Источники питания в современной технике кратко

Обновлено: 02.07.2024

Какими параметрами характеризуются источники питания.

В каких приборах используются химические источники питания.

Глоссарий по теме:

Аккумулятор—устройство для накопления энергии с целью её последующего использовании.

Внутреннее сопротивление источника питания – это его количественная характеристика, которая определяет величину энергетических потерь при прохождении через источник тока нагрузки.

Гальванический элемент – источник электрической энергии, вырабатывающий электрический ток методом химического взаимодействия двух металлов в электролите (в качестве которого используются растворы щелочей или кислот).

Ёмкость аккумулятора – показывает, сколько времени аккумулятор сможет питать подключенную к нему нагрузку. Обычно емкость аккумулятора измеряется в ампер-часах, а для небольших аккумуляторов - в миллиампер-часах.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  1. Естествознание. 11 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд.,– М.: Просвещение, 2017. : с 53 -58.
  2. Элементарный учебник физики под редакцией академика Г.С. Ландсберга. Том 2. Электричество и магнетизм.–12-е изд. – М.:ФИЗМАТЛИТ, 2001. – 480 с.

Теоретический материал для самостоятельного изучения

Главным способом получения электрической энергии в современном обществе является применение вращающихся генераторов, так как с их помощью получают электроэнергию на тепловых электростанциях, гидро и атомных электростанциях.

Способы получения электричества

Виды электростанций

Определение

Обозначение

Электростанция, вырабатывающая электрическую энергию за счёт преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора

Электростанция, в качестве источника энергии использующая энергию водного потока

Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов преобразуется в электроэнергию.

устройства специальной конструкции, в которых энергия ветра преобразуется в электрическую

устройства специальной конструкции, в которых энергия солнца преобразуется в электрическую

В первых опытах ученые в раствор кислоты опускали две металлические пластины: медную и цинковую. Пластины соединяли проводником, на медной пластине появлялись газовые пузырьки, а цинковая пластина растворяется. На этом основано действие гальванических элементов.

Распад электролита на ионы происходит в результате процесса электролитической диссоциации. Электролит чаще состоит из раствора кислоты, щелочи или солей натрия и калия. Такие гальванические элементы сегодня называют батарейками. Величина напряжения батарейки зависит от используемых металлов и от числа элементов, находящихся в ней.

Достоинства

Длительный срок службы,

Возможность глубокого разряда,

Небольшой удельный вес,

Работа при отрицательных температурах

Простая технология производства,

Дешёвое и доступное сырьё

Малый срок хранения,

Резкое падение свойств при понижении температуры,

Быстрое уменьшение напряжения во время работы

Малые размеры и масса,

Длительный срок эксплуатации,

Стабильные параметры в различных условиях,

Высокая цена, возможность внезапного возгорания.

Гальванические элементы характеризуются электродвижущей силой, ёмкостью; энергией; сохраняемостью.

Электродвижущая сила гальванического элемента зависит от материала электродов и состава электролита.

Электрическая ёмкость элемента — это количество электричества, которое источник тока отдаёт при полном разряде.

Энергия гальванического элемента численно равна произведению его электрической ёмкости на напряжение.

Сохраняемость — это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.

В истории первым создателем химического источника питания был Алессандро Вольта, но он не смог сделать полученный им гальванический элемент перезаряжаемым.

В 1859 году французский ученый Гастон Планте создал прототип современного аккумулятора – первую свинцово-кислотную батарею, которую можно было в отличие от гальванического элемента перезаряжать.

Американский изобретатель Томас Эдисон первым предложил использовать аккумуляторы на транспорте.

Перед использованием аккумулятор заряжают. Для этого через него пропускают постоянный ток. В процессе зарядки в результате химических реакций аккумулятор накапливает энергию.

Применение аккумуляторов в современном обществе:

- в сотовых телефонах,

- под капотом машины для запуска двигателя,

- для блоков бесперебойного питания,

- в системах охраны,

- в переносных радиопередатчиках и аппаратуре.

Сферы использования химических источников тока:

В переносных устройствах;

В космической технике;

В оборудовании научных исследований;

В медицинских приборах;

Фото и видеотехника

В бытовой сфере (батарейки, батареи аккумуляторов электроники, аккумуляторы на автомобилях).

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Назовите фамилию русского инженера, внёсшего большой вклад в развитие электричества?

Задание 2: Решите ребус, установив соответствие картинки и зашифрованного слова.

Типы источников питания

В электротехнике источник питания - это устройство, которое преобразует электрическую энергию в выходное электрическое напряжение, ток и частоту, необходимые для подключенного электрического прибора. Он преобразует переменный ток в постоянный ток и питает различные электронные устройства (компьютер, телевизор, принтер, роутер и т. д.). Есть два различных вида источника питания: источник напряжения (обеспечивает постоянное напряжение) и источник тока (обеспечивает постоянный ток).

лабораторный источник питания

Источники питания для электронных устройств в основном можно разделить на линейные и импульсные:

  • линейные источники питания, в которых согласующим элементом является трансформатор (сущетсуют и бестрансформаторные линейные истчники питания);
  • импульсные источники питания с использованием различных типов электронных систем (преобразователей напряжения);

Линейные имеют относительно простую конструкцию, которая может усложняться с увеличением тока, который они должны подавать, однако их регулировка напряжения у них не очень эффективна.

Источник питания

Источник питания - неотъемлемая часть многих устройств. Вот некоторые из основных типов:

  • Импульсный блок питания. В настоящее время большинство блоков питания производится в виде импульсных блоков питания. Их преимущество - в основном меньший вес. Когда полупроводниковые компоненты управления и питания еще не были доступны, чтобы позволить недорогую конструкцию импульсных блоков питания, использовались более тяжелые и долговечные блоки питания с трансформатором.
  • Компьютерный блок питания. Компьютеры содержат импульсный источник питания, который преобразует низкое напряжение переменного тока из распределительной сети (230 В, 50 Гц) в низкое напряжение, используемое в электрических цепях компьютера (напряжение постоянного тока 3,3 В, 5 В и 12 В).
  • Сетевой адаптер. Это небольшой импульсный блок питания, имеющий форму и размер стандартной электрической вилки (например, зарядного устройства для сотового телефона), используемый в сети 230 В, обеспечивающей небольшое напряжение, необходимое для конкретного электрического или электронного устройства. Сетевые адаптеры, как правило, используются с устройствами и приборами, которые не имеют свой собственный внутренний источник питания.
  • Сварочный источник питания. Сварочные источники обеспечивают высокий ток (обычно сотни ампер), который позволяет расплавлять металл локально и, таким образом, обеспечивать его соединение. Раньше применялись так называемые сварочные трансформаторы (со специальными электромагнитными трансформаторами, рассчитанными на большие сварочные токи), более современными являются сварочные инверторы с электронным управлением.

Блок питания на 24 вольта

Внутренне сопротивление источника питания

Идеальный источник питания, как источник напряжения, всегда обеспечивает одно и то же напряжение независимо от подключенной нагрузки (т. е. напряжение источника питания постоянно при разном потребляемом токе).

Однако идеального источника не существует, потому что внутреннее сопротивление реального источника ограничивает максимальный ток, который может протекать через электрическую цепь.

Настоящий источник питания может использовать стабилизатор напряжения для обеспечения стабильного выходного напряжения, которое обеспечивается за счет падения напряжения (разницы между входным и выходным напряжением стабилизатора). Пример - Импульсный стабилизатор напряжения

Итак, по качеству выходного напряжения источники питания различают:

  • стабилизированные источники, напряжение которых поддерживается на постоянном уровне независимо от колебаний тока,
  • нестабилизированные источники, в которых выходное напряжение может изменяться в зависимости от колебаний тока .

Трансформаторные линейные источники питания

Классические линейные источники состоят из следующих элементов: трансформатор, выпрямитель, фильтр и устройство регулирования напряжения.

Принципиальная схема линейного источника питания

Принципиальная схема линейного источника питания

Сначала трансформатор преобразует сетевое напряжение в пониженное и обеспечивает гальваническую развязку. Схема, которая преобразует переменный ток в импульсный постоянный ток, называется выпрямителем (для выпрямления используются мостовые схемы на диодах), далее фильтр с конденсаторами и индуктивностями уменьшает пульсации. Подробно про фильтры - Фильтры источников питания.

Регулирование или стабилизация напряжения до заданного значения достигается с помощью так называемого регулятора напряжения, в конструкции которого используются транзисторы.

Транзистор в схеме действует как регулируемое сопротивление. На выходе из этого каскада для достижения большей стабильности в пульсации есть второй каскад фильтрации (хотя и не обязательно, все зависит от проектных требований), это может быть обычный конденсатор.

Среди источников питания есть такие, в которых мощность, подаваемая на нагрузку, регулируется тиристорами, чтобы подавать требуемое напряжение и мощность на нагрузку.

Немецкий лабораторный источник питания

Немецкий лабораторный источник питания

Современные линейные источники питания

Стабилизация напряжения в базовом типе линейных источников достигается путем включения специального элемента параллельно цепи, питаемой от нестабилизированного источника более высокого напряжения, через подходящий резистор, вольт-амперная характеристика которого показывает резкое увеличение тока при требуемом напряжении. Такой элементом является стабилитрон (диод Зинера), который работает в широком диапазоне пороговых напряжений.

Недостатками источника питания с диодом Зенера являются относительно низкая стабильность выходного напряжения, относительно небольшой диапазон тока и особенно низкий КПД, поскольку электрическая энергия преобразуется в тепло в последовательном резисторе и в самом стабилитроне.

Линейный источник питания для Ардуино

Современные линейные источники (обычно в виде интегральной схемы) используют элемент с переменным импедансом (транзистор в линейном режиме), который регулируется обратной связью, основанной на разнице между выходным напряжением и постоянным напряжением от внутреннего опорного напряжения (на основе диодной схемы, но с небольшим постоянным потреблением).

Типичными представителями линейных источников являются интегральные схемы типа 78xx (например, 7805 - источник напряжения 5 В) и их производные.

Недостатком таких линейных источников питания является их низкая эффективность (и поскольку рассеиваемая мощность в интегральной схеме изменяется в зависимости от нагрева, а также необходимость охлаждения), особенно когда существует большая разница между входным и выходным напряжением и большими токами. Недостатком иногда является также то, что выходное напряжение всегда ниже входного.

Преимущество заключается в их низкой цене, небольшом размере, простоте использования и отсутствии помех извне и в цепи питания.

Встроенный источник питания в лабораторном стенде по изучению электротехники

Встроенный источник питания в лабораторном стенде по изучению электротехники

Импульсные источники питания

В импульсных источниках питания используется полевой транзистор, который периодически замыкаются с относительно высокой частотой (десятки кГц и более) и увеличивают входное напряжение схемы, состоящей из комбинации катушки, конденсатора и диода. С помощью подходящей комбинации этих элементов можно добиться снижения и увеличения напряжения.

Другой тип импульсного источника питания - это источник питания с трансформатором и последующим диодным выпрямителем, в котором используются выгодные свойства (меньшие размеры трансформатора при больших токах, меньшие магнитные потери) современных магнитных материалов (ферритов) на высоких частотах. Изменяя частоту можно добиться изменения выходного напряжения.

Таким образом, такой источник питания включает в себя схему (обычно в виде интегральной схемы), которая обеспечивает изменение частоты на основе обратной связи от выходного напряжения, чтобы обеспечить стабильное выходное напряжение при различных нагрузках.

Поскольку импульсные источники питания работают с прямоугольными напряжениями токов и токов, они, как правило, излучают электромагнитные волны в широком диапазоне частот. Поэтому при их создании и использовании необходимо соблюдать принципы электромагнитной совместимости (ЭМС).

Лабораторное оборудование

Лабораторное измерительное оборудование

В мастерской или лаборатории прецизионный источник питания используется для проведения измерений, испытаний, поиска и устранения неисправностей. Эти лабораторные источники питания преобразуют, выпрямляют и регулируют напряжения, а также выходные токи, так что измерения можно проводить без повреждения тестируемых элементов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Источники электропитания

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.
  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

  • выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
  • блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
  • частотный фильтр (в блоках без гальванической развязки);
  • трансформатор (в блоках с гальванической развязкой от сети).

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера.

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.
  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

© 2014-2022 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Какие существуют виды источников электрического тока?

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

СПРАВКА! Один элемент свинцово-цинкового аккумулятора вырабатывает напряжение 2 В. Соединив элементы последовательно, можно получить любое напряжение, кратное 2. Например, в автомобильных аккумуляторах напряжение 12 В, т.к. соединены 6 элементов.

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

СПРАВКА! Никель-кадмиевые аккумуляторы можно хранить в разряженном состоянии, в отличии от литий-ионных.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Читайте также: