers) – мощные многопроцессорные компьютеры, наиболее современные из которых имеют производительность до нескольких petaflops (10 15 вещественных операций в секунду; аббревиатура flops расшифровывается как floating-point operations per second ). Пример – суперкомпьютер "Ломоносов", установленный в МГУ. Суперкомпьютеры используются для вычислений, требующих больших вычислительных мощностей, сверхвысокой производительности и большого объема памяти. В реальной практике это прежде всего задачи моделирования – например, моделирования климата в регионе и прогнозирования на основе построенной модели погоды в данном регионе на ближайшие дни. Особенностью суперкомпьютеров является их параллельная архитектура – как правило, все они являются многопроцессорными. Соответственно, ОС для суперкомпьютеров должны поддерживать распараллеливание решения задач и синхронизацию параллельных процессов , одновременно решающих подзадачи некоторой программы.

Многоцелевые компьютеры, или компьютеры общего назначения (mainframes) – традиционное историческое название для компьютеров, распространенных в 1950-х – 1970-х гг., еще до эпохи всеобщего распространения персональных компьютеров. Именно для mainframe -компьютеров создавались первые ОС. Типичные примеры таких компьютеров: IBM 360/370; из отечественных – М-220, БЭСМ-6. На таких компьютерах решались все необходимые задачи – от расчета зарплаты сотрудников в организации до расчета траекторий космических ракет. Подобный компьютер выглядел достаточно неуклюже и громоздко и мог занимать целый большой зал. Вспомните, например. огромный компьютер HAL на космическом корабле в фантастическом фильме 1960-х гг. Стэнли Кубрика "Космическая одиссея 2001 г." Но никакие фантасты не смогли предвидеть прогресса компьютерной техники XXI века – прежде всего, того, что мощный компьютер будет не занимать целую комнату, а помещаться в небольшом ящике. Параметры ранних mainframe -компьютеров были весьма скромными: быстродействие - несколько тысяч операций в секунду, оперативная память – несколько тысяч ячеек (слов). Недостаточно удобным был пользовательский интерфейс (интерактивное взаимодействие с компьютерами было реализовано гораздо позже, в 1960-х гг.). Тем не менее, на таких компьютерах решались весьма серьезные задачи оборонного и космического назначения. С появлением персональных и портативных компьютеров классические mainframe -компьютеры ушли в прошлое. Однако следует подчеркнуть, что в именно в операционных системах для mainframe -компьютеров были реализованы все основные методы и алгоритмы, рассмотренные в данном курсе, которые впоследствии были использованы в ОС для персональных, карманных компьютеров и мобильных устройств.

Кластеры компьютеров (computer clusters) – группы компьютеров, физически расположенные рядом и соединенные друг с другом высокоскоростными шинами и линиями связи. Кластеры компьютеров используются для высокопроизводительных параллельных вычислений . Наиболее известны в мире компьютерные кластеры, расположенные в исследовательском центре CERN (Швейцария) – том самом, где находится большой адронный коллайдер. Как правило, компьютерные кластеры располагаются в исследовательских институтах и в университетах, в том числе, например, в Петродворцовом учебно-научном комплексе СПбГУ они используются в Петродворцовом телекоммуникационном центре (ПТЦ), на нашем математико-механическом и на физическом факультетах. Операционная система для кластеров должна, помимо общих возможностей, предоставлять средства для конфигурирования кластера, управления компьютерами (процессорами), входящими в него, распараллеливания решения задач между компьютерами кластера и мониторинга кластерной компьютерной системы. Примерами таких ОС являются ОС фирмы Microsoft – Windows 2003 for clusters ; Windows 2008 High-Performance Computing ( HPC ).

Настольные компьютеры (desktops) – это наиболее распространенные в настоящее время компьютеры, которыми пользуются дома или на работе все люди, от школьников и студентов до домашних хозяек. Такой компьютер размещается на рабочем столе и состоит из монитора, системного блока, клавиатуры и мыши. Параметры современного (2010 г.) настольного компьютера, наиболее приемлемые для использования современных ОС: быстродействие процессора 1 – 3 ГГц, оперативная память – 1 – 8 гигабайт и более, объем жесткого диска ( hard disk drive – HDD ) – 200 Гб – 1 Тб и более (1 терабайт, Тб = 1024 Гб). Все разнообразие современных операционных систем ( Windows , Linux и др.) – к услугам пользователей настольных компьютеров. При необходимости на настольном компьютере можно установить две или более операционных системы, разделив его дисковую память на несколько разделов ( partitions ) и установив на каждый из них свою операционную систему, так что при включении компьютера пользователю предоставляется стартовое меню , из которого он выбирает нужную операционную систему для загрузки.

Портативные компьютеры (laptops, notebooks – дословно "компьютеры, помещающиеся на коленях"; "компьютеры-тетрадки") – это миниатюрные компьютеры, по своим параметрам не уступающие настольным, но по своим размерам свободно помещающиеся в небольшую сумку или рюкзак или, например, на коленях пользователя, летящего в самолете в командировку и не желающего терять времени даром. Ноутбуки стоят обычно в несколько раз дороже, чем настольные компьютеры с аналогичными характеристиками. На ноутбуках используются те же операционные системы, что и для настольных компьютеров (например, Windows или MacOS). Характерными чертами портативных компьютеров являются всевозможные встроенные порты и адаптеры для беспроводной связи: Wi-Fi (официально IEEE 802.11 ) – вид радиосвязи, позволяющая работать в беспроводной сети с производительностью 10-100 мегабит в секунду (используется обычно на конференциях, в гостиницах, на вокзалах, аэропортах – т.е. в зоне радиусом в несколько сотен метров от источника приема-передачи); Bluetooth – также радиосвязь на более коротких расстояниях (10 – 100 м для Bluetooth 3.0), используемая для взаимодействия компьютера с мобильным телефоном, наушниками, плейером и др. Внешние устройства (дополнительные жесткие диски, принтеры, иногда даже DVD-ROM ) подключаются к ноутбуку через порты USB . Еще лет 10 назад на ноутбуках активно использовались инфракрасные порты ( IrDA ), которые, однако, неудобны, так как требуют присутствия "ответного" IrDA – порта другого устройства на расстоянии 20-30 см от порта ноутбука, при отсутствии между ними препятствий. Другая характерная черта ноутбуков – это наличие кард-ридеров – портов для чтения всевозможных карт памяти, используемых в мобильных телефонах или цифровых фотокамерах; обеспечивается также интерфейс FireWire (официально – IEEE 1394 ) для подключения цифровой видеокамеры; таким образом, ноутбуки хорошо приспособлены для ввода, обработки и воспроизведения обработки мультимедийной информации. Ныне портативный компьютер имеется почти у каждого студента, что они и используют для подготовки к ответу на экзамене, либо для решения задач практикума, иногда прямо в университетском буфете. Один из критических параметров ноутбука – время работы его батарей без подзарядки; очень хорошо, если это время составляет порядка 10 часов, что пока сравнительно редко; на компьютерах, используемых автором, это время составляет не более 5 часов. Популярная разновидность ноутбука ныне – это нетбук - ноутбук, предназначенный для работы в сети, обычно менее мощный и поэтому более дешевый, а также более миниатюрный.

Карманные портативные компьютеры и органайзеры (КПК, handhelds, personal digital assistants – PDA) – это "игрушки для взрослых" в виде миниатюрного компьютера, помещающегося на ладони или в кармане, но по своему быстродействию иногда не уступающего ноутбуку. При всей привлекательности, серьезные недостатки КПК, с точки зрения автора, - это неудобство ввода информации (приходится пользоваться палочкой- стилусом, - ведь не носить же с собой еще и громоздкую клавиатуру, - либо микроскопической выдвижной клавиатурой, на которой фактически тем же стилусом только и можно работать), а также неудобство чтения информации на маленьком экране. Автор уже "наигрался" в подобные КПК, - например, типа PalmPilot, - предпочитает пользоваться ноутбуками, а самым надежным органайзером считает . небольшой бумажный блокнот. Однако молодежь приглашается к этой увлекательной интересной игре – через все в жизни нужно пройти. Современные КПК имеют фактически те же порты и адаптеры, что и ноутбуки – Wi-Fi , Bluetooth , IrDA , USB . Операционные системы для КПК аналогичны ОС для ноутбуков, но все же учитывают более жесткие ограничения КПК по объему оперативной памяти. В настоящее время для КПК широко используется ОС Windows Mobile – аналог Windows для мобильных устройств . До недавнего времени была также широко распространена PalmOS для органайзеров типа PalmPilot фирмы 3COM . Разумеется, для КПК имеется аппаратура и программное обеспечение для подключения к ноутбуку или настольному компьютеру с целью синхронизации данных, что обеспечивает дополнительную надежность .

Носимые компьютеры (wearable computers) – для повседневной жизни достаточно экзотические устройства, однако для специальных применений (например, встроенные в скафандр космонавта или в кардиостимулятор) они жизненно важны. Разумеется, их память и быстродействие значительно меньше, чем у настольных компьютеров, но критическим фактором является их сверхвысокая надежность , а для их операционных систем и прочего программного обеспечения – минимальное возможное время ответа (response time) – интервал , в течение которого система обрабатывает информацию от датчиков, от пользователя или из сети, превышение которого грозит катастрофическими последствиями. С этой точки зрения, ОС для носимых компьютеров можно отнести к системам реального времени.

Распределенные системы (distributed systems) – это системы, состоящие из нескольких компьютеров, объединенных в проводную или беспроводную сеть . Фактически, таковы ныне все компьютерные системы (вспомните девиз "Сеть – это компьютер "). Все операционные системы должны, таким образом, поддерживать распределенный режим работы, средства сетевого взаимодействие, высокоскоростную надежную передачу информации через сеть . Все эти вопросы подробно рассмотрены в данном курсе.

Системы реального времени (real-time systems) – вычислительные системы, предназначенные для управления различными техническими, военными и другими объектами в режиме реального времени. Характеризуются основным требованием к аппаратуре и программному обеспечению, в том числе к операционной системе: недопустимость превышения времени ответа системы, т.е. ожидаемого времени выполнения типичной операции системы. Для ОС требования реального времени накладывают весьма жесткие ограничения – например, в основном цикле работы системы недопустимы прерывания (так как они приводят к недопустимым временным затратам на их обработку). Системы реального времени – особая весьма серьезная и специфическая область, изучение которой выходит за рамки данного курса.

Приведенный обзор дает некоторое представление о разнообразии компьютерных систем в наше время. Для каждой из них должна быть разработана адекватная операционная система .

Компьютерная система: что это такое

Когда мы используем компьютер, он работает, потому что он состоит из серии компьютерных элементов , начиная с операционной системы. Чтобы понять, как работает эта ОС, сначала необходимо узнать, что такое компьютерная система и как она состоит.

Важно помнить, что компьютерная система теперь стала очень важной частью для человека, учитывая, что в настоящее время все или почти все, что удается через компьютер . Поэтому невозможно представить себе общество отдельно от компьютера .

В соответствии с этим, здесь мы собираемся научить вас, что это такое, для чего оно? и как это работает? Компьютерная система компьютера и каковы все ее элементы.

Что такое компьютерная система и для чего она нужна?

компьютерная система или также известная под аббревиатурой SI, -это система, которая отвечает за хранение и обработку информации , которая генерируется на компьютере Для этого у него есть набор взаимосвязанных частей , таких как оборудование, программное обеспечение и пользователь. Все они необходимы для того, чтобы команда работала на человека.

Принимая во внимание, что именно пользователь требует обработанной информации и, кроме того, тот, кто имеет абсолютный контроль над всем, что происходит или выполняется в система Таким образом, ДА выполняет функцию сбора всех данных, их обработки и последующей передачи всей информации после ее Обработано на 100% .

Какие части составляют компьютерную систему?

¿Cuáles son todas las partes que componen un sistema informático?

Как мы уже упоминали, SI состоит из ряда элементов или частей, которые его составляют и которые абсолютно необходимы для его выполнения. Таким образом, он отвечает за возможность управлять аппаратными ресурсами и, в свою очередь, за возможность контролировать все приложения , чтобы пользователь мог получить наилучшие результаты.

Именно поэтому здесь мы расскажем о каждой из ее частей, таких как аппаратное и программное обеспечение .

Программное обеспечение

Этот компонент ДА состоит из набора программ, которые были созданы для выполнения определенного действия в системе. Эти действия могут быть выполнены одни и те же компьютерные компании или просто будут выполняться пользователями .

Другими словами, именно программы отвечают за предоставление инструкций компьютеру , чтобы он мог общаться и выполнять серию соответствующих действий. . В этом случае к программному обеспечению нельзя прикоснуться .

Также важно упомянуть, что этот компонент является логической частью компьютерной системы , поскольку именно он позволяет оборудованию функционировать . Следовательно, программное обеспечение состоит не только из программ , но также из информации пользователя и всех обрабатываемых данных , все это > нематериальный, то есть, что ничего из этого мы не можем увидеть или потрогать.

Аппаратное обеспечение

В отличие от программного обеспечения , когда мы ссылаемся на аппаратное обеспечение , мы просто говорим обо всем, что мы можем увидеть и коснуться на компьютере. Следовательно, это относится к физическим частям ПК , таким как микросхемы, принтеры, кабели, мониторы, планшеты, интегральные схемы, жесткий диск . >, среди многих других элементов.

Следовательно, компьютер-это компьютер, который отвечает за постоянную обработку информации в в очень короткие сроки . Если требуется программные инструкции , которые выполняются одним из устройств, подключенных к оборудованию, в этом случае аппаратное обеспечение . Как правило, эти компоненты выполняют следующие функции: ввод, обработка, хранение и вывод данных .

Прошивка

Он присутствует на любом компьютере, который состоит из аппаратного и программного обеспечения. Это относится к инструкциям компьютерной программы , которые хранятся во флэш-памяти или ПЗУ . Эти инструкции отвечают за настройку логики во время управления цепями какого-либо устройства.

Вот как прошивка является элементом аппаратного обеспечения , потому что она интегрирована в электронику. Однако он также считается частью программного обеспечения , поскольку он разработан на языке программирования . В случае прошивок они должны выполнять три конкретные функции для их хорошей производительности.

Какие существуют разные типы компьютерных систем?

В настоящее время существуют различные типы компьютерных систем , где каждая из них оказывает фундаментальное действие на работу электронной машины. Учитывая, что без них, почти никакая деятельность не может быть выполнена.

Из-за всех функций, которые они выполняют, важно, чтобы была классификация в соответствии с типом и его функцией. Поэтому здесь мы научим вас , как классифицировать SI, в настоящее время существует:

  • Система поддержки принятия решений: Эти системы также известны как Система поддержки принятия решений или Система поддержки принятия решений или их сокращение DSS.

Он предназначен для выполнения процессов принятия решений и может использоваться руководством для решения проблем и обеспечения возможности выберите наиболее жизнеспособный вариант и сможете прогнозировать будущие сценарии и, таким образом, будьте готовы к любой ситуации:

  • Система делового сотрудничества : также известная как Планирование корпоративных ресурсов или сокращенно ERP , они являются деловое сотрудничество используется большинством компаний по всему миру, поскольку различным компаниям легче управлять всей информацией, которая распространяется внутри компании .
  • Информационная система для руководителей : эта система способна предоставить пользователям немедленный доступ ко всей важной информации, которая обрабатывается внутри компании , из внешних или внутренних источников . Вся эта информация обычно представлена ​​по-разному.

В основном все эти системы разрабатываются для того, чтобы генерировать информацию любого типа , которая способна удовлетворить проблемы пользователей и реагировать на них. То есть они становятся упрощенной версией , где представлены все операции, выполняемые в компании:

  • Система обработки транзакций: . Эти компьютерные системы предназначены для управления всем, что связано с операционным уровнем компании . >. Это система, которая отвечает за обработку транзакций системы , которая хранит и обрабатывает все транзакции, сделанные в течение дня, и которые необходимы для правильной обработки компании.
  • Система управления информацией: эти СИ могут управлять и хранить все многоуровневые данные , чтобы иметь возможность создать более четкое видение во время принятия решений . Он специализируется на генерации отчетов , которые предоставляют информацию для оперативного управления и контролируют все действия в процессе транзакций компании .
  • Система управления бизнес-процессами: Эти системы отвечают за мониторинг, управление и контроль любого процесса индустриализации, который выполнять. Именно в этом типе компьютерной системы обрабатываются электронные датчики, подключенные к компьютерам , чтобы мог установить прямой контроль и в то же время иметь возможность контролируйте все процессы в машинах .

Как работает компьютер? Понимание основы его работы

¿Cómo funciona un ordenador? Entendiendo las bases de su funcionamiento

Но для всего этого , кто отвечает за обработку всех этих входных и выходных данных внутри компьютера? То же самое обрабатывается микропроцессором или также называется ЦП. Это главным образом то, что он собирает все отправляемые данные, там они организуются и затем сохраняются , чтобы их можно было преобразовать в выходной элемент , который превращаются в информацию, понятную пользователю.

Также важно помнить, что обработка начинается с набора инструкций, которые получает процессор, , где он говорит вам, что делать. Это делается с помощью клавиатуры или любого другого компонента ввода . Самое важное в этом ДА заключается в том, что он очень гибкий , что позволяет машинам выполнять различные действия , для этого они загружают только программы хранения.

Существует достаточно много систем классификации компьютеров, каждая из которых применяется в зависимости от требований конкретного пользователя.

Требования пользователей к выполнению вычислительных работ удовлетворяются специальным подбором и настройкой технических и программных средств. Обычно эти средства взаимосвязаны и объединяются в одну структуру.

Структура — совокупность элементов и их связей.

Различают структуры технических, программных и аппаратно-программных средств. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных модулей

При этом пользователь интересуется не конкретной технической и программной реализацией отдельных модулей, а общими вопросами организации вычислений. Последнее включается в понятие архитектуры ЭВМ, содержание которого достаточно обширно.

Архитектура ЭВМ — это многоуровневая иерархия аппаратно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение.

Конкретная реализация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры — схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

Перечисленные специалисты рассматривают понятие архитектуры в более узком смысле. Для них наиболее важные структурные особенности сосредоточены в наборе команд ЭВМ, разграничивающем аппаратные и программные средства.

Пользователи ЭВМ рассматривают архитектуру через более высокоуровневые аспекты, касающиеся их взаимодействия с ЭВМ (человеко-машинного интерфейса), начиная со следующих групп характеристик ЭВМ, определяющих ее структуру:

— технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достовер-ности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

— характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

— состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Важнейшими характеристиками ЭВМ являются быстродействие и производительность.

Эти характеристики тесно связаны.

Быстродействие характеризуется числом определенного типа команд, выполняемых ЭВМ за одну секунду.

Производительность — это объем работ (например, число стандартных программ), выполняемый ЭВМ в единицу времени.

Определение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения.

Одной из альтернативных единиц измерения быстродействия была и остается величина, измеряемая в MIPS (Million Instructions Per Second — миллион операций в секунду). В качестве операций здесь обычно рассматриваются наиболее короткие операции типа сложения.

При решении научно-технических задач в программах резко увеличивается удельный вес операций с плавающей точкой. Для больших однопроцессорных машин в этом случае используеться характеристика быстродействия, выраженная в MFPOPS (Million Floating Point Operations Per Second — миллион операций с плавающей точкой в секунду).

Для персональных ЭВМ этот показатель практически не применяется из-за особенностей решаемых задач и структурных характеристик ЭВМ.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Надежность — это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного времени (стандарт ISO (Международная организация стандартов) -2382/14-78). На надежность влияет компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли).

Точность — возможность различать почти равные значения (стандарт ISO — 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью ЭВМ, которая в зависимости от класса ЭВМ может составлять 32, 64 и 128 двоичных разрядов.

Достоверность — свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.

Первое направление является традиционным — применение ЭВМ для автоматизации вычислений. Отличительной особенностью этого направления является наличие хорошей математической основы. Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она зародилась примерно в шестидесятые годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Такое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.

Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и на сегодняшний день она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др. Для выполнения этих работ в настоящее время применяются в основном ПЭВМ.

Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д.

В рамках этого направления во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы.

Статьи к прочтению:

Урок 7Классификация компьютерных сетей


Похожие статьи:

Программы — это упорядоченные последовательности команд. Конечная цель любой компьютерной программы — управление аппаратными средствами. Даже если на…

Операционная система составляет основу программного обеспечения ПК. Операционная система представляет комплекс системных и служебных программных средств,…

Читайте также: