Характеристики синусоидальных величин кратко

Обновлено: 05.07.2024

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ДЛЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Теоретическая электротехника опирается на два фундаментальных понятия: электрический заряд и электромагнитное поле. Электрический заряд — особое свойство частиц и тел, заключающееся в их силовом .

МЕТОД СИММЕТРИЧНЫХ СОСТАВЛЯЮЩИХ. ПОТЕРИ В ТРЕХФАЗНЫХ ЦЕПЯХ

Процессы в трехфазных цепях при несимметричной нагрузке удобно рассматривать с помощью метода симметричных составляющих. По этому методу звезду фазных напряжений 0А, UB, Uc (рис. .

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА

Трансформатор преобразует уровни токов и напряжений. Различают силовые и измерительные трансформаторы. Силовой трансформатор предназначен для преобразования электрической энергии одного уровня напряжения и, .

ПОНЯТИЕ О ПЕРЕХОДНЫХ ПРОЦЕССАХ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Установившимися называются процессы, при которых напряжения и токи в цепи являются неизменными (постоянными) или синусоидальными периодическими. Переходным называют процесс в электрической цепи при переходе от одного установившегося режима к другому. Такой процесс возникает.

ЦЕПИ ПЕРЕМЕННОГО ТОКА

Под переменным током в теоретической электротехнике понимают ток, который изменяется с течением времени. Значение такого тока в данный момент времени называют мгновенным значением тока (мгновенным .

СИНУСОИДАЛЬНЫЕ ВЕЛИЧИНЫ И ИХ ИЗОБРАЖЕНИЯ

В электротехнике России используют синусоидальный переменный ток частотой 50 Гц. Частота — это число колебаний переменной величины в одну секунду. Синусоидальную форму тока и напряжения .

ОТЛИЧИЯ В РАСЧЕТАХ ЦЕПЕЙ ПЕРЕМЕННОГО И ПОСТОЯННОГО ТОКОВ

Расчет цепей переменного тока по мгновенным значениям u и i сложен. Поэтому синусоидальные величины заменяют эквивалентными постоянными и производят расчеты как на постоянном токе. Следует отметить.

ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

На рис. 1. приведены схемы с последовательным (а) и параллельным (б) соединением элементов. Рис. 1. Схемы соединения элементов: а .

АКТИВНАЯ РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ

На рис. 1а изображена электрическая цепь с параллельным соединением активного сопротивления R, индуктивности L и емкости С (показана пунктиром). Ко входным зажимам цепи приложено синусоидальное напряжение В ветвях .

ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Основные определения и термины Трехфазной системой называют совокупность электрических цепей, в которых действуют три синусоидальные ЭДС ?А, ?B, ?C одной и той .

баннер для сайдбара Вы это искали



ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Синусоидально изменяющиеся величины характеризуются следующими основными параметрами:

− период Т, [c] - время совершения одного полного колебания синусоидальной величины;

− частота f, [c -1 ]=[Гц] - количество периодов, укладывающихся в единицу времени:

В нашей стране частота тока в сети f=50 Гц;

− амплитуда Im, Em, Um - наибольшее значение синусоидальной величины. Амплитудные значения синусоидальных функций являются постоянными величинами, т.е. от времени они не зависят.

− мгновенные значения синусоидальных функций обозначают маленькими буквами: i, e, u. Они являются функциями времени. Зависимость их от времени выражается соотношениями:

− фаза - аргумент синусоидальной функции (wt+j) - показывает, какое значение имеет синусоидальная функция в данный момент времени;

− начальная фаза j - показывает, какое значение имеет синусоидальная функция в момент на чала отсчета, т.е. при t=0;

− угловая (циклическая) частота изменения тока:

Для нашей сети w=314 рад/c.

− Действующее значение переменного тока.

Действующим значением I переменного тока называют такое значение постоянного I, который, протекая по сопротивлению R, за время, равное одному периоду Т изменения тока, выделяет в нем такое же количество теплоты Q, что и переменный ток i. Поясним определение на примере:

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220В, можно определить амплитудное значение фазного напряжения Um=UÖ2=307 В. Связь между действующим и амплитудным значениями напряжений важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Синусоидально изменяющиеся величины характеризуются следующими основными параметрами:

− период Т, [c] - время совершения одного полного колебания синусоидальной величины;

− частота f, [c -1 ]=[Гц] - количество периодов, укладывающихся в единицу времени:

В нашей стране частота тока в сети f=50 Гц;

− амплитуда Im, Em, Um - наибольшее значение синусоидальной величины. Амплитудные значения синусоидальных функций являются постоянными величинами, т.е. от времени они не зависят.

− мгновенные значения синусоидальных функций обозначают маленькими буквами: i, e, u. Они являются функциями времени. Зависимость их от времени выражается соотношениями:

− фаза - аргумент синусоидальной функции (wt+j) - показывает, какое значение имеет синусоидальная функция в данный момент времени;

− начальная фаза j - показывает, какое значение имеет синусоидальная функция в момент на чала отсчета, т.е. при t=0;

− угловая (циклическая) частота изменения тока:

Для нашей сети w=314 рад/c.

− Действующее значение переменного тока.

Действующим значением I переменного тока называют такое значение постоянного I, который, протекая по сопротивлению R, за время, равное одному периоду Т изменения тока, выделяет в нем такое же количество теплоты Q, что и переменный ток i. Поясним определение на примере:

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220В, можно определить амплитудное значение фазного напряжения Um=UÖ2=307 В. Связь между действующим и амплитудным значениями напряжений важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.

Частота равна числу колебаний в 1 с (единица частоты — герц (Гц) или

Угловая частота (единица угловой частоты — рад/с или )

Аргумент синуса, т. е. называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).

Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их и

Читайте также: