Каков принцип действия приборов электромагнитной системы кратко

Обновлено: 06.07.2024

ЭЛЕКТРОМАГНИТНЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Электромагнитные измерительные приборы работают на принципе взаимодействия магнитного поля, создаваемого измеряемым током, с сердечником из ферромагнитного материала, помещенным в поле и являющимся подвижной частью прибора.

По конструкции электромагнитные приборы делятся на два типа: приборы с плоской катушкой и приборы с круглой катушкой. Рассмотрим сначала устройство первого типа приборов, рис. а).

Обмотка прибора представляет собой плоскую катушку 1 со щелью. Обмотка катушки у вольтметров выполняется из тонкой (диаметр 0,05—0,1 мм) медной проволоки с большим числом витков (2000—10 000). Обмотка амперметров на токи до 30А изготовляется из небольшого числа витков толстой проволоки. На токи до 200 А обмотка выполняется из медной ленты или в виде одного шинного витка (на токи 300—500 А). Второй основной частью прибора является сердечник из ферромагнитного материала (например, пермаллоя) в форме листка 2, укрепленного эксцентрично на оси прибора 3. При прохождении тока по виткам катушки возникает магнитное поле, которое втягивает сердечник в щель катушки тем больше, чем больший ток протекает по виткам катушки. Укрепленная на оси стрелка 4 будет отклоняться по шкале 5. Противодействующий момент создается спиральной пружиной 6, связанной одним концом с осью, а другим концом с неподвижной частью прибора. Для успокоения электромагнитных приборов обычно применяются воздушные успокоители 7. Поршенек успокоителя, закрепленный на оси при помощи проволоки, перемещаясь в изогнутом цилиндре, испытывает со стороны воздуха в цилиндре сопротивление своим колебаниям, что приводит к успокоению стрелки. Изменение величины тока в катушке вызывает непропорциональное изменение угла поворота стрелки, поскольку вращающий момент, действующий на подвижную систему, зависит от квадрата тока. Поэтому шкала электромагнитного прибора неравномерна.

Внешние магнитные поля оказывают влияние на работу электромагнитного прибора, но железный кожух прибора значительно ослабляет это влияние. Изменение направления тока в обмотке прибора приводит к перемагничиванию сердечника (или сердечников), и сила взаимодействия не меняет своего направления. Поэтому электромагнитные приборы мо­гут работать в цепях постоянного и переменного токов. При переменном токе прибор будет показывать действующее значение тока или напряжения. Потребление мощности в амперметрах составляет 2—8 вт, в вольтметрах — 5—6 вт. Простота конструкции, дешевизна, возможность выдерживать перегрузку, пригодность для постоянного и переменного токов привели к тому, что приборы электромагнитной системы нашли себе широкое применение для технических измерений. К недостаткам прибора нужно отнести малую точность, неравномерность шкалы, зависимость показаний прибора от внешних магнитных полей и от частоты. Электромагнитные приборы изготовляются главным образом в качестве технических щитовых приборов классов точности 1; 1,5; 2,5.

Придавая специальную форму сердечнику (лепестку) и изменяя его расположение относительно катушки, можно добиться некоторого уменьшения неравномерности шкалы у этих приборов, рис. б) и в).

Устройство и принцип действия электромагнитного ИМ

Принцип действия электромагнитного измерительного механизма основан на взаимодействии магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника.

В настоящее время чаще других применяют электромагнитные измерительные механизмы с прямоугольным и круглыми намагничивающими катушками, призматическими и цилиндрическими сердечниками. На рис. 4.6 показана конструкция электромагнитного измерительного механизма втяжного действия.


Рис. 4.7. Устройство электромагнитного механизма

При прохождении тока I по намагничивающей катушке 1 создается магнитное поле. Ферромагнитный сердечник 2, закрепленный на оси 3, при этом стремится расположиться в месте с наибольшей напряженностью поля, т. е. втягивается в зазор катушки. В электромагнитном приборе с осью 3 связана стрелка 4, которая перемещается по шкале 5. Электромагнитная энергия, создаваемая катушкой с током, определяется следующим образом: We = LI 2 /2, где L - индуктивность катушки 1, зависящая от положения ферромагнитного сердечника 2.

Выражение для вращающего момента представляется как


(4.9)

При создании противодействующего момента с помощью пружинок получим уравнение преобразования электромагнитного прибора


(4.10)

следует, что угол отклонения подвижной части электромагнитного механизма не зависит от направления тока, и эти ИМ могут использоваться в цепях постоянного и переменного тока. В цепи переменного тока угол отклонения подвижной части ИМ зависит от квадрата действующего значения тока.

Области применения, достоинства и недостатки

Приборы на основе электромагнитного измерительного механизма применяются для измерения тока и напряжения в цепях постоянного и переменного тока. Наиболее просто реализуются однопредельные электромагнитные амперметры и миллиамперметры. В однопредельном амперметре катушка включается непосредственно в цепь тока, как показано на рис. 4.8 а, в вольтметре последовательно с катушкой включается добавочный резистор (рис. 4.8 б).


Рис. 4.8. Схема однопредельного электромагнитного амперметра (а) и вольтметра (б)


Рис. 4.9. Схема трехпредельного электромагнитного амперметра

В многопредельных амперметрах рабочую катушку выполняют из нескольких секций, которые соединяются между собой с помощью переключателя различным образом. На рис. 4.9 показана схема трехпредельного амперметра. В многопредельных вольтметрах последовательно включаются несколько добавочных резисторов, которые переключаются в зависимости от предела.

Промышленностью выпускаются электромагнитные амперметры с номинальным током от долей ампера до двухсот ампер. Большое распространение получили щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,5 и 2,5. В некоторых случаях они могут использоваться на повышенных частотах (амперметры до 8 кГц). Лабораторные приборы выпускаются классов точности 0,5 и 1,0. Кроме рассмотренных измерительных механизмов, применяют также и электромагнитные логометрические механизмы.

Электромагнитные приборы обладают рядом достоинств, к которым можно отнести:

1) возможность использования как на постоянном, так и на переменном токе;

2) простоту конструкции и дешевизну;

3) надежность в эксплуатации;

4) широкий диапазон пределов измерений;

5) способность выдерживать большие перегрузки и др.

Недостатками являются:

1) большое собственное потребление энергии;

2) малая чувствительность;

3) сильное влияние внешних магнитных полей;

4) неравномерность шкалы.

Следует отметить, что изменяя форму сердечника и его расположение в катушке, можно получить практически равномерную шкалу, начиная с 20-25 % верхнего предела измеряемой величины.

Погрешности электромагнитных приборов

Погрешности электромагнитных приборов обусловлены следующими причинами: трением в опорах, гистерезисом материала сердечника, нагревом рабочей катушки, проходящим по ней током, изменением температуры окружающей среды и др. Рассмотрим погрешности, характерные для электромагнитных приборов.

Погрешность от гистерезиса материала сердечников проявляется при работе на постоянном токе.

Погрешность от нагрева рабочей катушки проходящим по ней током обусловлена изменением сопротивления катушки и пружин.




Температурная погрешность обусловлена изменением температуры окружающей среды и характерна для вольтметров, и определяется изменением сопротивления цепи катушки и упругости пружин (или растяжек).

Для компенсации температурной погрешности используются различные компенсационные схемы.

Устройство и принцип действия электромагнитного ИМ

Принцип действия электромагнитного измерительного механизма основан на взаимодействии магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника.

В настоящее время чаще других применяют электромагнитные измерительные механизмы с прямоугольным и круглыми намагничивающими катушками, призматическими и цилиндрическими сердечниками. На рис. 4.6 показана конструкция электромагнитного измерительного механизма втяжного действия.


Рис. 4.7. Устройство электромагнитного механизма

При прохождении тока I по намагничивающей катушке 1 создается магнитное поле. Ферромагнитный сердечник 2, закрепленный на оси 3, при этом стремится расположиться в месте с наибольшей напряженностью поля, т. е. втягивается в зазор катушки. В электромагнитном приборе с осью 3 связана стрелка 4, которая перемещается по шкале 5. Электромагнитная энергия, создаваемая катушкой с током, определяется следующим образом: We = LI 2 /2, где L - индуктивность катушки 1, зависящая от положения ферромагнитного сердечника 2.

Выражение для вращающего момента представляется как


(4.9)

При создании противодействующего момента с помощью пружинок получим уравнение преобразования электромагнитного прибора


(4.10)

следует, что угол отклонения подвижной части электромагнитного механизма не зависит от направления тока, и эти ИМ могут использоваться в цепях постоянного и переменного тока. В цепи переменного тока угол отклонения подвижной части ИМ зависит от квадрата действующего значения тока.

Области применения, достоинства и недостатки

Приборы на основе электромагнитного измерительного механизма применяются для измерения тока и напряжения в цепях постоянного и переменного тока. Наиболее просто реализуются однопредельные электромагнитные амперметры и миллиамперметры. В однопредельном амперметре катушка включается непосредственно в цепь тока, как показано на рис. 4.8 а, в вольтметре последовательно с катушкой включается добавочный резистор (рис. 4.8 б).


Рис. 4.8. Схема однопредельного электромагнитного амперметра (а) и вольтметра (б)


Рис. 4.9. Схема трехпредельного электромагнитного амперметра

В многопредельных амперметрах рабочую катушку выполняют из нескольких секций, которые соединяются между собой с помощью переключателя различным образом. На рис. 4.9 показана схема трехпредельного амперметра. В многопредельных вольтметрах последовательно включаются несколько добавочных резисторов, которые переключаются в зависимости от предела.

Промышленностью выпускаются электромагнитные амперметры с номинальным током от долей ампера до двухсот ампер. Большое распространение получили щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,5 и 2,5. В некоторых случаях они могут использоваться на повышенных частотах (амперметры до 8 кГц). Лабораторные приборы выпускаются классов точности 0,5 и 1,0. Кроме рассмотренных измерительных механизмов, применяют также и электромагнитные логометрические механизмы.

Электромагнитные приборы обладают рядом достоинств, к которым можно отнести:

1) возможность использования как на постоянном, так и на переменном токе;

2) простоту конструкции и дешевизну;

3) надежность в эксплуатации;

4) широкий диапазон пределов измерений;

5) способность выдерживать большие перегрузки и др.

Недостатками являются:

1) большое собственное потребление энергии;

2) малая чувствительность;

3) сильное влияние внешних магнитных полей;

4) неравномерность шкалы.

Следует отметить, что изменяя форму сердечника и его расположение в катушке, можно получить практически равномерную шкалу, начиная с 20-25 % верхнего предела измеряемой величины.

Погрешности электромагнитных приборов

Погрешности электромагнитных приборов обусловлены следующими причинами: трением в опорах, гистерезисом материала сердечника, нагревом рабочей катушки, проходящим по ней током, изменением температуры окружающей среды и др. Рассмотрим погрешности, характерные для электромагнитных приборов.

Погрешность от гистерезиса материала сердечников проявляется при работе на постоянном токе.

Погрешность от нагрева рабочей катушки проходящим по ней током обусловлена изменением сопротивления катушки и пружин.

Температурная погрешность обусловлена изменением температуры окружающей среды и характерна для вольтметров, и определяется изменением сопротивления цепи катушки и упругости пружин (или растяжек).

Для компенсации температурной погрешности используются различные компенсационные схемы.

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля катушки, создаваемого измеряемым током, со стальным сердечником, помещенным в это поле. Неподвижная катушка 1 (рис. 2-6) состоит из каркаса с навитой изолированной медной проволокой или медной лентой. При протекании измеряемого тока по обмотке катушки в ее плоской щели 2 создается магнитное поле. Вне катушки на агатовых подпятниках устанавливается ось 8 с эксцентрично укрепленным сердечником 4 из магнитомягкой стали со стрелкой 5. Магнитное поле катушки намагничивает сердечник и втягивает его внутрь щели, поворачивая тем самым и ось со стрелкой прибора. Этому повороту препятствует закручивающаяся спиральная пружина 6, создающая противодействующий момент.

Пусть катушка с током I создает магнитное поле, которое намагничивает фасонный стальной сердечник и создает некоторую силу F, стремящуюся

повернуть сердечник вокруг оси (рис. 2-7). При переме щении точки С сердечника По дуге будет совершена работа

где R — радиус вращения точки центральный угол, соответствующий дуге .

Работа совершается за счет энергии магнитного поля катушки поэтому

Учитывая, что получим:

Повороту сердечника противодействует спиральная пружина, создавая противодействующий момент

где k — жесткость пружины, а угол поворота сердечника. Тогда при достижении равновесия

Вообще говоря, и сильно зависит от формы сердечника. Положив в пределах поворота сердечника , получим:

Полученный результат показывает, что шкала электромагнитного прибора неравномерная. Она, в основном, должна быть квадратичной, т. е. сжатой в начале и растянутой в конце. Однако путем придания фасонной формы сердечнику и расположением его в катушке (что приведет к изменению множителя ) можно существенно улучшить характер шкалы, сделав ее практически равномерной в рабочей части.

Направление отклонения стрелки прибора не зависит от направления тока в катушке, так как при изменении направления тока одновременно изменяется направление магнитной индукции внутри катушки и в сердечнике, а характер их взаимодействия (притягивание) не изменяется. Этот же вывод следует и из выражения вращающего момента (2.8), в которое значение тока входит в квадрате. Поэтому приборы электромагнитной системы пригодны

и для измерения переменных токов. При измерении переменного тока подвижная система прибора поворачивается на некоторый угол, определяемый средним значением вращающего момента за период. Определим вращающий момент подвижной системы прибора.

Пусть измеряемый ток изменяется по закону

тогда мгновенное значение вращающего момента равно

а среднее за период значение этого момента

Таким образом, среднее значение вращающего момента, действующего на подвижную систему электромагнитного прибора при измерениях переменного тока, пропорционально квадрату действующего значения переменного тока, т. е. . Квадратичная зависимость угла поворота подвижной системы электромагнитного прибора от тока имеет простое физическое объяснение: ток в катушке создает магнитное поле, которое намагничивает сердечник. В результате намагниченный сердечник взаимодействует с катушкой, при этом намагниченность сердечника изменяется вместе с изменениями тока в катушке.

Мы рассмотрели устройство и действие приборов с плоской катушкой. Помимо этой конструкции в настоящее время широкое применение получили так называемые приборы с круглой катушкой (рис. 2-8). Измеряемый ток протекает по обмотке круглой катушки 1 и создает внутри нее магнитное поле, в котором помещаются два стальных сердечника: один — неподвижный 2, прикрепленный к каркасу, другой — подвижный 3, связанный с осью прибора. Близлежащие концы сердечника под действием магнитного поля катушки намагничиваются одноименно и отталкиваются, вызывая соответствующий измеряемому току поворот подвижной системы. Очевидно, что приведенные рассуждения, относящиеся к приборам с плоской катушкой, справедливы и для приборов о круглой катушкой.

Электромагнитные приборы применяются как амперметры и как вольтметры. В последнем случае обмотка выполняется большим числом витков тонкой медной проволоки.

Применение стальных сердечников в электромагнитных приборах вызывает разные показания при измерениях в цепях постоянного и переменного токов, так как в цепях переменного тока добавляются потери на гистерезис и на вихревые токи. Поэтому электромагнитные приборы, как правило, градуируют либо для постоянного тока, либо для переменного. Для уменьшения погрешности от гистерезиса сердечники некоторых приборов (класс 0,2) изготовляют из специального сплава — пермаллоя с особо малым значением коэрцитивной силы. Для исключения влияния внешних полей у некоторых электромагнитных приборов применяют астатические измерительные механизмы (см. рис. 2-4, а).

Для успокоения колебаний подвижной системы в электромагнитных приборах с плоской катушкой применяют воздушные успокоители, а в приборах с круглой катушкой — чаще магнитоиндукционные.

Достоинствами электромагнитных приборов являются: простота конструкции; способность выдерживать большие перегрузки, пригодность для постоянных и переменных токов, невысокая стоимость и возможность широкого использования в качестве щитовых приборов.

Недостатки этих приборов — неравномерная шкала, влияние внешних магнитных полей на показания приборов, малая чувствительность.

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой 1 со стальным сердечником 3, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской (рис. 324, а) или круглой (рис. 324,б) катушкой.



Рис. 324. Устройство электромагнитных измерительных механизмов с плоской (а) и круглой (б) катушками

В приборах с плоской катушкой сердечник установлен на оси, несущей стрелку. При прохождении тока по катушке 1 сердечник 3 будет намагничиваться и втягиваться в катушку, поворачивая ось и стрелку. Повороту оси препятствует спиральная пружина 2. Когда усилие, создаваемое пружиной, уравновесит усилие, созданное катушкой, подвижная система прибора остановится и стрелка зафиксирует на шкале определенный ток.

Вращающий момент, воздействующий на подвижную часть прибора, пропорционален силе притяжения F электромагнита, под действием которой сердечник втягивается в катушку. Сила притяжения F, как было показано в § 93, пропорциональна квадрату индукции в, создаваемой магнитным полем катушки; следовательно, она пропорциональна квадрату тока I в катушке. Поэтому вращающий момент

M = c1I2 (96)

где c1 — постоянная величина, зависящая от конструктивных параметров прибора (числа витков и размеров катушки, материала и формы сердечника) и положения сердечника относительно катушки.

При втягивании сердечника в катушку вращающий момент М изменяется пропорционально I2.

Под действием момента М подвижная часть прибора будет поворачиваться до тех пор, пока этот момент не будет уравновешен противодействующим моментом Mпр = c2α, созданным пружинами или растяжками. В момент равновесия М = Mпр, откуда

α= (c1/c2) I2 = kI2 (97)

где к — постоянная величина.

Следовательно, в приборах с электромагнитным измерительным механизмом угол поворота а подвижной части и стрелки пропорционален квадрату тока, проходящего по катушке. Поэтому такой прибор имеет неравномерную (квадратичную) шкалу. Для сглаживания этой неравномерности сердечнику придается особая лепестко-образная форма, вследствие чего форма магнитного поля и усилие, создаваемое катушкой, изменяются по мере втягивания сердечника.

Устранение колебаний подвижной системы прибора при переходе стрелки из одного положения в другое осуществляется демпфером 5.

В приборах с круглой катушкой подвижная система поворачивается в результате взаимодействия двух стальных намагничивающихся пластинок 3, расположенных внутри катушки 1. Одна из них укреплена на оси прибора, а другая — на внутренней поверхности каркаса катушки.

При прохождении тока по катушке пластины намагничиваются, и их одноименные полюсы оказываются расположенными друг против друга. Между ними возникают силы отталкивания и создается вращающий момент, поворачивающий ось со стрелкой 4.

Применение.

используют, главным образом, для измерения тока и напряжения в промышленных установках переменного тока. При периодическом изменении тока, проходящего через прибор, усилие, создаваемое его катушкой, не будет изменяться по направлению, так как оно пропорционально квадрату тока.

Угол отклонения стрелки определяется некоторым средним усилием F, значение которого пропорционально среднему квадратичному значению тока или напряжения. Следовательно, электромагнитные приборы в цепях переменного тока измеряют действующие значения тока или напряжения.

Катушка при измерениях может быть включена в электрическую цепь последовательно или параллельно двум точкам, между которыми действует некоторое напряжение. В первом случае прибор будет работать в качестве амперметра, во втором — в качестве вольтметра.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока. К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Астатические приборы.

Катушки электромагнитных приборов создают относительно слабое магнитное поле, так как силовые линии этого поля проходят в основном по воздуху. Поэтому такие приборы весьма чувствительны к влиянию внешних магнитных полей. Для защиты от этих влияний электромагнитные приборы окружают стальными экранами или выполняют астатическими. В астатическом приборе имеются две плоские катушки 1 и два сердечника 2, расположенные на общей оси (рис. 325).



Рис. 325. Устройство астатического измерительного механизма

Обмотки катушек включают так, чтобы направления их магнитных потоков Ф1 и Ф2 были противоположны. Вращающие моменты действуют на подвижную систему прибора в одинаковом направлении. Поэтому внешний магнитный поток Фвн будет усиливать поле одной катушки и ослаблять поле другой; создаваемый же ими суммарный вращающий момент будет оставаться неизменным.











Электромагнитный измерительный механизм

Электромагнитный измерительный механизм показан на рис. 7-3. Он состоит из неподвижной катушки А

и подвижной части — стального сердечника
Б
, указательной стрелки, пружины и секторообразного алюминиевого листка
В
успокоителя, укрепленных на одной оси. Измеряемый ток, проходя по неподвижной катушке, создает магнитное пате, которое намагничивает сердечник
Б
и втягивает его внутрь катушки. По углу поворота сердечника определяют величину тока в катушке.


Электромагнитный измерительным механизм

При движении листка В

успокоителя в магнитном поле Магнита
М
в нем индуктируются вихревые токи. Взаимодействием этих токов с полем магнита создается тормозной момент, обеспечивающий успокоение.

Электромагнитный измерительный механизм применим для цепей постоянного и переменного тока, так как втягивание сердечника в катушку не зависит oт направления тока.

Вследствие влияния остаточной индукции сердечника втягивание сердечника, а следовательно, и показание измерительного механизма может быть различным при одинаковых значениях тока при увеличении тока и при уменьшении его. Следовательно, возможна погрешность от остаточной индукции. Для уменьшения этой погрешности сердечники изготовляют из пермаллоя, остаточная индукция которого ничтожна.



Для уменьшения погрешности от внешних полей измерительный механизм окружают стальными экранами или кожухами. Для той же цели применяют астатические измерительные механизмы с двумя последовательно соединенными катушками и соответственно с двумя сердечниками на одной оси. Измеряемый ток создает в катушках поля противоположного направления. Внешнее однородное поле уменьшает магнитное поле одной катушки и настолько же увеличивает поле второй катушки, таким образом, результирующее влияние внешнего поля будет ничтожным.

Шкала — электроизмерительный прибор

Шкалы электроизмерительных приборов представляют собой плоские детали ( в отдельных случаях в виде части цилиндра), на поверхности которых тем или иным способом нанесены цифры и знаки.
Шкалы электроизмерительных приборов обычно изготовляют так, что одно деление шкалы при -; близительно равно максимальной погрешности прибора. Забегая вперед, отметим, что при измерениях, при расчетах и при записи результатов, кроме надежно известных значащих цифр, всегда указывается одна лишняя. Такая процедура, среди прочих, имеет и то преимущество, что позволяет вовремя замечать мелкие нерегулярности исследуемых зависимостей.

Шкалы электроизмерительных приборов могут быть прямыми и обратными. В первом случае начало отсчета расположено в левой части шкалы. Обратная шкала имеет начало с правой стороны. Примером прибора с обратной шкалой является омметр. Точка начала отсчета этого прибора ( нуль омов) расположена справа, так как это положение соответствует отсутствию сопротивления в измеряемой цепи и, следовательно, полному отклонению стрелки прибора. При наличии сопротивления в измеряемой цепи стрелка отклонится не на полную шкалу, причем большему сопротивлению соответствует меньшее отклонение.

Шкалы электроизмерительных приборов бывают равномерные и неравномерные. На равномерной шкале ( рис. V-3) расстояния между делениями одинаковы. Она наиболее удобна для отсчета. На неравномерной шкале ( рис. V-4) расстояния между делениями неодинаковы.

Советуем изучить — Преобразователи напряжения постоянного тока

Шкалы электроизмерительных приборов представляют собой пластинки ( подшкальники) из металла или изоляционного материала, окрашенные или оклеенные бумагой. Подшкальники изготовляются из диамагнитных материалов: листовой латуни, алюминия или цинка толщиной 1 — 1 5 мм. Подшкальники из алюминия обычно корродируются с течением времени, а цинковые подвержены короблению. Железные подшкальники устанавливаются в приборах типа ЭЗО.

Шкалы электроизмерительных приборов, применяемых для измерения синусоидальных токов и напряжений, проградуированы в действующих значениях, и для определения амплитуд синусоидальных величин их показания достаточно увеличить в У 2 раз.

На шкалах стационарных электроизмерительных приборов должна наноситься красная черта, соответствующая номинальному значению измеряемой величины.

На шкалах электроизмерительных приборов промышленного изготовления обязательно указывается тип прибора, его система, род тока, рабочее положение корпуса, испытательное напряжение прочности изоляции его токонесущих частей, номинальная частота ( или диапазон частот), год выпуска и заводской номер.

Наличие на шкалах электроизмерительных приборов условных обозначений позволяет без изучения описания или паспорта иметь основные сведения о приборе, достаточные для решения вопроса о возможности его использования.

В фотометрах прямого отсчета шкала электроизмерительного прибора часто градуируется непосредственно в светотехнических единицах.

В фотометрах прямого отсчета шкала электроизмерительного прибора часто градуируется непосредственно в световых единицах.

На рисунке 308 изображены шкалы электроизмерительных приборов. Как называются эти приборы.










Отсчет показаний производится по шкале электроизмерительного прибора с последующим умножением этик показаний на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими.

Какие условные обозначения имеются на шкале электроизмерительного прибора.

Электродинамический измерительный механизм

Электродинамический измерительный механизм (рис. 7-4 и 7-5)состоит из двух катушек — неподвижной А

, имеющей две секции, и подвижной
Б.,
укрепленной на одной оси с указательной стрелкой, крылом
В
воздушного успокоителя и двумя спиральными пружинами.

При прохождении тока I

1по неподвижной катушке и тока
I
2 по подвижной катушке между ними возникает электродинамическое взаимодействие. В результате на подвижную катушку будет действовать пара сил
FF
(риc. 7-5), т. е. вращающий момент. Поворот подвижной катушки происходит до тех пор, пока вращающий момент не уравновесится противодействующим моментом пружин.

При постоянном токе вращающий момент и угол поворота подвижной катушки пропорциональны произведению токов в катушках



При переменном токе мгновенный вращающий момент пропорционален произведению мгновенных значений токов, а средний за период вращающий момент и пропорциональный ему угол поворота подвижной катушки определяются произведением действующих значений токов в катушках и косинусу угла сдвига между ними, т.е.

Рис. 7-4. Электродинамический измерительный механизм.

До этому углу поворота, как будет показано ниже, определяют значение измеряемой величины.

Отсутствие стали в измерительном механизме, а следовательно, и погрешности от остаточной индукции обеспечивают возможность изготовить эти механизмы для измерений высокой точности.

Для уменьшения погрешностей от внешних магнитных полей, обусловленных слабым магнитным полем измерительного механизма, применяются те же средства, что и для электромагнитных измерительных механизмов.



Слабому магнитному полю соответствует слабый вращающий момент и, следовательно, для получения высокой точности необходимо уменьшить погрешность от трения. Это достигается уменьшением веса подвижной части и безупречной обработкой осей и опор. Кроме того, поперечное сечение пружин и провода подвижной катушки мало, поэтому электродинамический измерительный чувствителен к перегрузке.

Получение вращающего момента вэлектродинамическом измерительном механизме.

Как работают цифровые измерители

Цифровые электроизмерительные приборы имеют высокий класс точности (погрешность варьируется от 0,1 до 1,0 %) и широкий предел измерений. Они быстродейственны и могут совместно работать с электронно-вычислительными машинами, что позволяет передавать результаты измерений без каких-либо искажений на различные расстояния.


Эти устройства считаются приборами сравнения и непосредственной оценки. Их работа основана на принципе перевода измеряемой величины в код, благодаря чему пользователь имеет цифровое представление информации. Ещё какие электроизмерительные приборы относятся к цифровым? Это устройства, которые, измеряя непрерывную электрическую величину, автоматически конвертируют её в дискретную, кодируют и выдают результат в цифровой форме, удобной для считывания пользователем.

Советуем изучить — Правила безопасности вблизи оборванного провода воздушной линии электропередач

Читайте также: