Характеристика клеточной стенки прокариот кратко

Обновлено: 05.07.2024

Прокариоты – это так называемые доядерные организмы, не имеющие оформленного ядра. Все ядерное вещество расположено у них в цитоплазме, без какого-либо ограничения оболочкой. Прокариоты – группа самых древних и примитивных одноклеточных организмов. К ним относят бактерии и цианобактерии (или синезелёные водоросли (цианеи) – крупные бактерий, способных к фотосинтезу).

Отдельную группу организмов составляют вирусы. Это особая форма – неклеточный инфекционный агент, который может воспроизводиться только внутри клеток. В 1892 году вирус впервые был описан в статье Дмитрия Ивановского. Вирус (лат. virus – яд) вызывает болезни, как растений, так и животных. На него не действуют антибиотики, хотя сейчас разработаны противовирусные препараты, которые помогают с ними бороться.

Признаки клеток прокариот

Что же можно назвать основным признаком прокариотических клеток. Конечно же это их очень маленькие размеры и гаплоидность, т.е одинарный набор хромосом.

Особенности клеток прокариот

Клеточная стенка прокариот состоит из белка, который называется муреин и слизистой капсулы из полисахаридов. Внутри клетки располагается нуклеоид – это бактериальная хромосома, которая представляет собой одиночную кольцевую молекулу ДНК.

Также в клетках располагаются рибосомы, с помощью которых происходит синтез белка. У фотосинтезирующих бактерий в клетку встроены фотосинтетические мембраны (о них будет сказано дальше) и органелла дыхания или мезосома.
Оболочка клеток прокариот могут иметь выросты – жгутики и пили. С их помощью клетка передвигается. Прокариоты не содержат митохондрий (своеобразная энергетическая станция). Синтез АТФ (источник энергии для всех биохимических процессов в живых клетках) происходит на плазматической мембране.

Обратите внимание! У клеток есть органеллы – это специализированные микроструктуры, которые постоянно есть в клетках и которые выполняют ряд жизненно важных функций (внутриклеточный обмен веществ, энергетический и информационный обмен).

Размеры и форма клеток прокариот

Размеры бактериальных клеток варьируют в пределах 0,1 – 10 мкм (1 мкм = 10-6м) в длину, а их диаметр в среднем составляет – 1 мкм.


Нам сложно ориентироваться в таких размерах. Но поперек клетки можно разместить 200 молекул глобулярных белков. Белков примерно 5 нм в диаметре. Это средний размер.
Глобулярными называются белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры (глобулы).

А вот форм прокариотических клеток известно несколько. Есть основные четыре формы, каждая из которых имеют свое название. Кроме этого они могут делиться еще на несколько подформ.

1. Кокки – это сферическая форма бактерий, напоминающая одинокие шарики. Ее разновидностью являются:
• стафилококки – бактерии, сцепленные вместе и внешне напоминающие виноградную гроздь;
• стрептококки – бактерии, образующие цепочку;
• диплококки – бактерии, сцепленные по двое.

2. Бациллы – палочковидная форма бактерий. Они могут быть как одиночными, так и образовывать цепочки. Некоторые бациллы имеют так называемые эндоспоры (особая стадия покоя у бактерий).

3. Спириллы – бактерии спиралевидной формы.

4. Вибрионы – бактерии, внешне напоминающие запятую.

Оболочка клеток прокариот

Клеточная стенка бактерий хорошо сохраняет форму клетки, т.к. это довольно прочная структура. Прочность оболочек связана с тем, что в них находятся муреины. Это молекулы, состоящие из параллельных полисахаридных цепей, перекрестно связанных короткими цепями аминокислот через регулярные промежутки. Получается своеобразный сетчатый каркас, окружающий клетку. На самом деле это одна огромная молекула.

Клеточная стенка предохраняет клетку от разрыва при поступлении в нее большого количества воды. Все необходимые вещества попадают в клетку через мельчайшие поры в клеточной стенке.

С клеточными стенками связан еще один метод классификации бактерий на группы: грамположительные и грамотрицательные.
Название групп связано с разработкой метода окрашивания бактерий. Изобретение метода принадлежит Кристиану Граму – датский биолог. Из-за различия в строении клеточной стенки, некоторые бактерии окрашиваются (грамположительные), а некоторые – нет (грамотрицательные).

У грамположительных бактерий в муреиновую сетку в основном встроены полисахариды и белки. Это делает стенку клетки более толстой.

Стенки грамотрицательных бактерий тоньше, но структура их более сложная. Муреиновый слой этих клеток покрыт тонким и гладким слоем, который состоит из липидов и полисахаридов. Они выполняют функцию дополнительной защиты для клетки. Он, например, выдерживает воздействие такого антибактериального фермента как лизоцим, который содержится в слезах или слюне.


Наличие этого слоя делает грамотрицательные бактерии устойчивыми против пенициллина. Ведь применение именно этого препарата спасло многие жизни от бактериальных инфекций.

Рибосомы в клетках прокариот

В 1931 и 1932 годах после получения патента и изготовления первого прототипа современного электронного микроскопа, ученые получили возможность приступить к изучение прокариот более детально. Именно после этого, они смогли изучить и описать рибосомы бактерий. Это очень мелкие образования внутри клетки, которые служат местом синтеза белков, как у прокариот, так и у эукариот.

Диаметр рибосом в бактериях около 18 нм. Они состоят рибосомальной РНК (рибонуклеиновая кислота) на 65%. Оставшиеся 35% составляют разные по размеру белки.
Например, бактерия Кишечная палочка, содержит около 15 000 рибосом. Это эквивалентно почти ¼ сухой массы клетки).

Деление клеток прокариот

Размножение всех бактерий происходит только бесполым путем. Если условия существования бактерий благоприятные, то каждые 20 минут происходит прямое деление клетки пополам (амитоз).

В 1946 году у бактерий было обнаружено примитивное половое размножение. Но, как у других организмов, бактерии не образуют гамет (половых клеток), а происходит просто обмен генетической информацией.

При ухудшении или серьезном изменении условий существования (сокращение количества влаги или пищи, высокой или низкой температуры, давления, химического состава и других) бактерии образуют споры. Каждая одиночная клетка образуется крупную эндоспору. Она покрыта настолько толстой защитной оболочкой, что способна выдержать засуху или наводнение, высокую или низкую температуру.

Питание клеток прокариот

Питание — это процесс необходимый любому живому организму для получения энергии и веществ. Чтобы синтезировать органические соединения, живые организмы используют либо энергию света, либо энергию химических связей.

Организмы, способные к фотосинтезу, используют световую энергию. Они называются фототрофами. Для этого у них есть специфические особенности и способности.

Организмы, использующие только химическую энергию, называются хемотрофами.


Большая часть организмов относится к гетеротрофам, т.е. к организмам, которые используют готовые органические вещества.

Прокариоты, по способу питания делятся на две группы:
• Автотрофы (синтезируют органические вещества из неорганических):
o фотосинтезирующие сине-зеленые или цианобактерии. За счет способности к фотосинтезу, они выделяют кислород. Некоторые из них могут связывать газообразный азот воздуха, и переводить его в состав азотсодержащих органических веществ;
o хемосинтезирующие (железобактерии и нитрифицирующие бактерии) получают энергию в процессе окисление неорганических веществ таких как аммиак и нитраты.
• Гетеротрофы (используют готовые органические вещества):
o сапротрофы – питаются мертвыми органическими веществами. Бактерии выделяют на мертвую органику ферменты, и переваривание пищи у них происходит вне организма. Уже растворимые продукты поступают в тело сапротрофа (бактерии гниения и брожения);

o симбионты (явление мутуализма) – организмы, живущие в симбиозе с другими организмами и получающие органические вещества от них (клубеньковые бактерии, бактерии кишечника человека, которая обеспечивает человеческий организм витаминами групп В и К);

Аэробы – используют для дыхания атмосферный кислород (бактерии гниения); анаэробы живут в отсутствии кислорода (бактерии ботулизма).

Примеры прокариотических клеток

Бактерий можно обнаружить повсюду. Это обитатели почвы и пыли, воды и воздуха. Они могут жить как внутри, так и на поверхности животных и растений. Некоторые бактерии могут жить в горячих термальных источниках с температурой 78°С и даже выше. Некоторые живут в глубине океана, выдерживая низкие температуры и чудовищное давление. Бактерии могут пережить период замораживания во льду. Именно с них начинаются пищевые цепи в этих сложных для жизни условиях.
С точки зрения биомассы и количества видов, прокариоты являются наиболее представительной формой жизни на Земле. Например, в одном грамме плодородной почвы содержится 2,5 млрд. бактерий; в 1 см³ свежего молока их количество может превышать 3 млрд.

Бактерии обеспечивают круговорот веществ в природе. Они участвуют в образовании перегноя (бактерии гниения). Связывая атмосферный азот, они переводят его в доступную для растений форму в виде нитратов и нитритов (клубеньковые бактерии).
Вместе с грибами, бактерии обеспечивают круговорот биогенных элементов в природе, разрушая органические вещества в процессе своей жизнедеятельности.

Многие биотехнологические процесс также строятся на том, что в прокариотических клетках протекают очень разнообразные биохимические реакции.

Но бактерии, к сожалению, могут принести немало бед.
Разные виды стрептоккоков могут, как придать пикантный вкус йогурту, так и вызвать такие болезни как скарлатина и ангина. Стафилоккоки, попав в носоглотку, могут вызвать фурункулез или воспаление легких. Некоторые формы болезней проявляются в виде пищевых отравлений.
Один из видов диплококков вызывает пневмонию, а спириллы – сифилис.
Разновидности палочковидных бактерий вызывают брюшной тиф, сибирскую язву, столбняк и ботулизм.

Холеру вызывает бактерия в форме вибриона.
Но бактерии могут быть опасны не только для людей, но и для растений и животных.

Жесткий слой, окружающий клетки бактерий, архей, грибов ирастений, называется клеточной стенкой. Стенка находится вне пределов цитоплазмической мембраны (клеточной мембраны) ивыполняет целый ряд функций. Уживотных ибольшинства простейших клеточной стенки ненаблюдается.

Вданной статье охарактеризована клеточная стенка (строение ифункции), кратко для каждого вида клеток.

Клеточные стенки высших растений

Растительная клеточная оболочка, строение ифункции которой здесь рассматриваются, имеет многослойную структуру.

Строение клеточной стенки растений

Это внешний слой (средняя пластинка), первичная клеточная стенка ивторичная клеточная стенка. Вторичная клеточная стенка имеется неувсех растений.

  1. Внешний слой, называемый средней пластинкой, содержит полисахариды— пектины, помогающие связывать стенки соседних клеток друг сдругом.
  2. Первичная клеточная стенка размещается между средней пластинкой иплазматической мембраной исостоит изцеллюлозных микрофибрилл, которые содержатся вматрице. Эта стенка обуславливает прочность, столь нужную при росте клеток.
  3. Внекоторых видах растительных клеток между первичной клеточной стенкой иплазматической мембраной образуется еще один слой— вторичная клеточная стенка. Она очень крепкая иподдерживает клетку. Состоит изцеллюлозы, гемицеллюлозы, лигнина (онусиливает клетки иобеспечивает водопроводимость).

Функции клеточной стенки

Основная функция клеточной стенки состоит вформировании каркаса клетки ипредотвращении еерасширения. Кроме того, клеточная стенка:

  • обеспечивает механическую прочность структуры клетки;
  • контролирует направление роста клеток;
  • помогает выдерживать силу воздействия протопласта (содержимого клетки) настенки— врезультате растение остается прямостоящим;
  • регулирует рост клеток;
  • регулирует диффузию (клеточная стенка пропускает некоторые необходимые вещества, препятствуя проникновению других);
  • защищает клетку отвоздействия опасных веществ имикроорганизмов;
  • предотвращает потерю влаги;
  • способствует взаимодействию клеток между собой;
  • сохраняет углеводы, используемые для роста растения.

Клеточные стенки водорослей

Как иклетки высших растений, клетки водорослей имеют соответствующие стенки. Они содержат целлюлозу идругие гликопротеины.

Водоросли

Вклеточных стенках зеленых инекоторых видов красных водорослей встречаются манозиловые микроволокна. Авклеточных стенках бурых водорослей встречается альгиновая кислота.

Агарозы, карагинан, порфиран, фурселеран ифуноран встречаются практически вовсех видах водорослей. Группа диатомовых водорослей синтезирует свою клеточную стенку изкремнезема, что вкакой-то мере способствует быстрому росту водорослей.

Клеточные стенки грибов

Клетка гриба

Клеточную стенку имеют невсе грибы. Клеточная стенка грибов состоит изуглерода, хитина, глюкозамина. Функции стенки аналогичны функциям стенок растений.

Грибная клеточная стенка меняет свой состав, свойства иформу помере роста гриба.

Клеточные стенки бактерий

Бактериальные клеточные стенки, как иурастений, впервую очередь защищают ячейку отвнутреннего тургора. Упрокариот клеточная стенка отличается составом основного компонента— онсостоит изпептидогликана, размещающегося сразу зацитоплазматической мембраной.

Клеточная стенка бактерий

Различают два вида бактериальных клеточных стенок, поэтому признаку бактерии делятся награмотрицательные играмположительные.

Вграмположительных бактериях клеточная стенка имеет толстый слой пептидогликана. Такая стенка имеется уопределенного типа организмов, вклетках которых формируется липотейхоевая кислота, благодаря наличию фосфодиестерных связей между мономерами которой клетка получает отрицательный электрический заряд.

Соответственно грамотрицательные бактерии имеют очень тонкий слой пептидогликана клеточной стенки иимеют вторую, внешнюю, мембрану, находящуюся снаружи отклеточной стенки икомпонующую фосфолипиды илипополисахариды насвоей внешней стороне.


Организмы одноклеточных и многоклеточных делятся на две категории — эукариоты и прокариоты.

Клетки животных, а также почти все растения и грибы обладают интерфазным ядром. Кроме того, прокариотические и эукариотические клетки (прокариоты и эукариоты) имеют стандартные для всех клеток органоиды. Такие организмы называются ядерными или эукариотами.

Прокариоты или доядерные — это не такая большая категория организмов, как эукариоты, но более древняя по своему происхождению. К ним относятся бактерии сине-зеленые водоросли (цианобактерии). У них нет настоящего ядра и большинства органоидов, присущих цитоплазме.

Но у эукариот и прокариот есть свои особенности. Обратимся к сравнению клеток прокариот и эукариот, в частности, рассмотрим строение прокариотической и эукариотической клеток, а также обозначим различия прокариот и эукариот.

Сравнительная характеристика прокариот и эукариот

Характеристика клеток прокариот

При сравнении прокариот и эукариот важно подробно остановиться на строении.

Прокариотическая и эукариотическая клетки имеют разное строение. Строение клеток прокариот достаточно простое. Клетка прокариот не имеет ядра, ядрышка и хромосом. Клеточное ядро в этом случае заменяет нуклеоид. Он представляет собой похожее на ядро образование, без оболочки с одной кольцевой молекулой ДНК, которая связана с небольшим количеством белка. Также можно сказать, что это скопление белков и нуклеиновых кислот: они лежат в цитоплазме и не отделены от нее мембранами.

Последний момент является ключевым для деления клеток на прокариот и эукариот (доядерные и ядерные). Далее мы посмотрим сравнение эукариотических и прокариотических клеток в таблице.

В прокариотических клетках нет внутренних мембран — за исключением вмятин плазмолеммы. Исходя из этого получается, что органеллы прокариот немногочисленны: митохондрий, эндоплазматической сети, хлоропластов, лизосом, комплекса Гольджи. Все перечисленное есть в эукариотических клетках — там они окружены мембраной. Вакуоли также отсутствуют.

В прокариотических клетках есть только одна единственная органелла — это рибосома. Но здесь рибосомы мельче, чем у клеток эукариот.

Строение клетки прокариот характеризуется тем, что у клеток есть плотная клеточная стенка, которая их покрывает, и часто слизистая капсула.

Клеточная стенка состоит из муреина. Молекула муреина, в свою очередь, включает параллельно расположенные полисахаридные цепи: они сшиты друг с другом короткими цепями пептидов.

Плазматическая мембрана характеризуется тем, что у нее есть способность прогибаться внутрь цитоплазмы и образовывать, таким образом, мезосомы. На мембранах мезосом находятся окислительно-восстановительные ферменты, а фотосминтезирующие прокариоты имеют также соответствующие пигменты: бактериохлорофилл (бактерии) и фикобилины (цианобактерии). За счет этого мембраны получают возможность осуществлять функции, свойственные митохондриям, хлоропластам и другим органеллам.

Для прокариот характерно бесполое размножение. Оно происходит в результате простого деления клетки пополам.

Сравнительная характеристика клеток, представленных в таблице, поможет различать два типа клеток без каких-либо проблем.

Сравнительная характеристика прокариот и эукариот в таблице:

Сравнительная характеристика прокариот и эукариот

Если посмотреть на сравнение клеток прокариот и эукариот в таблице, то становится понятно, в чем заключается их похожесть и отличия. В таблице прокариоты и эукариоты — это практически две разные клетки.

Кстати, сравнение клеток прокариот и эукариот в таблице в 9 классе уже необходимо уметь делать.

Сравнительная характеристика эукариот и прокариот будет неполной без анализа первых. Так что помимо сравнительной характеристики клеток в таблице нужно знать, что собой представляют эукариоты.

Характеристика клеток эукариот

Эукариотическая и прокариотическая клетки обладают разным составом.

Несмотря на то, что клетки эукариот включают те же структурные элементы, что и прокариотические клетки, строение клетки эукариот сложнее. К таким элементам относятся цитоплазма, клеточная стенка эукариот, плазмолемма.

Строение клеток эукариот характеризуется разделением на компартменты (реакционные пространства) при помощи множества мембран. В каждом из компартментов происходят разнообразные химические реакции — одновременно и независимо друг от друга.

Ниже представлены сведения об эукариотической клетке в таблице (сравнение клеток разных царств эукариот не приводим).

Строение эукариотической клетки в таблице, а точнее, в одной картинке:

Сравнительная характеристика прокариот и эукариот

​​​​​​​

Из таблицы строения эукариотической клетки понятно, насколько сложным оно является.

Главные функции в клетке выполняют ядро и различные органеллы, такие как митохондрии, комплекс Гольджи, рибосомы и др. Что касается ядра, пластид и митохондрий, то они отделены от цитоплазмы при помощи двухмембранной оболочки. Генетический материал содержится в ядре клетки.

Функция хлоропластов — улавливание солнечной энергии и преобразование ее в химическую энергию углеводов при помощи фотосинтеза.

Митохондрии получают энергию в процессе расщепления белков, углеводов, жиров и других органических соединений.

Эндоплазматическая сеть и комплекс Гольджи — это мембранные системы цитоплазмы эукариотических клеток. Их наличие обеспечивает нормальное осуществление всех жизненных процессов в клетке.

Лизосомы, вакуоли и пероксисомы отвечают за выполнение специфических функций.

Немембранное происхождение имеют хромосомы, рибосомы, микротрубочки и микрофиламенты.

Основной способ размножения эукариотических клеток — митоз.

Эта основная информация по сравнению прокариотической и эукариотической клетки. Отличия прокариот от эукариот в таблице наглядно видны.

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Прокариотическая клетка

Все организмы, имеющие клеточное строение, делятся на две группы: прокариоты (предъядерные) и эукариоты (ядерные).Все организмы, имеющие клеточное строение, делятся на две группы: прокариоты (предъядерные) и эукариоты (ядерные).

Прокариотические и эукариотические клетки

Прокариоты Эукариоты
Генетический аппарат представлен кольцевой молекулой ДНК, расположенной непосредственно в цитоплазме клетки. Возможно наличие дополнительных небольших кольцевых молекул ДНК – плазмид, несущих полезные гены. Генетический аппарат представлен линейными молекулами ДНК, заключёнными в ядерную оболочку.
Отсутствует система внутриклеточных мембран. Процессы дыхания и фотосинтеза (у автотрофных бактерий) осуществляются на выростах цитоплазматической мембраны. Система внутриклеточных мембран хорошо развита. К ней относятся эндоплазматическая сеть, аппарат Гольджи, вакуоли, лизосомы. Имеются двухмембранные органоиды – митохондрии и пластиды (у растений).
Клеточная стенка (оболочка) состоит из полисахарида муреина. Поверх клеточной стенки часто имеется дополнительный защитный слой – капсула. Клеточная стенка (оболочка) состоит из целлюлозы (у растений), хитина (у грибов) или отсутствует (у животных).
Рибосомы мельче, чем рибосомы эукариот. Рибосомы крупнее, чем рибосомы прокариот.
Жгутики образованы белком флагелином. Жгутик не окружен плазматической мембраной. Жгутики состоят из тубулина. Окружены плазматической мембраной.
Размер клетки 0,5–10 мкм. Размер клетки 10–100 мкм.
Цитоскелет отсутствует. Имеется цитоскелет, представленный микро-трубочками и микрофиламентами.


Прокариоты (лат. pro — перед, греч. karion — ядро) — наиболее просто устроенные организмы, клетки которых не имеют ядра, отграниченного мембраной от остального клеточного содержимого. Группу прокариот составляют бактерии и цианобактерии , часто называемые синезелеными водорослями.

Большинство прокариот являются анаэробами, а некоторые способны усваивать азот воздуха.

Строение прокариот

Клетки прокариотических организмов под клеточной стенкой покрыты плазматической мембраной , которая образует многочисленные впячивания внутрь — мезосомы , содержащие ферменты, необходимые для обмена веществ. Кольцевая молекула ДНК располагается в центре клетки непосредственно в цитоплазме. Мембранных органоидов нет, а мелкие рибосомы располагаются беспорядочно.

В неблагоприятных условиях, т. е. при недостатке пищи или избытке ядовитых продуктов обмена в клетке некоторые бактерии способны образовывать споры (например, бациллы, к которым относятся возбудители сибирской язвы, ботулизма, столбняка). Меньшая часть цитоплазмы вокруг кольцевой ДНК отделяется двойной мембраной, а за тем покрывается многослойной оболочкой. Жизнедеятельность бактерии практически прекращается. Споры выдерживают сильные колебания температур, интенсивные химические и радиационные воздействия и сохраняются сотни лет. Попадая в благоприятную среду из споры вновь формируется прокариотическая клетка с нормальным уровнем метаболизма.

Спорообразование у прокариот является этапом жизненного цикла. Распространение спор происходит при помощи ветра и другими способами.

Клеточная стенка прокариот окружает цитоплазматическую мембрану, предохраняя клетку от действия осмотического давления. Прочность клеточной стенке придают пептидогликаны (муреины), соединенные ковалентными связями. У грамположительных бактерий стенка имеет толщину 20-80 нм, у грамотрицательных она намного тоньше — 1 нм.


Нуклеоид (греч. nucleos — ядро, eidos — вид) — скопление ядерного вещества клетки прокариот, не имеющее постоянной формы. ДНК нуклеоида имеет замкнутую кольцевую форму.

Нуклеоид состоит в основном из ДНК (примерно 60%), имеющей замкнутую кольцевую форму с небольшими добавками иРНК и белков-активаторов. Белки помогают поддерживать нуклеоиду кольцевую форму и несут функцию, схожую с гистонами, которые встречаются в эукариотических клетках.


У некоторых прокариот клетки обладают "протонным микродвигателем" гениальной конструкции - жгутиком. В "двигателе" есть ротор, статор, подшипники, молекулярная смазка и карданный вал. Скорость вращения поразительна — до 1 700 об/с. Всего за 10 -3 с двигатель способен сменить направление вращения.


Цианобактерии, или синезелёные водоросли (лат. сyanobacteria — сине-зелёный), — значительная группа крупных грамотрицательных бактерий, способных к фотосинтезу. Они возникли около 3 миллиардов лет назад и широко распространились по всему миру. Всего известно около 2 тысяч видов цианобактерий. Большинство из них способны синтезировать все необходимые вещества, используя энергию света.

Клетки прокариот устроены примитивно: не имеют оформленного ядра и ряда других составных частей. Отличие от эукариот заключается не только в строении, но и в процессах жизнедеятельности.

Читайте также: