Характеристика процесса передачи данных кратко

Обновлено: 05.07.2024

Асинхронная передача– способ передачи данных, при котором информация посылается поблочно с произвольными временными интервалами. При этом каждый передаваемый блок содержит некоторое число битов данных, которые начинаются стартовым битом и завершаются необязательным битом четности и одним, полутора или двумя стоповыми битами (концевиками). Общий для передающей и принимающей стороны таймер не используется (он давал бы им возможность разделять данные на отдельные блоки, основываясь на точных временных интервалах).

Синхронная передача базируется на согласовании таймеров передающего и принимающего устройства. При этом происходит разделение групп битов и передача их по блокам, которые называются кадрами. Для начала синхронизации и периодической проверки ее точности используются специальные символы. Поскольку биты посылаются в синхронизированном виде, необходимость в стартовом и стоповых битах отпадает. Передача прекращается по окончании блока и начинается при поступлении нового. Такой старт-стоповый подход гораздо эффективнее, чем асинхронная передача. Обнаружив ошибку, схема определения и исправления ошибок просто запрашивает повторную передачу. Для синхронной передачи используется более сложное оборудование, поэтому она обходится дороже, чем асинхронная.

Существует три режима передачи данных в сети

1. Симплексный – передача данных только в одном направлении.

3. Полудуплексный – попеременная передача информации, когда источник и приемник последовательно меняются местами.

Наиболее скоростным и эффективным режимом работы для компьютерных сетей является дуплексный режим передачи данных.

Коммутация данных – это передача данных, при которой канал передачи данных может попеременно использоваться для обмена информацией между различными узлами сети. Альтернативой является некоммутируемый канал, когда канал закрепляется за абонентом сети (выделенные линии).

Способы коммутации данных

Службы Интернета.

На уровни приложений взаимодействие в сети Интернет может осуществляться по нескольким протоколам, каждый из которых определяет порядок работы при совершении различных действий:

- передача файлов использует протокол FTP (File Transfer Protocol);

Особенностью протоколов уровня приложений является то, что обмен служебной информацией между ними производится в символьном виде.

По виду используемых протоколов Интернет принято делить на службы. Наиболее распространены службы:

1) WWW (Wide Word Web, всемирная паутина) - это самая популярная служба Интернета. Ее нередко отождествляют с Интернетом, хотя на самом деле это лишь одна из его многочисленных служб.

World Wide Web это единое информационное пространство, состоящее из сотен мил­лионов взаимосвязанных электронных документов, хранящихся на Web-серверах. Отдельные документы, составляющие пространство Web, называют Web-cmpaницами. Группы тематически объединенных Web-страниц называют Web-узлами (Web-сайтили простосайт). Один физический Web-сервер может содер­жать достаточно много Web-узлов, каждому из которых, как правило, отводится отдельный каталог на жестком диске сервера.

2) Электронная почта (E-mail). Ее обеспечением в Интернете занимаются специальные почтовые серверы (специальный выделенный компьютер или программное обеспечение). Один узловой компьютер Интернета может выполнять функции нескольких серверов и обеспечивать работу различных служб, оставаясь при этом универсальным компьютером, на котором можно выпол­нять и другие задачи.

Но автоматическая работа серверов сети организована с использова­нием четырехзначного числового адреса. Поэтому необходим перевод доменных имен в связанные с ними IР-адреса, которым и занимаются серверы службы имен доменов DNS.

6) Служба передачи файлов (FTP). Прием и передача файлов составляют значи­тельный процент от прочих Интернет - услуг. Необходимость в передаче файлов возникает при приеме файлов программ, при пересылке крупных доку­ментов, при передаче архивных файлов, в которых запа­кованы большие объемы информации.

Служба FTP имеет свои серверы на которых хранятся архивы данных. Протокол FTP работает одновременно с двумя TCP-соединениями между серве­ром и клиентом. По одному соединению идет передача данных, а второе соедине­ние используется как управляющее. Протокол FTP также предоставляет серверу средства для идентификации обратившегося клиента.

8) ICQ(/ seek you — я тебя ищу). Интернет-пейджер прообраз социальной сети. Эта служба предназначена для поиска сетевого IP-адреса человека, подключен­ного в данный момент к Интернету. Необходимость в подобной услуге связана с тем, что большинство пользователей не имеют постоянного IP-адреса. Те компьютеры, которые включены в Интернет на постоянной основе, имеют постоянные IP-адреса. Большинство же пользователей подключа­ются к Интернету лишь на время сеанса. Им выдается динамический IP-адрес, дей­ствующий только в течение данного сеанса.

Для обеспечения работы с каждой службой Интернета используется специализированное программное обеспечение:

· Для работы с электронной почтой и телеконференциями используется программа Outlook Express (существуют специализированные службы: E-mail и др.);

· Для организации голосовой или видеосвязи с удаленным ПК используется Microsift NetMeeting.

· Существует несколько популярных программ для работы с чатом: mIRC.exe, chat.exe и т.д..

Доменная система имен

При присваивании серверу символьного имени используется так называемая доменная система имен (Domain Name System), основанная на иерархии доменов. В соот­ветствии с ней домен на каждом уровне определяет имена подчиненных уровней. До­менный адрес имеет вид нескольких идентификаторов, разделенных точками:

domain_n .. domain 2.domain 1

Чем дальше (правее) расположен в адресе домен, тем шире охватываемая им об­ласть. Домен высшего уровня (самый правый) представляет собой либо двухбук­венный шифр страны, либо трехбуквенный код, описывающий род деятельности владельца.

Основные двухбуквенные домены: Россия — ru, США — us, Германия — de, Англия — uk и т. д.

Трехбуквенные домены имеют следующий смысл:

- com — коммерческие организации;

- edu — учебные организации;

- gov — правительственные организации;

- int — международные организации;

- mil — военные организации;

- net — сетевые организации;

- org — некоммерческие организации.

При обращении к серверу по символьному имени компьютер преобразовывает его в IP-адрес, запрашивая его у, так называемого, DNS-сервера — узла, обладающего соответствующей базой данных.

Порты и службы

IP-адрес позволяет точно идентифицировать компьютер, но в ряде случаев этого недостаточно, т.к. на каждом узле могут быть одновременно запущены разные службы Интернета, обеспечивающие передачу электронной почты, файлов, гипертекстовой информации и т. п., а каждая служба использует свой протокол прикладного уровня.

Унифицированный указатель ресурсов

Адрес любого файла во всемирном масштабе определяется унифицированным указателем ресурсов (Uniform Resource Locator, URL).

Адрес URL состоит из трех частей.

1. Указание службы, которая осуществляет доступ к данному ресурсу (обычно обозначается именем протокола, соответствующего данной службе.

2. Указание доменного имени компьютера (сервера), на котором хранится дан­ный ресурс:

При записи URL-адреса важно точно соблюдать регистр символов. В отличие от правил работы в MS-DOS и Windows, в Интернете строчные и прописные символы считаются разными.

Именно в форме URL и связывают адрес ресурса с гипертекстовыми ссылками на Web-страницах. При щелчке на гиперссылке броузер посылает запрос для поиска и доставки ресурса, указанного в ссылке.

Модемы

Модем - это устройство, предназначенное для подсоединения компьютера к обычной телефонной линии. Название происходит от сокращения двух слов - Модуляция и Демодуляция.

Компьютер вырабатывает дискретные электрические сигналы (последовательности двоичных нулей и единиц), а по телефонным линиям информация передается в аналоговой форме (то есть в виде сигнала, уровень которого изменяется непрерывно, а не дискретно). Модемы выполняют цифро-аналоговое и аналого-цифровое преобразования. При передаче данных, модемы накладывают цифровые сигналы компьютера на непрерывную частоту телефонной линии (модулируют ее), а при их приеме демодулируют информацию и передают ее в цифровой форме в компьютер. Модемы передают данные по обычным, то есть комутированным, телефонным каналам со скоростью от 300 до 56 000 бит в секунду, а по арендованным (выделенным) каналам скорость может быть и выше. Кроме того, современные модемы осуществляют сжатие данных перед отправлением, и соответственно, реальная скорость может превышать максимальную скорость модема.

По конструктивному выполнению модемы бывают встроенными (вставляются в системный блок компьютера в один из слотов расширения) и внешними (подключаются через один из коммуникационных портов, имеют отдельный корпус и собственный блок питания). Однако, без соответствующего коммуникационного программного обеспечения, важнейшей составляющей которого является протокол, модемы не могут работать. Наиболее распространенными протоколами модемов являются v.32 bis, v.34, v.42 bis и прочие.

На выбор типа модема влияют следующие факторы:

· цена: внешние модемы стоят дороже, поскольку в цену входит стоимость корпуса и источника питания;

· наличие свободных портов/слотов: внешний модем подсоединяется к последовательному порту. Внутренний модем к слоту на материнской плате. Если порты или слоты занятые, нужно выбрать одно из устройств;

· удобство пользования: на корпусе внешнего модема имеются индикаторы, отображающие его состояние, а также выключатель источника питания. Для установки внешнего модема не нужно разбирать корпус компьютера.

Организация сетевого обмена данными. Модель OSI

Для управления сетевым обменом данными используется несколько протоколов.

Под протоколом понимаются правила и описание работы сети, включающие правила установления и поддержания связи в сети, правила обращения с информационными пакетами, их описание и правила обработки.

Поскольку, при обмене информацией по сети требуется оговаривать множе­ство деталей, поэтому протокол, реализующий все правила обмена данными, был бы чрезмерно сложным и неудобным в использовании. Поэтому применяют не­сколько протоколов, решающих задачу передачи данных на разных уровнях взаимодействия.

Наибольшей проблемой при создании глобальной сети является обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и передачи данных. Для ее решения международный институт стандартизации ISO разработал базовую модель взаимодействия открытых систем OSI, на основе которой и строится работа глобальной сети.

В модели OSI средства взаимодействия делятся на семь уровней:

прикладной, представительный, сеансовый, транспортный (TCP), сетевой (IP - адресный сетевого уровня), уровень соединения (канальный) и физический.

Каждый уровень имеет дело с одним определенным аспектом взаимо­действия сетевых устройств. В модели OSI каждому уровню присвоено стандартное имя и определено, какие функции должен выполнять каждый уровень.

Взаимодействия на каждом уровне определяется своим протоколом. Взаимодействие протоколов разных уровней определяется многоуровневой сете­вой моделью.

Интернетом называется глобальная совокупность компьютерных сетей, передача данных в которых организована на основе совокупности протоколов TCP IP (Internet Protocol). Различные части Интернета (отдельные локальные сети, сети Ethernet, Token Ring - сети на теле­фонных линиях и т. п.), соединяются между собой посредством компьютеров, которые называются узла­ми.

Протокол IP (Internet Protocol) - это адресный протокол сетевого уровня. По нему каждый компьютер, подключенный к Интернету, имеет свой уникальный IP адрес. IP-адрес состоит из четырех байт, например, 127.21.13.21. Структура адреса организована так, что каждый компьютер, через который проходит пакет данных, имея информацию о соседних узлах и связях по IP-адресу может определить на какой следующий узел передать пакет для его оптимальной передачи в точку назначения. Процесс определения пути пакета называется маршрутизацией. Узлы, или программы, выполняющие функции маршрутизации, называются маршрутизаторами.

Получатель (TCP-процесс) распаковывает IP-пакеты и получает TCP-пакеты, далее распаковывает их и объединяет данные. Для обеспечения целостности данных при передаче и их защиты от искажения помехами в сетях используется специальная система кодов, исправляющих ошибки. Наиболее простым примером таких кодов является код, использующий добавление к каждому пакету контрольной суммы (а к каждому байту — бита контроля четности).

Обмен данными между каждым подключенным пользователем и провайдером также регламентируется протоколами, определяемыми видом подключения, техническими возможностями провайдера и видом сети, через которую осуществляется подключение.

Например, при подключении через цифровую телефонную линию используется протокол ISDN (Integrated Services Digital Network, цифровая сеть с интегрированными службами), при подключении через обычную телефонную сеть используются протоколы: SLIP (Serial Line Internet Protocol, протокол интернета для последовательной сети), или PPP (Point-to-point Protocol, протокол "точка-точка") - предпочтительнее, т.к. использует более совершенные методы сжатия данных и обнаружения ошибок.

Адресация в Интернете

Компьютеры в Интернете идентифицируются по IP-адре­су, уникальному в пределах всего Интернета. Цифровой IP-адрес это 32-разрядное двоичное слово вида: ХХХХХХХХ. ХХХХХХХХ . ХХХХХХХХ . ХХХХХХХХ (Сеть . подсеть . компьютер)

Однако пользователям крайне неудобно производить обращение к требуемому серверу с использованием IP-адресов, так как они не несут никакого осмысленного значения и трудны для запоминания. Поэтому серверам Интернета присваивают символьные адреса. Все приложения Интернета по­зволяют пользоваться символьными именами вместо числовых IP-адресов.

Код ОГЭ: 1.2.1 Процесс передачи информации, источник и приемник информации, сигнал, скорость передачи информации

  • тот, кто предоставляет информацию (выступает ее источником);
  • тот, кто принимает информацию и является ее получателем (таких может быть несколько);
  • канал связи, по которому передается информация.

Общую схему передачи информации разработал основоположник цифровой связи (создатель теории информации) Клод Шеннон.

Процесс передачи информации

Источниками и приемниками информации могут быть живые существа или технические устройства. Каналами связи могут быть, например, электромагнитные, звуковые и световые волны.

Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными). Сигнал является дискретным, если его параметр может принимать только конечное число значений и существует лишь в конечное число моментов времени. В компьютерах используются сигналы, которые могут принимать только два дискретных значения — 0 и 1.

По способу передачи сигналов различают каналы проводной связи (например, кабельные) и каналы беспроводной связи (например, спутниковые).

По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы. Например, один из современных каналов передачи информации — световод (оптоволокно) — позволяет передавать сигналы лазеров на расстояние более 100 км без усиления.

Основной характеристикой каналов передачи информации является их пропускная способность, или скорость передачи по каналу информации.

Скорость передачи информации отображает, как быстро передается информация от источника к получателю — безотносительно к тому, по каким каналам происходит передача.

Пропускная способность канала — максимальное количество переданной или полученной по этому каналу информации за единицу времени. Таким образом, пропускная способность канала — максимально возможная скорость передачи информации по этому каналу. Например, пропускная способность современных оптоволоконных каналов — более 100 Мбит/с, т. е. в миллиарды раз выше, чем у нервной системы человека при чтении текстов.

Пропускная способность канала измеряется в тех же единицах, что и скорость передачи информации.

Немедля появляется свобода выбора. Альпинист волен решать, принимая ответственность. Имеются группы, не вернувшиеся назад.

Виды данных

Исторически информацию представляли множеством способом. Оставим историкам иероглифы папирусов, разберем современные методики. Наибольший отпечаток наложило развитие электричества. Научись человек передаче мысли, символика вышла бы иной…

Информационные данные

Аналоговый сигнал

Первыми попытками измерить аналоговые величины назовем опыты Вольты, измерявшего напряжение, ток. Следом сопротивление проводника сумел оценить Ом, Георг Ом. Каждый раз использовались аналоговые величины. Представление характеристик объекта в виде тока, напряжения дало мощный толчок развития современному миру. Электронно-лучевой кинескоп яркостью пикселей трех цветов отображает достаточно наглядную картинку.

Причины ухода от аналогового сигнала выявила Вторая мировая война. Система Зеленый шершень умела отлично шифровать информацию. 6-уровневый сигнал сложно назвать цифровым, однако намечается явный уклон. Исторически первой попыткой передачи бинарного кода назовем опыты Шиллинга 1832 года с телеграфом. Стремясь снизить количество соединяющих абонентов проводов, дипломат припомнил предложенные священниками методики двоичного счисления. Однако внедрение цифровой передачи потребовало от человечества пройти путь свыше полутора столетий.

Двоичный цифровой код

Двоичное счисление общеизвестно. Аналоговую величину представляют дискретным числом, затем производят кодирование. Полученный набор нулей, единиц обычно разбивают словами длиной 8 бит. Так, например, первые операционные системы Windows были 16-битными, графический модуль процессора обрабатывал числа с плавающей запятой разрядностью повыше. Еще более длинные слова используют специализированные вычислители графических карт. Специфика системы определяет конкретный способ представления информации.

Статья Откройте свои окна быстрее

Передача данных позволяет человечеству идти вперед быстрее. Люди обладают неодинаковыми способностями. Необязательно лучший сборщик, хранитель информации сможет извлечь выгоду (для себя, планеты, города…). Разумнее передать. Современный мир называют эпохой цифровой революции. Исторически оказалось, что двоичные данные передавать проще, появляется набор специфических возможностей:

  1. Исправление ошибок.
  2. Шифрование.
  3. Упрощение физических линий.
  4. Более эффективное использование спектра, снижение мощности передатчика, удельной плотности потока энергии.
  5. Распознавание ошибок (EDC, 1951).
  6. Возможность точного повтора, воспроизведения.

Вторая половина XX века дала сотни методик оцифровки аналоговых объектов. Главным признаком двоичного сигнала является дискретность. Аналоговую величину доподлинно передать код бессилен. Однако шаг дискретизации стал столь малым, что погрешностью пренебрегают. Яркий пример – изображения формата Full HD. Большое разрешение экрана гораздо лучше передает мелкие нюансы объекта. На некотором этапе разрешение цифровой техники обгоняет физиологические возможности человеческого зрения.

Значения термина

  1. Передача сведений.
  2. Компьютерная программа для Windows Phone, обеспечивающая копирование контактов меж мобильными устройствами.
  3. Научно-популярная программа с Марией Бачениной.

Передача информационных сведений

Этиология

Англичанами принято употреблять множественное число – data. Славянофилов просим избегнуть упреков. Современная наука развита Европой – наследницей Римской империи. Вопрос намеренного уничтожения отечественной истории обойдем, оставив прения историкам. Некоторые эксперты возводят этимологию к древнему индийскому слову dati (дар). Даль называет данными бесспорные, очевидные, известные факты произвольного толка.

Идея открытости

Идея свободного доступа к информации выдвинута отцом социологии, Робертом Кингом Мертоном, наблюдавшим Вторую мировую войну. Начиная 1946 годом, подразумевает передачу, хранение компьютерной информации. 1954 добавил возможность обработки. В декабре 2007 года желающие обсудить проблему собрались (Себастопол, Калифорния) и осмыслили программное обеспечение с открытым кодом, интернет, потенциал концепции массового доступа. Обама принял Меморандум о прозрачности и открытости действий правительства.

Роберт Кинг Мертон

Осознание человечеством реального потенциала цивилизации сопровождается призывами совместно решать проблемы. Концепция открытости данных широко обсуждается документом (1995) Американского научного агентства. Текст затрагивает геофизику и экологию. Общеизвестен пример корпорации ДюПонт, использовавший некоторые спорные технологии производства Тефлона.

Термины

Термин передача данных чаще касается цифровой информации, включая преобразованный аналоговый сигнал. Наука смотрит шире. Данными именуют любые качественные, количественные описания объекта. Эпичным примером считают сведения, составляемые антропологами касательно редких народностей планеты. Информация широко собирается организациями: продажи, преступность, безработица, грамотность.

Передача информации – цифровой поток бит.

Метаданные – более высокий уровень данных, описывающих другие данные.

Данные измеряют, собирают, передают, анализируют, представляют графиками, таблицами, изображениями, цифрами. Программистам известны так называемые рядовые файлы, лишенные форматирования. Сбойный раздел жесткого диска получает метку RAW. Форматирование упрощает передачу, восприятие сведений. Процесс оформления касается визуального, логического представления. Иногда информацию кодируют, обеспечивая защиту, восстановление сбойных участков.

Формат – способ представления информации.

Протокол – набор соглашений интерфейса, определяющий порядок обмена информацией.

Каналы (способы)

Информация, распространяясь, преодолевает среду:

  • Медный кабель: RS-232 (1969), FireWire (1995), USB (1996).
  • Оптическое волокно.
  • Эфир (беспроводная передача).
  • Шины компьютера.

Специфика среды накладывает особенности. Немногим известно, что электрический ток разносится также электромагнитной волной. Проводимость воздуха намного ниже, что накладывает специфику. Разница нивелируется ионизацией – явлением, знакомым сварщикам. Процессы, сопровождающие движение электромагнитной волны, лишены научного объяснения. Физики просто констатируют факт, описывая явление набором сведений.

Долгое время разные частоты считали явлениями несвязными: свет, тепло, электричество, магнетизм. Важно понять: набор сред рожден эволюцией техники. Наверняка откроют иные методы передачи данных. Реализации сред различны, набор стандартов определен спецификой. Локальные соединения часто пользуются технологией WiFi, опирающейся на протокол канального уровня IEEE 802.11. Сотовые операторы применяют совершенно иные – GPS, LTE. Причем мобильные сети активно начинают внедрять IP, замыкая круг, унифицируя стиль использования цифрового оборудования.

Зачем много протоколов? Особенности реализации передачи данных через WiFi бессильны покрыть значительные расстояния. Лимитированы мощности передатчиков, структуры пакетов иные. Bluetooth вовсе ограничивает основные возможности передачей пары файлов с компьютера на телефон.

Протоколы передачи данных

Форматирование

Основу сетей заложил американский ARPANET. С ПК на ПК стали передавать пакеты. Тогда в сети начали применяться первые цифровые протоколы. Сегодня IP захватывает сегмент мобильной связи. Телефоны получают собственные адреса.

Слои протоколов

Передача цифровых данных модемом реализована в 1940 году. Сети появились 25 лет спустя.

Цифровые данные

Концепция 7-слойной структуры представлена работами Чарльза Бэчмана. Модель OSI включает опыт разработки АRPANET, EIN, NPLNet, CYCLADES. Линейка полученных слоев взаимодействует по вертикали с соседями: верхний использует возможности нижнего.

Важно! Каждому уровню OSI соответствует набор протоколов, определяемый используемой системой.

В компьютерных линиях совокупность протоколов подразделяют на слои. Бывают:

Физический слой

Зачем разработчикам сто стандартов? Многие документы появились эволюционно, согласно возрастающим требованиям. Физический слой реализуют набором коннекторов, проводов, интерфейсов. Например, экранированная витая пара способна передавать высокие частоты, делая возможным реализацию протоколов битрейтом 100 Мбис/с. Оптоволокно пропускает свет, производится дальнейшее расширение спектра, возникают гигабитные сети.

Физический слой заведует схемами цифровой модуляции, физическим кодированием (формированием несущей, закладкой информации), опережающей коррекцией ошибок, синхронизацией, мультиплексированием каналов, выравниванием сигнала.

Стандарт передачи данных

Канальный слой

Попутно совершенствовались каналы: коаксиальный кабель → витая пара → оптическое волокно. Изменения преследовали цели:

  • удешевления;
  • повышения надежности;
  • внедрения дуплексного режима;
  • повышения помехоустойчивости;
  • гальванической развязки;
  • питания устройств посредством сетевого кабеля.

Оптический кабель повысил длину сегмента меж регенераторами сигнала. Канальный протокол больше описывает структуру сети, включая методы кодирования, битрейт, количество узлов, режим функционирования. Уровень вводит понятие кадра, реализует схемы расшифровки адреса MAC, детектирует ошибки, повторно отправляет запрос, контролирует частоту.

Сетевой

Общепринятый IP-протокол определяет структуру пакета, вводит специфический адрес из четырех групп цифр, известных сегодня каждому. Некоторые маски зарезервированы. Владельцам ресурсов присваиваются имена соответственно базам серверов DNS. Конфигурация сети во многом безразлична. Вводятся слабые ограничения. Как например, Ethernet требовал уникальности MAC-адреса. Протокол IP урезает максимальное число ПК 4,3 млрд штук. Человечеству пока что хватает.

Сетевой адрес принято делить на домены. По техническим причинам единое соответствие четырем группам цифр отсутствует. Сам интернет обозначает аббревиатура www (сокращенное название world wide web, иначе – всемирная паутина). Сегодня единообразный адрес (URL) опускает тривиальные буквы. Подразумевая – человек, открывший браузер, явно намеревается бороздить с компьютера всемирную паутину.

Транспортный

Слой далее расширяет структуру формата. Формирование сегмента TCP производит объединение пакетов, упрощая поиск потерявшейся информации, гарантируя восстановление.

Прикладной, представительский

Передача данных играет очень большую роль в электронике.

Последовательный метод передачи информации

Есть просто два провода, источник электрического сигнала и приемник электрического сигнала, которые цепляются к этим проводам.

Передача данных и виды связи

Это ФИЗИЧЕСКИЙ УРОВЕНЬ.

Самый простой способ — сигнал есть (лампочка горит) — это ЕДИНИЧКА, сигнала нет (лампочка не горит) — это НОЛЬ

Передача данных и виды связи

Если пораскинуть мозгами, можно придумать еще несколько различных комбинаций. Например, широкий импульс принять за единичку, а узкий — за ноль:

Передача данных и виды связи

Или даже вообще взять за единичку и ноль фронт и срез импульса. Внизу рисунок, если подзабыли, что такое фронт и срез импульса.

Передача данных и виды связи

А вот и практическая реализация:

Передача данных и виды связи

Скорость обмена данными

Представьте себе картину… Студенты, идет лекция… Преподаватель диктует лекцию, а студенты ее записывают

Передача данных и виды связи

Но если преподаватель очень быстро диктует лекцию и в придачу эта лекция по физике или матанализу, то в результате получаем:

Передача данных и виды связи

Почему же так произошло?

Данная проблема в разных стандартах последовательной передачи данных решается по-разному:

Чаще всего, используется первый способ: в устройствах связи заранее устанавливается необходимая скорость обмена данными. Для этого используется тактовый генератор, который вырабатывает импульсы для синхронизации всех узлов устройства, а также для синхронизации процесса связи между устройствами.

Управление потоком

Передача данных и виды связи

Решается эта проблема различными методами:

Передача данных и виды связи

Передача данных и виды связи

Оба метода очень распространены. Иногда они используются одновременно: и на физическом уровне, и на уровне протокола обмена.

Режимы связи

Симплексная связь

В этом случае Получатель может только принимать сигналы от отправителя и никак не может на него повлиять. Это в основном телевидение или радио. Мы можем их только или смотреть или слушать.

Передача данных и виды связи

Полудуплексная связь

В этом режиме и отправитель и получатель могут передавать друг другу сигналы поочередно, если канал свободен. Отличный пример полудуплексной связи — это рации. Если оба абонента будут трещать каждый в свою рацию одновременно, то никто никого не услышит.

— Первый, первый. Я второй. Как слышно?

— Слышу вас нормально, отбой!

Сигнал может посылать только отправитель, в этом случае получатель его принимает. Либо сигнал может отправлять получатель, а в этом случае отправитель его получает. То есть и отправитель и получатель имеют равные права на доступ к каналу (линии связи). Если они сразу оба будут передавать сигнал в линию, то, как я уже сказал, ничего из этого не получится.

Дуплексная связь

В этом режиме и прием и передача сигнала могут вестись сразу в двух направлениях одновременно. Яркий тому пример — разговор по мобильному или домашнему телефону, или разговор в Skype.

Читайте также: