Каковы условия необходимые для процесса самовозбуждения генератора постоянного тока кратко

Обновлено: 05.07.2024

Самовозбуждение генераторов постоянного тока протекает одинаковым образом при любой схеме возбуждения. Рассмотрим процесс самовозбуждения наиболее распространенного генератора параллельного возбуждения ( рис. 1.216), имея в виду, что в генераторах других типов процесс самовозбуждения протекает таким же образом. Этим магнитным потоком в обмотке вращающегося якоря индуктируется эдс оет, составляющая несколько процентов номинального напряжения машины. [1]

Самовозбуждение генераторов постоянного тока заключается в том, что генератор не требует отдельного источника тока для питания обмотки возбуждения, как в случае машин с независимым возбуждением. Оно основано на явлении остаточного магнетизма. Для самовозбуждения генератора необходимо, чтобы ток, протекающий по обмотке возбуждения, усиливал поле остаточного магнетизма, и сопротивление цепи обмотки возбуждения было ниже некоторой критической величины. [2]

Процесс самовозбуждения генераторов постоянного тока протекает одинаково при любой схеме возбуждения. Так, например, в генераторах параллельного возбуждения, получивших наиболее широкое применение, процесс самовозбуждения протекает следующим образом. [3]

Процесс самовозбуждения генераторов постоянного тока протекает одинаково при любой схеме возбуждения. [5]

Процесс самовозбуждения генераторов постоянного тока притекает одинаково при любой схеме возбуждения. Рассмотрим процесс самовозбуждения генератора параллельного возбуждения, получившего наиболее широкое применение. [6]

Как возникает самовозбуждение генератора постоянного тока . [7]

Основные условия самовозбуждения генератора постоянного тока параллельного возбуждения таковы: а) наличие в стали полюсов остаточного магнетизма; б) правильное ( согласное) соединение обмотки возбуждения ц обмотки якоря, с теш чтобы магнитный поток. [8]

Почему может не наступить самовозбуждение генератора постоянного тока . [9]

Какие условия необходимы для того, чтобы произошло самовозбуждение генератора постоянного тока с параллельным возбуждением. [10]

Прежде всего разберем а примере этой машины принцип самовозбуждения генераторов постоянного тока . [11]

Прежде всего разберем на примере этой машины принцип самовозбуждения генераторов постоянного тока . [12]

Как только агрегат достигнет установившейся скорости вращения и произойдет самовозбуждение генератора постоянного тока , быстро и точно произвести отсчеты по приборам, присоединенным к обмотке возбуждения при двух-трех положениях ползунка регулировочного реостата гр. [13]

Операторный и классический методы решения задач широко применяются в тех случаях, когда системы дифференциальных уравнений равновесия напряжений контуров и уравнения моментов - линейные. Если хотя бы одно уравнение нелинейно, то такая система уравнений решения в общем виде не имеет. Нелинейные системы дифференциальных уравнений решаются численными методами. В ряде случаев решение нелинейных дифференциальных уравнений можно упростить, применяя графоаналитические методы решения, например при исследовании самовозбуждения генератора постоянного тока . [15]


ждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупро­водниковый преобразователь (ПП) преобразуется в энергию по­стоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины

На рис. 19.2, б представлена структурная схема автоматиче­ской системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобра­зователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток пода­ется в обмотку возбуждения. Управление тиристорным преобразо­вателем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряже­ния на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и ти-ристорного преобразователя ТП от перенапряжений и токовой пе­регрузки.

В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включае­мые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД ти-ристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбужде­ния с допустимым значением постоянного тока 320 А.

Условия самовозбуждения:

1. Наличие остаточного магнитного поля на полюсах машины;

2. Определенная полярность подключения обмотки возбуждения к обмотке якоря;

3. Заданное сопротивление обмотки возбуждения:

21. Реакция якоря в машинах постоянного тока.

При работе машины в режиме х.х. ток в обмотке якоря прак­тически отсутствует, а поэтому в машине действует лишь МДС обмотки возбуждения.Магнитное поле машины в этом случае симметрично относительно оси полюсов (рис. 26.4, а). График распределения магнитной индукции в воздушном зазоре представ­ляет собой кривую, близкую к трапеции.

Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря Ра. До­пустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет иметь вид, представленный на рис. 26.4, б. Из этого рисунка видно, что МДС обмотки якоря направлена по линии щеток (в данном случае по геометрической нейтрали). Несмотря на то что якорь вращается, пространственное положение МДС обмотки яко­ря остается неизменным, так как направление этой МДС опреде­ляется положением щеток.

Наибольшее значение МДС якоря — на линии щеток (рис. 26.4, б, кривая 7), а по оси полюсов эта МДС равна нулю. Однако распределение магнитной индукции в зазоре от потока якоря сов­падает с графиком МДС лишь в пределах полюсных наконечни­ков. В межполюсном пространстве магнитная индукция резко ос­лабляется (рис. 26.4, б, кривая 2). Объясняется это увеличением магнитного сопротивления потоку якоря в межполюсном про­странстве. МДС обмотки якоря на пару полюсов пропорциональна числу проводников в обмотке N и току якоря 1а:

Введем понятие линейной нагрузки (А/м), представляющей со­бой суммарный ток якоря, приходящийся на единицу длины его окружности по наружному диаметру якоря Оа:

Таким образом, в нагру­женной машине постоянного тока действуют две МДС: возбужде­ния Рм и якоряРа.

Влияние МДС обмотки якоря на магнитное поле машины на­зывают реакцией якоря. Реакция якоря искажает магнитное поле







машины, делает его несимметричным относительно оси полюсов.

На рис. 26.4, в показано распределение магнитных силовых линий результирующего поля машины, работающей в генератор­ном режиме при вращении якоря по часовой стрелке. Такое же распределение магнитных линий соответствует работе машины в режиме двигателя, но при вращении якоря против часовой стрел­ки. Если принять, что магнитная система машины не насыще­на, то реакция якоря будет лишь искажать результирующий маг­нитный поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря сов­падает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом резуль­тирующий магнитный поток как бы поворачивается поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря сов­падает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом резуль­тирующий магнитный поток как бы поворачивается относительно оси главных полюсов на некоторый угол, а физическая нейтраль тт' (линия, проходящая через точки на якоре, в которых индукция равна нулю) смещается относительно геометрической нейтрали пп' на угол а. Чем больше нагрузка машины, тем сильнее искаже­ние результирующего поля, а следовательно, тем больше угол смещения физической нейтрали. При работе машины в режиме генератора физическая нейтраль смещается по направлению вращения якоря, а при работе двигателем — против вращения якоря.

Искажение результирующего поля машины неблагоприятно отражается на ее рабочих свойствах. Во-первых, сдвиг физиче­ской нейтрали относительно геометрической приводит к более тяжелым условиям работы щеточного контакта и может послу­жить причиной усиления искрения на коллекторе Во-вторых, искажение результирующего поля машины влечет за собой перераспределение магнитной индукции в воздушном зазоре машины. На рис. 26.4, в показан график распределения результирующего поля в зазоре, полученный совмещением кривых, изображенных на рис. 26.4, а, б. Из этого графика сле­дует, что магнитная индукция в зазоре машины распределяется несимметрично относительно оси полюсов, резко увеличиваясь под подмагниченными краями полюсов. Это приводит к тому, что мгновенные значения ЭДС секций обмотки якоря в момен­ты попадания их пазовых сторон в зоны максимальных значе­ний магнитной индукции (под подмагниченные края полюсных наконечников) резко повышаются. В результате возрастает на­пряжение между смежными коллекторными пластинами Цк. При значительных нагрузках машины напряжение ик может превзойти допустимые пределы (см. § 25.5) и миканитовая про­кладка между смежными пластинами будет перекрыта электри­ческой дугой. Имеющиеся на коллекторе частицы графита бу­дут способствовать развитию электрической дуги, что приведет к возникновению

мощной электрической дуги, перекрывающей весь коллектор или или значительную его часть, — явления чрез­вычайно опасного


Рис. 26.5. Разложение МДС обмотки якоря на продольную и поперечную составляющие

Таковы последствия влияния реакции якоря на машину с не­насыщенной магнитной системой. Если же магнитная система машины насыщена, что имеет место у большинства электриче­ских машин, то подмагничивание одного края полюсного нако­нечника и находящегося под ним зубцового слоя якоря происхо­дит в меньшей степени, чем размагничивание другого края и

находящегося под ним

зубцового слоя якоря. Это благоприятно ска­зывается на распреде­лении магнитной ин­дукции в зазоре, кото­рое становится более равномерным, так как максимальное значение индукции под подмагничиваемым краем полюсного наконеч­ника уменьшается на величину, определяе­мую высотой участка 1 на рис. 26.4, в. Однако результирующий магнитный поток машины при этом уменьшается. Таким образом, реакция якоря в машине с насыщенной магнитной системой размагничивает машину (так же как и у синхронной машины при активной на­грузке). В результате ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вра­щающий момент.

В синхронных генераторах, в том числе гидрогенераторах получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбу-


ждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупро­водниковый преобразователь (ПП) преобразуется в энергию по­стоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины

На рис. 19.2, б представлена структурная схема автоматиче­ской системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобра­зователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток пода­ется в обмотку возбуждения. Управление тиристорным преобразо­вателем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряже­ния на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и ти-ристорного преобразователя ТП от перенапряжений и токовой пе­регрузки.

В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включае­мые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД ти-ристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбужде­ния с допустимым значением постоянного тока 320 А.

Условия самовозбуждения:

1. Наличие остаточного магнитного поля на полюсах машины;

2. Определенная полярность подключения обмотки возбуждения к обмотке якоря;

3. Заданное сопротивление обмотки возбуждения:

21. Реакция якоря в машинах постоянного тока.

При работе машины в режиме х.х. ток в обмотке якоря прак­тически отсутствует, а поэтому в машине действует лишь МДС обмотки возбуждения.Магнитное поле машины в этом случае симметрично относительно оси полюсов (рис. 26.4, а). График распределения магнитной индукции в воздушном зазоре представ­ляет собой кривую, близкую к трапеции.

Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря Ра. До­пустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет иметь вид, представленный на рис. 26.4, б. Из этого рисунка видно, что МДС обмотки якоря направлена по линии щеток (в данном случае по геометрической нейтрали). Несмотря на то что якорь вращается, пространственное положение МДС обмотки яко­ря остается неизменным, так как направление этой МДС опреде­ляется положением щеток.

Наибольшее значение МДС якоря — на линии щеток (рис. 26.4, б, кривая 7), а по оси полюсов эта МДС равна нулю. Однако распределение магнитной индукции в зазоре от потока якоря сов­падает с графиком МДС лишь в пределах полюсных наконечни­ков. В межполюсном пространстве магнитная индукция резко ос­лабляется (рис. 26.4, б, кривая 2). Объясняется это увеличением магнитного сопротивления потоку якоря в межполюсном про­странстве. МДС обмотки якоря на пару полюсов пропорциональна числу проводников в обмотке N и току якоря 1а:

Введем понятие линейной нагрузки (А/м), представляющей со­бой суммарный ток якоря, приходящийся на единицу длины его окружности по наружному диаметру якоря Оа:

Таким образом, в нагру­женной машине постоянного тока действуют две МДС: возбужде­ния Рм и якоряРа.

Влияние МДС обмотки якоря на магнитное поле машины на­зывают реакцией якоря. Реакция якоря искажает магнитное поле




машины, делает его несимметричным относительно оси полюсов.

На рис. 26.4, в показано распределение магнитных силовых линий результирующего поля машины, работающей в генератор­ном режиме при вращении якоря по часовой стрелке. Такое же распределение магнитных линий соответствует работе машины в режиме двигателя, но при вращении якоря против часовой стрел­ки. Если принять, что магнитная система машины не насыще­на, то реакция якоря будет лишь искажать результирующий маг­нитный поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря сов­падает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом резуль­тирующий магнитный поток как бы поворачивается поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря сов­падает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом резуль­тирующий магнитный поток как бы поворачивается относительно оси главных полюсов на некоторый угол, а физическая нейтраль тт' (линия, проходящая через точки на якоре, в которых индукция равна нулю) смещается относительно геометрической нейтрали пп' на угол а. Чем больше нагрузка машины, тем сильнее искаже­ние результирующего поля, а следовательно, тем больше угол смещения физической нейтрали. При работе машины в режиме генератора физическая нейтраль смещается по направлению вращения якоря, а при работе двигателем — против вращения якоря.

Искажение результирующего поля машины неблагоприятно отражается на ее рабочих свойствах. Во-первых, сдвиг физиче­ской нейтрали относительно геометрической приводит к более тяжелым условиям работы щеточного контакта и может послу­жить причиной усиления искрения на коллекторе Во-вторых, искажение результирующего поля машины влечет за собой перераспределение магнитной индукции в воздушном зазоре машины. На рис. 26.4, в показан график распределения результирующего поля в зазоре, полученный совмещением кривых, изображенных на рис. 26.4, а, б. Из этого графика сле­дует, что магнитная индукция в зазоре машины распределяется несимметрично относительно оси полюсов, резко увеличиваясь под подмагниченными краями полюсов. Это приводит к тому, что мгновенные значения ЭДС секций обмотки якоря в момен­ты попадания их пазовых сторон в зоны максимальных значе­ний магнитной индукции (под подмагниченные края полюсных наконечников) резко повышаются. В результате возрастает на­пряжение между смежными коллекторными пластинами Цк. При значительных нагрузках машины напряжение ик может превзойти допустимые пределы (см. § 25.5) и миканитовая про­кладка между смежными пластинами будет перекрыта электри­ческой дугой. Имеющиеся на коллекторе частицы графита бу­дут способствовать развитию электрической дуги, что приведет к возникновению

мощной электрической дуги, перекрывающей весь коллектор или или значительную его часть, — явления чрез­вычайно опасного


Рис. 26.5. Разложение МДС обмотки якоря на продольную и поперечную составляющие

Таковы последствия влияния реакции якоря на машину с не­насыщенной магнитной системой. Если же магнитная система машины насыщена, что имеет место у большинства электриче­ских машин, то подмагничивание одного края полюсного нако­нечника и находящегося под ним зубцового слоя якоря происхо­дит в меньшей степени, чем размагничивание другого края и

находящегося под ним

зубцового слоя якоря. Это благоприятно ска­зывается на распреде­лении магнитной ин­дукции в зазоре, кото­рое становится более равномерным, так как максимальное значение индукции под подмагничиваемым краем полюсного наконеч­ника уменьшается на величину, определяе­мую высотой участка 1 на рис. 26.4, в. Однако результирующий магнитный поток машины при этом уменьшается. Таким образом, реакция якоря в машине с насыщенной магнитной системой размагничивает машину (так же как и у синхронной машины при активной на­грузке). В результате ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вра­щающий момент.

Помощь студентам

При работе генератора с нагрузкой, когда по обмотке якоря течет ток, возникает магнитное поле якоря, которое накладывается на поле полюсов.

Явление воздействия магнитного поля, создаваемого током якоря, на магнитное поле главных полюсов машины называется реакцией якоря.

В современных машинах постоянного тока реакция якоря всегда действует на основное поля размагничивающим образом, уменьшая его.

На практике находят применение следующие рабочие характеристики генераторов постоянного тока:

а) характеристика холостого хода – зависимость напряжения холостого хода U0 от тока возбуждения IВ

при I = 0, n = const;

б) внешняя характеристика – зависимость напряжения U на зажимах якоря от тока нагрузки I

RВ = const (сопротивление обмотки возбуждения)

в) регулировочная характеристика – зависимость тока возбуждения IВ от тока нагрузки I

при U = const; n = const;


На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Читайте также: