История развития гидроэнергетики кратко

Обновлено: 04.07.2024

Энергетика – область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.
Наиболее часто в современной энергетике выделяют традиционную и нетрадиционную энергетики. К традиционной энергетике относят крупные ГЭС всех типов, АЭС и ядерные станции всех типов, двигатели внутреннего сгорания, ТЭС и теплоустановки, различные виды синтетического топлива

Прикрепленные файлы: 1 файл

гидроэнергетика.docx

Энергетика – область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Наиболее часто в современной энергетике выделяют традиционную и нетрадиционную энергетики. К традиционной энергетике относят крупные ГЭС всех типов, АЭС и ядерные станции всех типов, двигатели внутреннего сгорания, ТЭС и теплоустановки, различные виды синтетического топлива. К нетрадиционной энергетике относят гелиоэнергетику, биоэнергетику, альтернативную гидроэнергетику, ветроэнергетику и т.д. В данном реферате более подробно будет рассмотрена гидроэнергетика.[1]

1. История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики.

Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития, о котором будет рассказано в этом разделе.

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин. Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины. Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока. Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо- Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони).[2]

2.Конструкция и работа ГЭС

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции подразделяются: в конструктивном отношении – по схеме и составу основных гидротехнических сооружений – на приплотинные и деривационные, сооружаемые на крупных, средних и малых реках; в народнохозяйственном отношении - на крупные (свыше 50-75 тыс.кВт),средние ( от 3-5 до 50-75 тыс.кВт) и малые (до 3-5 тыс. к.Вт); по величине напора – нанизконапорные (при напорах ниже 20-25 м), средненапорные ( от 20-25 до 70-75 м) ивысоконапорные (свыше 7—75 м ). Различают также гидроэлектростанции похарактеру регулирования речного стока их водохранилищами: с длительным(многолетним, годовым и сезонным), краткосрочным ( суточным или недельным)регулированием и совсем без регулирования.

В приплотинных ГЭС водосток регулируется посредствам плотин. В результате подпора воды, создаваемого плотиной, возникает статическая разность между уровнями верхнего и нижнего бьефов ГЭС, называемая статическим напором.

В деривационных ГЭС большая или существенная часть напора создается посредствам безнапорных или напорных деривационных (обходных водоводов). В качестве безнапорного деривационного водовода могут быть использованы каналы, лотки, безнапорные туннели или сочетание этих типов водоводов.[3]

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко.

Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

В настоящее время функционируют гидроэлектростанции самой разной мощности. В связи с этим ГЭС обычно разделяют на большие и малые. Большими считаются станции с мощностью более 10 Мвт, все остальные соответственно признаны малыми.

Для создания больших гидроэлектростанций необходим ряд условий. Прежде всего, это хорошая инфраструктура, например, дороги, необходимые во время строительства объекта. Кроме этого, необходимо иметь доступ к энергосетям, что позволит обеспечить электричеством большое количество людей. Большие ГЭС являются либо государственной собственностью, либо принадлежат крупным компаниям. Для управления и обслуживания больших станций необходим штат высококвалифицированных специалистов.

По причине большого размера станции и возможности увеличении нагрузки себестоимость производимой энергии довольно низка. Развитие большой гидроэнергетики возможно в тех случаях, когда существует необходимость в большом централизованном энергопотреблении.

Как правило, большие гидроэлектростанции обслуживают нужды крупной промышленности и мегаполисов. Если потенциал действительно велик, то большая гидроэнергетика в состоянии внести существенный вклад в общенациональное энергообеспечение.

Малые гидроэлектростанции обычно обладают всеми преимуществами больших, но при этом предоставляют возможность подавать энергию децентрализовано. Кстати малые ГЭС выгодно отличаются и отсутствием некоторых недостатков, присущих большим станциям. Это, например, уменьшение или полное отсутствие негативного влияния на окружающую среду.

Малая энергетика позволяет каждому региону использовать собственные ресурсы. На сегодняшний день в мире эксплуатируется несколько тысяч малых гидроэлектростанций. Малые станции производят электроэнергию в тех случаях, когда уровень воды в реке достаточен для этого. Если малая гидроэлектростанция дополнена аккумуляторной системой, то существует возможность накопления полученной энергии, что помогает избежать перебоев в подаче электричества. Особый интерес малая гидроэнергетика представляет для развивающихся стран, поскольку не требует сложного и дорогостоящего оборудования.[4]

3.Гидроэнергетика в Беларуси

Потенциальные гидроэнергетические ресурсы Республики Беларусь и экологически приемлемые, экономически оправданные возможности их использования обусловлены расположением в середине ее равнинной территории водораздела между бассейнами Балтийского и Черного морей, который делит страну на две почти равные части, вследствие чего вытекающие отсюда реки не могут достигнуть значительной мощности прежде, чем оставляют ее границы. Это предопределяет строительство в республике главным образом малых гидроэлектростанций.

Запасы гидроэнергоресурсов Республики Беларусь составляет теоретический потенциал ее рек - около 7,5 млрд. кВт. часов в средний по водности год, а его часть, которая путем выработки электроэнергии на ГЭС или иными техническими средствами может быть использована (технический потенциал), - 2,5 - 3,0 млрд. кВтч/год.

В настоящее время экономический гидроэнергопотенциал в Республике Беларусь составляет 1,3 млрд. кВт-ч/год, или 325 МВт общей установленной мощности возможных ГЭС в условиях Беларуси. Его оценка проведена на основе сравнения удельных (отнесенных на производство 1 кВт-ч электроэнергии, в долл. США/кВтч) дисконтированных затрат по ГЭС с таковыми по альтернативной тепловой (газатурбинной) электростанции.

Гидроэнергетика России

По данным международных организаций и исследовательских центров, занимающихся энергетическими аспектами, основными производителями гидроэлектроэнергии в мире являются КНР, Бразилия, Канада, США и Российская Федерация. По оценкам специалистов, к 2035 году мировое производство гидроэлектроэнергии может достигнуть 15000 ТВт·ч в год.

Принцип работы гидроэлектростанций

Гидроэлектроэнергия является источником чистой энергии (то есть без выбросов загрязняющих веществ) и возобновляемой (в отличие от ископаемых источников). Ее производство использует преобразование потенциальной гравитационной энергии в кинетическую при движении больших масс падающей воды. Затем кинетическая преобразуется в электрическую посредством работы генераторов и турбин.

Типы гидроэлектростанций

Несмотря на сходный принцип действия, существуют ГЭС разных типов. Так как при их строительстве в большинстве случаев используется естественный рельеф местности, то различия связаны с использованием конкретных преимуществ, которые предоставляют природные условия. Типы гидроэлектростанций:

  • Деривационные. Размещаются на горных реках, где перепад высот позволяет использовать энергию падающего потока, но сильное течение исключает строительство плотины. Потоки воды направляют в специальные отводы, наклон которых сооружают так, чтобы обеспечить необходимый напор.
  • Плотинные. Основной тип ГЭС, предусматривающий строительство плотины, перегораживающей русло реки и создающей водохранилище. Плотина часто также имеет функцию борьбы с наводнениями. Благодаря водному резервуару, с помощью которого можно регулировать поток воды, электростанция способна реагировать на изменение потребления энергии (снижать и увеличивать выработку) и адаптироваться к сезонным колебаниям количества проточной воды.
  • Смешанного типа. Применяются в тех случаях, когда для успешной работы деривационных ГЭС необходимо и возможно построить плотину для создания резерва воды с целью регулирования потока.
  • Аккумуляторные (ГАЭС). У них есть два резервуара для воды: верхний и нижний. В период низкого энергопотребления электростанция перекачивает воду из нижнего в верхний, таким образом накапливая потенциальную энергию (это насосная работа ГАЭС). В свою очередь, генератор начинает работать, когда энергопотребление возрастает. Вода поступает из верхнего резервуара, приводя в движение турбину, посредством которой вырабатывается электричество.
  • Приливные (ПЭС). Используют колебания уровня воды, часто в устьях рек, где приливные явления вызывают двунаправленный поток. На прибрежном участке возводят плотину. Для эффективной работы необходимо, чтобы перепад воды был не менее 5 м. Мощность таких электростанций невелика, это связано с низкой энергией проточной воды. Большинство ПЭС используют пропеллерные турбины. Некоторые из них имеют внушительные размеры. Во Франции турбины, расположенные в нижней части Ла-Манша, имеют диаметр 21 м и мощность около 2,2 МВт.

Гидроэнергетика России

Существует классификация гидроэлектростанций по совокупной мощности установленных генераторов, позволяющая разделить малые и крупные ГЭС, но она отличается для разных стран. Например, в Португалии, Испании, Ирландии, Греции и Бельгии 10 МВт было принято в качестве верхнего предела для малых ГЭС, в Италии – 3 МВт, Швеции – 1,5 МВт, а в Польше – 5 МВт.

Однако эти границы достаточно условны и могут изменяться государственными нормативными актами. Так, В США сначала максимальная мощность малых ГЭС была равной 5 МВт, затем 15 МВт, а сейчас уже 30 МВт. В РФ также гидроэлектростанции мощностью более 30 МВт считаются крупными.

История развития гидроэнергетики в мире и России

Вода была основным источником энергии, используемым человеком на протяжении многих лет. Первой машиной, применившей энергию воды, стало колесо для водяных мельниц. Первая гидроэлектростанция была построена в 1878 году в Нортумберленде, в Великобритании, и использовалась для обеспечения электропитания всего одной лампочки для картинной галереи изобретателя У. Дж. Армстронга. А в 1920 году на ГЭС уже была произведена большая часть мировой электроэнергии. Основная технология строительства ГЭС оставалась неизменной в течение всего ХХ столетия.

В России в конце XIX и начале ХХ века различные предприниматели для своих предприятий возводили малые ГЭС, но настоящий толчок строительству мощных электростанций дал принятый в 1920 г. план ГОЭЛРО.

Гидроэнергетический потенциал будущего

Гидроэнергетика открывает большие перспективы. Так как она использует возобновляемую энергию, то именно ГЭС рассматриваются как преимущественные способы генерации электроэнергии, учитывая борьбу с глобальным потеплением.

В будущем возможны два предпочтительных способа использования ГЭС:

  • строительство малых гидроэлектростанций (от 0,1 до 10 МВт), использующих природное течение рек;
  • применение энергии морских волн и приливов.

Преимущества и недостатки

Гидроэнергетика обладает неоспоримыми преимуществами:

  • Чистота электроэнергии. Она вырабатывается при абсолютном отсутствии вредных выбросов.
  • Возможность строительства мощных электростанций при соответствующих природных условиях.
  • Гибкость производства. Система плотин позволяет регулировать интенсивность потока воды и конечную выработку электроэнергии. Электростанции легко адаптируются к уровню энергопотребления.
  • Высокая безопасность. Так как ГЭС не используют ископаемое или ядерное топливо, внутри этих станций нет риска взрыва с тяжелыми последствиями.
  • Высокий уровень инвестиций в строительство.
  • Неблагоприятное воздействие на окружающую природу. Возведение гидроэлектростанций плотинного типа нарушает естественную экосистему, так как затапливаются огромные участки суши. Строительство вблизи ГЭС линий электропередачи, новых дорог, прокладка кабелей также оказывает влияние на ландшафт.
  • Необходимость иметь адекватные природные условия: значительный перепад воды в реках, выраженные приливные явления. Большинство мест, пригодных для строительства мощных гидроэлектростанций, уже использованы.
  • В отдельных районах имеется риск засухи. Длительное отсутствие осадков не очень предсказуемо, иногда может привести к полному прекращению выработки электроэнергии и способно вызвать проблемы в энергосистеме.

Гидроэлектростанции

Крупнейшие ГЭС

В мире двумя самыми крупными ГЭС являются:

На территории РФ построено много ГЭС, входящих в список крупнейших в мире:

  • Саяно-Шушенская;
  • Красноярская;
  • Братская;
  • Усть-Илимская;
  • Богучанская;
  • Волжская;
  • Жигулевская;
  • Бурейская;
  • Саратовская;
  • Чебоксарская.

Крупнейшая аккумулирующая электростанция в РФ – Загорская ГАЭС. Она также присутствует среди 10 мировых самых мощных станций подобного типа.

Крупнейшие объекты

Саяно-Шушенская ГЭС

Расположена в Хакасии, на Енисее. Является самой крупной в России. Расчетный напор воды – 194 м при высоте плотины в 242 м. Суммарная мощность турбогенераторов – 6,4 тыс. МВт (10 машин по 640 МВт каждая). Себестоимость производимой электроэнергии считается одной из самых низких в РФ.

Снабжает электрической энергией промышленные и гражданские объекты, самые энергоемкие из которых – это два алюминиевых завода (Саянский, Хакасский) и Абаканвагонмаш, предприятие по добыче угля и железной руды.

Кроме основного предназначения, комплекс сооружений ГЭС защищает ниже расположенные по течению реки участки от паводков.

Красноярская ГЭС

Наряду с Саяно-Шушенской и Майнской гидроэлектростанцией образует каскад ГЭС на Енисее, являясь его заключительной ступенью. При расчетном напоре 93 м обладает мощностью 6 тыс. МВт, которая обеспечивается 12 агрегатами по 500 МВт.

ГЭС является основным генерирующим электроэнергию предприятием Красноярского края, играет ключевую роль в объединенной энергетической системе Сибири. На ГЭС продолжается масштабная техническая реконструкция, уже позволившая значительно повысить эффективность работы оборудования.

Для пропуска судов через гидротехнические сооружения здесь построен судоподъёмник, являющийся уникальной конструкцией, единственной в РФ.

Братская ГЭС

Располагается на Ангаре, в Восточной Сибири. Несмотря на то что по установленной мощности она уступает Саяно-Шушенской и Красноярской гидроэлектростанциям, по годовой выработке электроэнергии Братская ГЭС стоит вровень с ними, а в некоторые годы и превосходит. Расчетный напор – 101,5 м. На станции установлены 18 турбогенераторов по 250 МВт (общая мощность – 4,5 тыс. МВт). Поставляет электроэнергию Братскому алюминиевому заводу и другим важным потребителям.

Водохранилище ГЭС является самым крупным в РФ и позволяет эффективно регулировать сток воды: в годы с большим количеством осадков происходит его заполнение, а в засушливые времена – срабатывание.

Усть-Илимская ГЭС

Третья ступень ангарского каскада гидроэлектростанций вырабатывает 1/3 всей электроэнергии Иркутской области. Основные потребители – алюминиевые заводы и предприятия лесохимии. Имеет расчетный напор в 90,7 м. 16 агрегатов по 240 МВт составляют общую мощность 3840 МВт.

Усть-Илимская ГЭС

Водохранилище ГЭС по площади поверхности в 3 раза уступает аналогичному водоему Братской ГЭС.

Так как предприятие сдано в эксплуатацию еще в 1980 году, то на нем постепенно проводятся работы по реконструкции гидроагрегатов. В частности, замена их рабочих колес дает существенный прирост выработки электроэнергии каждым генератором – более 4%.

Богучанская ГЭС

Является составляющей частью ангарского каскада, образует его четвертую ступень. Гидроэлектростанция относится к объектам, строительство которых шло продолжительное время. Несмотря на то что ее возведение началось в 1974 г., ввод в эксплуатацию состоялся только в 2012-2015 годах.

Расчетный напор – 65,5 м при высоте плотины в 77 м. Общая мощность станции – 2997 МВт, обеспечивающаяся 9 генераторами по 333 МВт.

50% и более всей вырабатываемой электроэнергии будет потреблять Богучанский и Тайшетский алюминиевые заводы. А мощная электросетевая инфраструктура способна повысить надежность электроснабжения регионов Восточной Сибири – Красноярского края и Иркутской области.

Волжская ГЭС

Это самая крупная ГЭС на европейском континенте, в начале 60-х годов прошлого века была мощнейшей в мире. Находится на Волге, недалеко от Волгограда.

Является важным звеном, гарантирующим надежность работы ЕЭС РФ, а ее водохранилище играет ключевую роль в обеспечении водой засушливых районов юга России, в том числе оросительных систем и создании условий для пропуска крупнотоннажных судов.

Максимальная высота плотины – 47 м, расчетный напор – 21,5 м. Суммарная мощность гидрогенераторов – 2671 МВт (7 – по 115 МВт, 5 – по 120 МВт, 1 – 11 МВт).

В конце 90-х началась модернизация гидроагрегатов, а в 2010 г. – замена и реконструкция электросетевого оборудования (трансформаторов, коммутационной аппаратуры, кабелей и т. д.).

Жигулевская ГЭС

Гидроэлектростанция расположена на реке Волге, недалеко от города Тольятти, уступает по мощности только Волжской. Здесь установлены 16 генераторов по 125,5 МВт и 4 генератора по 120 МВт. Суммарная мощность – 2488 МВт. Расчетный напор – 21 м при максимальной высоте плотины в 45 м.

Жигулевская ГЭС

Водохранилище Жигулевской ГЭС имеет определяющее значение среди всех объектов каскада электростанций на Волге для регулирования стока воды, так как обладает самыми крупными размерами в Европе. Благодаря Куйбышевскому водохранилищу обеспечиваются комфортные навигационные глубины, и вода поступает в оросительные системы по мере необходимости.

Бурейская ГЭС

Мощнейшая на Дальнем Востоке ГЭС была полностью сдана в эксплуатацию в 2014 году и разрешила ряд региональных проблем:

  • помогла повысить надежность снабжения электричеством;
  • увеличила экспортные возможности (основное направление – Китай);
  • исключила необходимость строительства электростанций, работающих на ископаемом топливе, следовательно, отпала необходимость в его завозе, окружающая атмосфера будет освобождена от продуктов сгорания угля;
  • обеспечила защиту от паводков.

Высота плотины станции – 140 м при расчетном напоре в 103 м. Суммарная мощность гидрогенераторов – 2010 МВт (6 агрегатов по 335 МВт).

Саратовская ГЭС

Предпоследняя ступень в Волжско-Камском каскаде гидроэлектростанций. Построена в городе Балаково Саратовской области. Если до ее ввода в эксплуатацию этот регион испытывал дефицит электроэнергии, то после стал энергоизбыточным. Мощность электростанции – 1415 МВт. Установлено 6 агрегатов по 66 МВт, 15 – по 60 МВт, 2 – по 54 МВт и 1 – 11 МВт. Длина машинного зала превосходит все подобные сооружения в России. Высота плотины – 40 м.

Как и все звенья каскада, Саратовская ГЭС обеспечивает надежность снабжения электрической энергией Поволжья, участвует в улучшении условий для навигации крупнотоннажных судов, помогает орошать засушливые земли.

Чебоксарская ГЭС

Находится в Чувашии. Возведена последней из всех ГЭС на Волге, считается, что ее строительство до сих пор не завершено, хотя предприятие начало выдавать электроэнергию в сеть с 1981 года. ГЭС используется только на 60% от проектной мощности. Основная проблема – агрегаты работают на напоре ниже проектного.

Общая мощность должна составлять 1370 МВт, но из-за низкого напора она не превышает 820 МВт. Всего функционируют 17 генераторов по 78 МВт и 1 – 44 МВт.

Прорабатываются различные варианты завершения строительства электростанции и вывода ее на проектную мощность, но даже сейчас она выполняет важную роль в электроснабжении региона.

Загорская ГАЭС

Из двух функционирующих в России гидроаккумулирующих электростанций Загорская – крупнейшая, причем после ввода в эксплуатацию второй очереди она будет самой мощной в Московской области. Располагается недалеко от Сергиева Посада. Мощность первой очереди – 1200 МВт, второй – 840 МВт.

Загорская ГАЭС играет важную роль. Она не только в значительной мере обеспечивает потребности в электроэнергии Московского региона, но и является инструментом гибкого реагирования на аварии в энергосистеме путем оперативного ввода в работу резервных генераторов. Другая важная функция ГАЭС – возможность выдачи электрической энергии в сеть в период пиковых нагрузок в системе (утром и вечером) и энергопотребления из сети, используемого на перекачку воды ночью, когда общая нагрузка резко падает и высвобождаются избыточные мощности.

Горячая линия по вопросам потребления электроэнергии: 8 (800) 700-86-27 звонок бесплатный

История гидроэнергетики

ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ

МЫ В СОЦСЕТЯХ

Личный кабинет

Интернет-приемная


Гидроэнергетика

Гидроэнергетика уже давно верно служит человечеству, основным направлением ее деятельности, является преобразование естественного движения водных масс в электроэнергию (приливные движения водных масс, падение водных масс и.т.д.). Также ее подразделяют на естественную и искусственную, большую и малую гидроэнергетику.

При использовании малых гидроэлектростанций можно обеспечить электричеством небольшие районы и поселки, при этом достаточно небольшого водотока, такое преимущество позволяет обходиться без водохранилищ и платин.

В настоящее время ведется много разработок в области гидроэнергетики.

Схемы искусственных гидроэнергетических систем для (ГЭС)

1) Платинная схема – создается платина для напора водных масс;
2) Деривационная схема – создается канал, трубопровод или туннель для напора водных масс;
3) Плотинно-деревационная схема – создаются платины и деривации.

Достоинства и недостатки гидроэнергетики на основе водохранилищ (ГЭС)

1) Для поддержки работоспособности, не нуждается в доставке каких-либо расходных материалов.
2) Сокращается выброс вредных веществ.
3) Простата эксплуатации водных электростанций.
4) Водохранилище служит отстойником для мусора и других примесей переносимых естественными водотоками.
5) Платина может создать надежный запас воды для населения и промышленности, а также предотвратить паводковые затопления.
6) Используемая вода в работе гидроэлектростанций вполне пригодна для развода рыб и сельскохозяйственных целей.

1) Для части стран мира ограниченность в водных ресурсах.
2) Затопление территорий для создания водохранилищ.
3) Изменение физико-химических характеристик воды, вследствие снижения скорости течения, по сравнению с бытовыми условиями реки (нарушение жизнь экосистемы реки, накопление вредных веществ на дне водоемов).
4) Изменение микроклимата под влиянием водохранилищ (повышение влажности воздуха, изменение ветрового режим прибрежной зоны, изменение температурного и ледяного режима водотока).
5) Влияние на фауну при строительстве водохранилищ (миграция животных из зоны затопления, однако в ряде случаев способствуют обогащению фауны новыми видами рыб и водоплавающих птиц).

Гидроэнергетика в России

Протяжённость рек на территории России составляет около 3.5 млн. км, энергетический потенциал приблизительно равен 600 млрд. кВт•ч, мощность всех гидроэлектростанций в России на начало 21 века составила 44 000 МВт (вырабатывает 160 млрд. кВт•ч), поэтому перспектива развития гидроэнергетики в России довольно высока.

Крупные (ГЭС) преобладают на Волге и реках Сибири (Ангарская, Шушенская, Красноярская, Братская и др.).

Гидроэнергетика других стран

Гидроэнергетика более всего развита в Соединенных Штатах, затем в России, Украине, Канаде, Японии, Бразилии, КНР и Норвегии. В Африке, Азии и Южной Америке за счет неосвоенных гидроэнергетических ресурсов открываются широкие возможности для строительства новых ГЭС. Например, в Северной Америке, где в распоряжении находится около 13% мировых ресурсов гидроэнергетики, работают на полной мощности 35% (ГЭС), в Африке при 21% мировых гидроресурсов всего 5% (ГЭС), в Азии (39% гидроресурсов) работает 18% (ГЭС). В Европе при (21% гидроресурсов) задействованы 31% (ГЭС), а в Южной Америке и Австралии, которая располагает около 15% (мировых гидроресурсов) воспроизводят всего 11% гидроэлектроэнергии.

Краткая историческая справка по Гидроэнергетике

История применения энергии водного потока насчитывает уже более 2 тыс. лет. С давних времен, люди строили водяные колёса, для движения мельничных жерновов. Энергию воды, до изобретения паровой машины, использовали, как основную движущую силу в приводах станков, в молотах и т. п. С течением времени эффективность и размеры водяных колёс увеличились. В Англии и Франции в XI в. на 250 человек приходилась одна мельница. Применение мельниц расширялось, их использовали в распилке леса, сукновальном производстве, для работы откачивающих насосов, при варке пива.

В 1891 году эмигрировавший в Германию российский инженер Михаил Осипович Доливо-Добровольский должен был продемонстрировать во Франкфурте-на-Майне на электротехнической выставке изобретённый им двигатель переменного тока. Этот год можно считать началом развития современной гидроэнергетики, поскольку двигатель, который он представил, был мощностью около 100 киловатт, но главной неожиданностью того времени оказалось построенное им сооружение питавшее этот двигатель – гидроэлектростанция. В небольшом городке был установлен генератор трёхфазного тока, вращение которого осуществлялось за счет небольшой водяной турбины, энергия на территорию выставки подавалась по проводам, протяженностью 175 километров.

В начале ХХ века построили всего несколько гидроэлектростанций, по причине сложности их возведения. Для такого сооружения требуется большое количество материалов, однако освоение гидроресурсов осуществлялось быстрыми темпами, примером может служить реализация такого крупного проекта, как ГЭС Гувер (мощностью 1,3 Гигаватт) в США.

В настоящее время гидроэнергетика все более становится актуальной, а основным направлением является преобразование электроэнергии.

Гидроэнергия использовалась людьми еще с древних времен, когда с помощью водяных мельниц перемалывали муку и выполняли другие задачи. Однако всему со временем находится новое применение. Так случилось и с гидроэнергетикой.

Водяная мельница

В 1881 году в США около Ниагарских водопадов начала производить электроэнергию первая гидроэлектростанция. К 1886 году в США и Канаде было уже около 45 ГЭС, а к 1889 году – 200 в одних только США.

На протяжении двадцатого века ГЭС становились все больше и мощнее. А т.к. они стали отрицательно влиять на окружающую среду, то потребовалось регулировать их постройку на законодательном уровне, чтобы избежать нежелательных последствий в виде засухи отдельных регионов, выбросов в атмосферу метана, не говоря уже о возможных прорывах дамб.

Платина Гувера

В наши дни гидроэнергетика предоставляет до 85% электроэнергии в таких странах, как Норвегия, Демократическая Республика Конго, Парагвай и Бразилия. В США более 2000 ГЭС поставляют 49% от общего количества возобновляемой энергии.

В основе виртуального музея — осмысление последствий великих планов Советского Союза по преобразованию природы, когда реки становились водохранилищами, а территории — с памятниками, жизненным укладом и традициями — затапливались, разрушались и уходили в небытие.

В 2020 году при поддержке Фонда Президентских грантов музей смог глобально посмотреть на феномен затоплений в России, в рамках фотовыставки и

Первой российской гидроэлектростанцией считается небольшая ГЭС на реке Березовка, построенная в 1892 году при Зыряновском руднике на Алтае.

Первые ГЭС пришли на смену водяным мельницам, которые с давних пор использовались в сельском хозяйстве, металлургии и добыче полезных ископаемых.

Строительство Угличской ГЭС. Начало укладки бетона. Фотография 1937 года. Источник: Музей Гидроэнергетики, г. Углич

Строительство Угличской ГЭС. Начало укладки бетона. Фотография 1937 года. Источник: Музей Гидроэнергетики, г. Углич

В 1950-х годах строительство гигантских гидроузлов на Волге продолжилось. Крупнейшим в Европе Куйбышевским водохранилищем полностью затоплены Ставрополь-на-Волге, с 1964 года известный как Тольятти, и Спасск-Татарский, отстроенный заново близ древнего городища Булгар. На дне Горьковского водохранилища оказалась почти вся историческая часть Пучежа, подтоплены Юрьевец и Чкаловск.

Волжская (Сталинградская) ГЭС. Водосливная плотина перед затоплением котлована. Открытка 1950-1960-х гг. Источник: Волжский музейно-выставочный комплекс.

Волжская (Сталинградская) ГЭС. Водосливная плотина перед затоплением котлована. Открытка 1950-1960-х гг. Источник: Волжский музейно-выставочный комплекс.

Со второй половины 1950-х годов гидростроительство переместилось в Сибирь, на Кавказ и в Среднюю Азию. В 1956 году запущена Иркутская ГЭС – первая советская гидроэлектростанция в Сибири. При её строительстве утрачены посёлок Тальцы, село Большая речка, село Михалёво и десятки других населенных пунктов. В зоне затопления Новосибирской ГЭС оказались 59 населённых пунктов, полностью переселен город Бердск. При наполнении Братского водохранилища в 1963 году под воду ушли около ста деревень. В результате наполнения Красноярского водохранилища в 1967 году в зону затопления попали 132 населённых пункта, в том числе три райцентра – Даурск, Новосёлово, Краснотуранск.

Строительство Новосибирской ГЭС. Перекрытие Оби. Фотография 1956 года. Источник: Историко-художественный музей г. Бердска.

Строительство Новосибирской ГЭС. Перекрытие Оби. Фотография 1956 года. Источник: Историко-художественный музей г. Бердска.

Российской Федерации “достались в наследство” советские долгострои. Переселения растягивались на десятилетия, как в Кежемском районе Красноярского края. Строительство Бурейской ГЭС началось в 1978 году, а в постоянную эксплуатацию была сдана лишь в 2014 году. Строительство Богучанской ГЭС велось с 1974 до 2017 год.

Память об ушедших под воду городах и селах хранят переселенцы, краеведы, землячества. Они ставят памятные знаки и кресты, собирают воспоминания и артефакты, изучают архивы, организуют экспедиции по затопленным территориям. Спасение храма Рождества Христова в Крохино – уникальный случай, ведь это единственный в России храм на воде, сохранившийся при строительстве гидросооружений.

Затопленное село Крохино при входе в Белое озеро из Шексны. Фотография В.Д. Петрова 1965 года. Источник: Череповецкое музейное объединение.

Затопленное село Крохино при входе в Белое озеро из Шексны. Фотография В.Д. Петрова 1965 года. Источник: Череповецкое музейное объединение.

В 2020 году при поддержке Фонда Президентских грантов музею удалось глобально посмотреть на проблему затоплений в России и провести фотовыставку, где показан масштаб затоплений территорий, с которым столкнулась Россия в бурный период индустриализации XX века. Авторы выставки начали сложный разговор о тяжелом опыте, который до сих пор переживают тысячи россиян: участников, свидетелей и потомков переселенцев.

Читайте также: