Каковы функции и назначение инженерной биотехнологии кратко

Обновлено: 08.07.2024

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объекты биотехнологии: многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.>, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы). Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главные направления биотехнологии:

1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2) применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки.

Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;

соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики (например, получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.).

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека — сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В3, В13, и др.), чем исходные формы.

В основе клеточной инженерии лежит использование методов культивирования изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях. Это стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений — картофеля, пшеницы, ячменя, кукурузы, томатов и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии — соматической гибридизации, гаплоидии, клеточной селекции, преодоления нескрещиваемости в культуре и др.

метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

Тематические задания

А1. Производством лекарств, гормонов и других биологических веществ занимается такое направление, как

1) генная инженерия

2) биотехнологическое производство

3) сельскохозяйственная промышленность

А2. В каком случае метод культуры тканей окажется наиболее полезным?

1) при получении гибрида яблони и груши

2) при выведении чистых линий гладкосемянного гороха

3) при необходимости пересадить кожу человеку при ожоге

4) при получении полиплоидных форм капусты и редьки

А3. Для того чтобы искусственно получать человеческий инсулин методами генной инженерии в промышленных масштабах, необходимо

1) ввести ген, отвечающий за синтез инсулина в бактерии, которые начнут синтезировать человеческий инсулин

2) ввести бактериальный инсулин в организм человека

3) искусственно синтезировать инсулин в биохимической лаборатории

4) выращивать культуру клеток поджелудочной железы человека, отвечающей за синтез инсулина.

Ключевые слова: биотехнология, направления биотехнологии, иммобилизованные ферменты, инженерная энзимология.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления…

Основные направления биотехнологии

Благодаря открытиям и успехам молекулярной биологии и генетики в биотехнологии со второй половины XX в. бурно развивается биоинженеринг, представленный тремя направлениями: клеточной, хромосомной и генной инженерией. Клеточная инженерия связана с генетическими экспериментами с изолированными клетками, благодаря которым получают новые генотипы многоклеточных организмов с хозяйственно ценными признаками. Предпосылкой для развития клеточной инженерии стала клеточная технология — выращивание отдельных соматических клеток на питательных средах. Хромосомная инженерия является одним из методов комбинационной селекции, так как связана с выделением и переносом отдельных хромосом с известным набором генов в клетки другого организма, которые приобретают в результате этого новые свойства. Это направление биотехнологии связано с другим направлением — генной инженерией, использующей лабораторные методы in vitro (в пробирке), которые заключаются в переносе генов от одного организма к другому. Одной из задач генной инженерии является создание бактериальных клеток, способных в промышленных масштабах синтезировать защитные белки и гормоны.

Инженерная энзимология

Как вам уже известно, ферменты (энзимы) — вещества белковой природы, поэтому они неустойчивы при хранении и не могут быть использованы в биохимических реакциях многократно (из-за трудностей, связанных с разделением реагентов и продуктов реакции). Решить эти проблемы технологического характера позволяет применение иммобилизованных ферментов, созданием которых занимаются учёные, работающие в области инженерной энзимологии.

Основные преимущества использования иммобилизованных ферментов перед природными заключаются в следующем:

  1. иммобилизованные ферменты легко отделимы от реакционной среды, что даёт возможность использовать их повторно, а также получать чистый (без примесей) продукт ферментативной реакции;
  2. ферментативный процесс с использованием иммобилизованных ферментов можно проводить непрерывно, регулируя скорость катализируемой реакции и выход конечного продукта;
  3. иммобилизованные ферменты можно модифицировать, целенаправленно изменяя их свойства, например специфичность действия;
  4. можно регулировать каталитическую активность иммобилизованных ферментов путём изменения свойств носителя.

Способы иммобилизации ферментов

Способы иммобилизации ферментов

Носителями для иммобилизованных ферментов служат некоторые органические и неорганические вещества. Они должны иметь высокую химическую прочность, быть проницаемыми для фермента и субстратов, легко активироваться и являться доступными для получения в виде удобных в технологическом отношении форм (гранул, мембран), иметь невысокую стоимость (рис. 262). Существует достаточно большой набор носителей, пригодных для иммобилизации ферментов в биотехнологических процессах. Рассмотрим вначале органические полимерные носители ферментов.

Органические носители иммобилизованных ферментов могут быть природного или синтетического происхождения. Среди природных полимерных органических носителей различают полисахаридные, белковые и липидные, а среди синтетических — полиметиленовые, полиамидные и полиэфирные. Использование природных полимеров в качестве носителей для иммобилизации объясняется их доступностью и наличием реакционно-способных функциональных групп, легко вступающих в химические реакции. Наиболее часто для иммобилизации ферментов применяют такие природные полимеры, как целлюлоза, декстран и агар.

В биотехнологии используются и синтетические полимерные носители, например полученные на основе стирола, акриловой кислоты, поливинилового спирта. В качестве неорганических носителей для иммобилизации ферментов применяют материалы из стекла, глины, керамики, силикагеля.

Сочетание уникальных каталитических свойств ферментов с преимуществами их иммобилизации позволило создать в биотехнологии новые промышленные процессы. Большинство из них применяют в пищевой промышленности — например, при производстве глюкозо-фруктозных сиропов, получении диетического безлактозного молока, сахаров из молочной сыворотки, аспарагиновой, уксусной, яблочной кислот и др.

Биотехнология кратко — дисциплина, изучающая возможности применения живых организмов и их систем в решении различных технологических задач, в том числе создания живых организмов с определенными свойствами при помощи генной инженерии.

Биотехнологию в рефератах представляют как понятие, охватывающее широкий спектр процедур, направленных на модификацию живых организмов в соответствии с целями человека.

История биотехнологии

Ранняя биотехнология позволила фермерам выбрать и развести культуры, которые сегодня дают самые большие урожаи: в достаточном для поддержания растущего населения количестве.

Так как посевы и поля становились все более объемными, возникли проблемы с их поддержанием. Тогда обнаружили, что отдельные организмы и продукты их переработки вполне эффективно оплодотворяют, восстанавливают азот и борются с вредителями. На протяжении развития сельского хозяйства, фермеры непреднамеренно изменяли генетику культур, вводя их в новые условия и разводя вместе с другими растениями. Все это было первыми формами биотехнологий.

Долгое время люди также пользовались селекцией с целью улучшить производство сельскохозяйственных культур и домашнего скота, чтобы все это потом можно было употреблять в пищу.

Селекция основывалась на том, что организмы, обладающие желательными характеристиками, сопрягались с такими же организмами.

Так получили самые сладкие и крупные зерновые культуры.

Начало 20 века стало временем углубления в основы микробиологии, что привело к изучению различных способов производства. Хаим Вейцман в 1917 году первым применил микробиологическую культуру в промышленном процессе — в производстве кукурузного крахмала.

В последние десятилетия биотехнология всё глубже проникает в жизнь человека. Открытия в этой области вызывают жаркие споры, но технический прогресс неизменно идет вперед, используя уникальные знания, разработки и технологии. Биотехнология применяется человеком на протяжении многих веков, но именно сегодня появился максимальный интерес к этому направлению науки.

Биотехнология

История возникновения

С древнейших времен знания в области биотехнологии применялись человеком в сыроварении, для изготовления вина и других продуктов. Впервые брожение, а это классический пример биотехнологии, использовалось для производства пива в Древнем Вавилоне несколько тысяч лет назад. Однако в последующем на протяжении многих столетий уникальные разработки, знания и технологии были утеряны. Лишь в XIX веке начали целенаправленно изучать этот раздел науки.

Что такое биотехнология

Считается, что основоположником биотехнологии является Луи Пастер, в 1867 году изучавший процессы брожения и сквашивания, которые возникали при жизнедеятельности различных микроорганизмов. Исследования продолжил Эдуард Бухнер, занимающийся научной работой в области информатизации и химических реакций бесклеточных экстрактов. В конце XIX — начале XX вв. были сделаны многочисленные сенсационные открытия, сформировавшие биотехнологию в её современном понимании:

  1. Монах из Австрии Грегор Мендель в 1865 году описал передачу наследственности, изучая растительные гибриды.
  2. Уолтер Саттон и Теодор Бовери в 1902 году выдвинули предположение, что наследственность всех биологических видов связана напрямую с хромосомами.

Термин биотехнология появился в 1919 году, когда венгерский экономист Карл Эреки опубликовал свой манифест, в котором под этим разделом науки понималось использование микроорганизмов для процедуры ферментации продуктов. Во второй половине XX века после объединения нефтеперерабатывающей и пищевой промышленности был сделан существенный скачок в исследовании этой дисциплины. Ученые научились синтезировать белок из продуктов нефтепереработки, используя в последующем такие синтетические компоненты в качестве заменителей органики.

Основные виды и термины

Биотехнология — это наука создания различных веществ путем использования биологически естественных компонентов. Фактически это манипулирование животными и растительными клетками для получения нужных результатов.

Всё о биотехнологии

Сегодня, в век компьютерных технологий, биотехнология сделала существенный шаг вперёд. На различных факультетах в университетах и в лабораторных условиях проводятся многочисленные изыскания, основная цель которых заключается в том, чтобы создать действенные лекарства и существенно упростить жизнь человека. Основными направлениями, задачами и темами этой науки являются:

  • биомедицина;
  • биоинженерия;
  • гибридизация.

Перспективы биотехнологии

В биоинженерии изучают различные области медицины, а также влияние клеток и наследственных факторов с генами на развитие заболеваний. Это направление позволяет не только разработать суперсовременные технологии лечения различных патологий, но и предупреждает возникновение тяжелых болезней, которых можно было избежать путем редактирования ДНК.

Специализация биомедицина — это узкоспециализированный раздел медицинских знаний, объектом которого являются патологические состояния, строение тела человека и возможности коррекции различных болезней. В эту дисциплину также включается наномедицина, в которой жизнедеятельность биологических видов изучается на молекулярном уровне.

В гибридизации исследуют возможность создания гибридов животных и растений, получая устойчивые к различным условиям клетки. Этот раздел науки позволяет замедлить процессы старения, продлевая жизнь с помощью нано- и биотехнологий.

Высшим достижением биотехнологии считается генная инженерия, под которой понимают совокупность технологий и знаний получения ДНК и РНК. Это управление генами живых существ и растений, что позволяет получать заданные свойства у клеток. Например, ученые со специальностью биология планируют с помощью технологии исправления генома человека решать проблемы с различными онкологическими заболеваниями.

Виды биотехнологии

Также к этому разделу науки относится клонирование, что позволяет за счет использования специальных технологий получать идентичные генетические организмы, выведенные вегетативным бесполым размножением. На сегодняшний день клонированы были не только растения, но и десятки видов животных, в том числе лошади, кошки, собаки и овцы. Технологически возможно даже копирование человека, однако нормативная база и нравственные аспекты не позволяют людям этой профессии заниматься такой работой.

Возможные сферы применения

В далеком прошлом биотехнология казалась еще одной наукой, которая навсегда поселится в лабораторных кабинетах и никогда не будет иметь практического применения. Однако сегодня биотехнология, ее направления, технологии и знания активно присутствуют и применяются в повседневной жизни. Методы биотехнологии внедряются в следующих отраслях:

На что нацелена биотехнология

  • в фармацевтике и химической сфере;
  • в пищевой промышленности;
  • в утилизации и переработке отходов;
  • в сельском хозяйстве.

В фармацевтике эту сферу науки часто называют красной биотехнологией. Специалисты разрабатывают различные эффективные сыворотки, вакцины и усовершенствованные лекарственные препараты, которые позволяют бороться с болезнями, в прошлом считавшимися неизлечимыми. На западе активно используются возможности биотехнологии в диагностике заболеваний с помощью чипов ДНК и биосенсоров. С помощью таких маркеров можно сдавать анализы на онкологию и наследственные патологии.

В пищевой промышленности биотехнология активно используется при производстве аминокислот, алкоголя, различных безвредных ферментов. Этот раздел науки часто называют белой биотехнологией, что объясняет ее экологичность и натуральность происхождения.

Биотехнология в сельскохозяйственной индустрии

В сельском хозяйстве зелёные биотехнологии позволяют селекционерам получать различные гибридные культурные растения, отличающиеся высокой урожайностью, способные противостоять грибкам и болезням. Также ученые научились эффективно перерабатывать отходы сельского хозяйства, в том числе жмых и зелёную массу, в эффективное топливо.

Под серой биотехнологией, которая изучает утилизацию и переработку отходов, понимают очистку стоков, санацию почв и улучшение качества воздуха. Сегодня, когда экология в больших городах оставляет желать лучшего, именно с помощью таких современных знаний и высокотехнологичного оборудования удается решить проблемы с парниковыми газами, тяжёлыми металлами и другими отравляющими соединениями.

Развитие и инвестиции

Биотехнологию сложно назвать молодой дисциплиной, но эта наука сегодня находится лишь в начале своего развития. Учёные считают, что возможности и направления, которые открываются благодаря новым знаниям, являются бесконечными. Загвоздка лишь в поддержке и должном финансировании. Любое исследование — это многие годы изысканий, использование мощности суперсовременных компьютеров и существенные финансовые затраты, а перспективы конкретных разработок могут быть туманны.

Основными инвестиционными участниками этого направления являются сами биотехнологи и инженеры, которые занимаются изыскания в этой области. Ученые предлагают не конечный продукт, а идею с возможными методами её реализации. Для претворения в жизнь таких задумок нужны сотни экспериментов, дорогостоящее оборудование и постоянные опыты.

Неудивительно, что многие инвесторы просто не рискуют вкладываться в идею, опасаясь потерять миллионы долларов. К тому же официальная зарплата у биологов крайне высока, особенно на западе. В настоящее время на рынке биотехнологических разработок работают около десятка по-настоящему крупных компаний:

Инвестиции в биотехнологию

Разновидности биотехнологии

  1. Illumina специализируется на технологии ДНК-чипов, исследует генетические анализы и тесты на различные заболевания.
  2. Oxford Nanopore исследует продукцию и занимается разработкой взаимодействия с ДНК.
  3. Roche — это крупная фармацевтическая компания, которая ежегодно инвестирует в биотехнологии сотни миллионов долларов.
  4. Counsyl является держателем патента автоматизированного анализа ДНК, который используется для диагностики различных патологий.
  5. Editas Medicine исследует проблемы адаптации методик лабораторного редактирования геномов и использования полученных результатов в медицинской практике.

Перспективной технологией в медицине является так называемое секвенирование, то есть изучение последовательности нуклеотидов, находящихся в ДНК. Полностью расшифровав такие данные, можно определить участки молекулы дезоксирибонуклеиновой кислоты, которые отвечают за наследственные заболевания. В последующем на основании имеющейся информации медики могли бы предотвращать развитие опасных неизлечимых патологий. Как только такой процесс дойдёт до совершенства, появится возможность полностью избавиться от болезней, которые даже ещё не появились у конкретного человека.

Добро и зло

Единого мнения о том, что же такое биотехнология — добро или зло, на сегодняшний день нет. Кто-то утверждает, что это попытка вмешаться в естественный процесс и повлиять на природу, тогда как другие уверяют, что будущее человечества именно за такими знаниями. В последние десятки лет население Земли неизменно увеличивается, поэтому без применения биотехнологии в промышленном сельском хозяйстве появилась бы проблема тотального голода.

Также с помощью биотехнологии удаётся найти лекарство от различных тяжелых заболеваний, которые в прошлом считались неизлечимыми. Неоспоримым доказательством пользы этой науки является изобретение антибиотиков, с помощью которых удается излечивать сотни различных болезней. Общеизвестно, что проще предупредить различные тяжёлые недуги, чем в последующем пытаться лечить их с помощью операций и лекарств. Биомедицина создаёт эффективные способы диагностики, которые позволяют определить склонность к тем или иным заболеваниям еще до их возникновения в организме человека.

Факты о биотехнологии

И всё же необходимо понимать, что потребуется качественный контроль за подобными исследованиями в области биотехнологии и их внедрением в повседневную жизнь. В первую очередь это касается моральных аспектов клонирования, возможности выращивать донорские органы или же изменять геномы и клетки ДНК, нарушая естественный ход природы и создавая тем самым суперчеловека.

В последние годы биотехнология развивается стремительно, при этом многие государства сталкиваются с проблемой отсутствия или недостаточного контроля за такими исследованиями на правовом уровне. В итоге было приостановлено множество проектов, поэтому говорить о победе над смертью или успехах в клонировании человека в настоящее время преждевременно.

Читайте также: