Функции рнк кратко биология 9 класс

Обновлено: 04.07.2024


Во всех живых организма присутствуют биополимеры, которые хранят и передают наследственную информацию, а также выполняют ряд других биохимических функций. Такие биополимеры называются нуклеиновыми кислотами.

Нуклеотид

Чтобы понять, что такое нуклеиновая кислота, следует рассмотреть строение мономерного звена. Полимерная молекула нуклеиновой кислоты называется полинуклеотидом и состоит из нуклеотидов.
Эти органические соединения образованы:

Нуклеотиды образуют не только нуклеиновые кислоты, но и являются основой молекул АТФ (аденозинтрифосфата), АДФ (аденозиндифосфата), АМФ (аденозинмонофосфата).

Азотистое основание с остатком фосфорной кислоты связывает сахар посредством связей C-N и C-O-P соответственно.
Азотистые основания могут быть двух видов:

К пуринам относятся аденин и гуанин. Они отличаются наличием двух колец. К пиримидинам относятся тимин, цитозин, урацил. Сахар, связываясь с одним из видов азотистого основания, образует нуклеозид, название которого соответствует названию азотистого основания (аденозин, гуанозин, тимидин, цитидин, уридин).

Пурины и пиримидины

Рис. 2. Пурины и пиримидины.

Нуклеозид, соединяясь с остатком фосфорной кислоты (РО4), образует нуклеотид. Несколько линейно соединённых нуклеотидов с помощью связи C-O-P образуют цепочку нуклеиновой кислоты.

Нуклеиновые кислоты располагаются в ядре эукариот и в цитоплазме прокариот.

РНК и ДНК

В зависимости от нахождения в нуклеиновой кислоте рибозы или дезоксирибозы выделяют два типа нуклеиновых кислот:

  • дезоксирибонуклеиновую кислоту (ДНК);
  • рибонуклеиновую кислоту (РНК).

Каждый тип имеет особое строение и выполняет определённые функции. Отличия ДНК и РНК приведены в таблице.

Строение молекулы РНК, виды и функции

Нуклеиновые кислоты

По строению РНК и ДНК (дезоксирибонуклеиновая кислота) сходны. Эти вещества представляют собой биополимеры, молекулы которых — это длинные цепи, состоящие из отдельных фрагментов (остатков нуклеотидов). Присутствуя в каждой живой клетке, они выполняют следующие функции:

Живая клетка

  • Хранение информации как о самой клетке, так и обо всём организме, частью которого она является.
  • Передача информации следующему поколению клеток при делении.
  • Хранение, передача и расшифровка информации о реализации признаков организма, закодированных генами.

Основным фактором, отличающим друг от друга рибонуклеиновую и дезоксирибонуклеиновую кислоты, являются входящие в их состав углеводы, а именно дезоксирибоза в ДНК и рибоза в РНК.

Происхождение и структура

Каждый из мономеров, составляющих длинную молекулу, состоит из азотистого основания и присоединённых к нему фосфатных групп и углевода рибозы. Посредством соединения рибозы и фосфатного остатка осуществляется связь мономеров в цепь.

Кодирование информации обусловлено последовательностью расположения нуклеотидов в цепи.

Процесс биосинтеза рибонуклеиновой кислоты в живой клетке, называемый транскрипцией, осуществляется при обязательном присутствии фермента РНК-полимеразы. Соединение между собой мономеров (нуклеотидов), входящих в состав макромолекулы, осуществляется за счёт взаимодействия фосфатного остатка одного мономера с углеводным фрагментом другого.

Строение молекулы РНК

Матрицей, на основе которой синтезируются молекулы этого вещества, может служить и молекула ДНК, и другая молекула РНК. В частности, на основе нуклеиновой кислоты с рибозой происходит репликация РНК-содержащих вирусов.

Примечательно, что этот фермент (полимераза) существует в различных модификациях, что обусловливает синтез разных видов этого вещества. Все разновидности рибонуклеиновой кислоты имеют сходное строение. Их пространственная структура напоминает по конфигурации листок клевера.

История исследования вопроса

Начало изучению нуклеиновых кислот было положено ещё в середине XIX века швейцарским учёным, обнаружившим эти вещества в клеточном ядре. Он назвал их нуклеином. Наличие этих веществ в прокариотических бактериальных клетках, не содержащих ядра, было доказано несколько позднее.

Предположение о роли РНК, которую она играет в биосинтезе белковых молекул, было сделано в 1939 году. В ходе эксперимента было продемонстрировано, что РНК, кодирующая структуру гемоглобина кролика, при введении в другую клетку заставляет её синтезировать тот же самый белок. Описанный опыт наглядно продемонстрировал роль этого вещества в живом организме. Параллельно с этим ещё одно исследование показало, что клетки, активно синтезирующие белковые вещества, содержат большее количество РНК, по сравнению с другими клеточными структурами.

Карл Везе

Механизм синтеза самой рибонуклеиновой кислоты был открыт в середине XX века, за что в 1959 году была выдана Нобелевская премия по медицине. Ещё одна аналогичная награда в этой области была выдана в связи с расшифровкой последовательности цепи из 77 нуклеотидов транспортной РНК одного из видов дрожжевых грибков.

  • Шифрование, хранение и передача информации, в частности, генетической информации клетки. Сейчас, после определённых изменений, которые произошли в ходе эволюции, эту функцию стала выполнять дезоксирибонуклеиновая кислота (ДНК).
  • Участие в ряде метаболических процессов, которое проявляется в их ускорении (каталитическая активность). В сегодняшнем мире эта функция принадлежит ферментам — специализированным веществам, имеющим белковую природу.

Открытие нуклеиновых кислот и успехи в исследовании их свойств и других характеристик дали мощный толчок в развитии молекулярной биологии. С этого момента и берёт начало исследование механизмов передачи информации как внутри клеток, так и между ними. Полученные экспериментально данные объясняют в том числе и механизм наследования некоторых признаков (один из основных принципов теории эволюции — наследственность).

Типы РНК

В зависимости от функций, выполняемых в организме, принято выделять несколько типов рибонуклеиновой кислоты. Каждый из них имеет своё специальное обозначение.

Различные типы этого вещества и соответствующие функции РНК для наглядности можно представить в виде таблицы:

Название Условное обозначение Особенности
Информационная (матричная) иРНК (мРНК) Из всей рибонуклеиновой кислоты, содержащейся в клетке, она составляет около 5%. Содержит и передаёт информацию о первичной структуре белка. Созревая, становится матрицей для синтеза полипептидной белковой молекулы. Молекулы информационной РНК присутствуют в клетке до тех пор, пока синтезируется необходимая белковая молекула. После того как матрица становится не нужна, клетка ее разрушает.
Рибосомальная рРНК Синтез рибосомальной РНК осуществляется в ядрышке. Её молекулы имеют довольно крупные габариты, состоят из из большого количества нуклеотидов — от 3000 до 5000. Составляя 80−85% всей РНК клетки, имеет несколько разновидностей, которые входят в состав рибосом, отличаясь друг от друга длиной цепи, выполняемыми функциями, а также вторичной и третичной структурой. Молекулы рибосомальной РНК считывают информацию, закодированную информационной молекулой и способствуют образованию связей между аминокислотами в белковой цепи.
Транспортная тРНК Эта разновидность рибонуклеиновой кислоты синтезируется в ядре клетки на основе матрицы ДНК, после чего выходит в цитоплазму. Характерной чертой транспортной РНК является небольшой по меркам полимерных веществ размер молекулы (по сравнению с молекулами того же вещества, которым присущи другие функции). Она может содержать около 80 мономеров. Функция этого вещества: транспорт аминокислот, являющихся строительными материалами для протеинов к месту сборки белковой молекулы. Если представить пространственную структуру молекулы нуклеиновой кислоты в виде фигуры, напоминающей листок клевера, то транспортируемая аминокислота присоединяется к его черешку. Молекула транспортной рибонуклеиновой кислоты неуниверсальна: для доставки к рибосоме каждого вида аминокислот необходима своя разновидность транспортной РНК. Всего таких видов известно около 60.

Указанные в таблице типы РНК являются основными. Кроме них существуют и другие разновидности этого вещества. Все они в совокупности составляют единую систему, значение которой крайне велико: она направлена на считывание и воспроизведение наследственной информации через синтез белковых структур.

Типы РНК

Существует ещё одна классификации РНК; согласно ей, выделяют следующие разновидности:

Ядро эукариотических клеток

  • Ядерная. Рапространение — ядро эукариотических клеток. Молекула собирается полимеразой 2 или 3 типов. После сборки выходит в цитоплазму клетки, где происходит созревание; потом возвращается в ядро. Участвует в процессе созревания матричной РНК. В цепи такой нуклеиновой кислоты находится много уридиновых нуклеотидов. Имеется и малый (ядрышковый) подтип.
  • Цитоплазматическая. Находится под влиянием ядерной разновидности нуклеиновой кислоты. Функция — участие в антителообразовании в зрелых плазматических клетках.
  • Митохондриальная. В отличие от ядерной, располагается в митохондриях.
  • Пластидная. Кодирует гены, обеспечивающие процессы транскрипции и трансляции.

В основе такого подразделения лежит место её нахождения внутри клетки.

Минпросвещения России
Российское образование
Рособрнадзор
Русское географическое общество
Российское военно-историческое общество
Президентская бибилиотека


Рибонуклеи́новые кисло́ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК), принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и т. д.

Геномы некоторых вирусов состоят из РНК, то есть у них она выполняет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Содержание

История изучения

Химический состав и модификации мономеров


Структура

Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом [15] . Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин — гуанин [16] .


Разные формы нуклеиновых кислот. На рисунке (слева направо) представлены A (типична для РНК), B (ДНК) и Z (редкая форма ДНК)

Важная структурная особенность РНК, отличающая её от ДНК — наличие гидроксильной группы в 2' положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК [17] . У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка [18] . Второе последствие наличия 2' гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять [19] .


Примером зависимости функции молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (стресса [22] .

Многие типы РНК, например, рРНК и мяРНК в клетке функционируют в виде комплексов с белками, которые ассоцииируют с молекулами РНК после их синтеза или (у эукариот) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами.

Сравнение с ДНК

Между ДНК и РНК есть три основных отличия:

  1. ДНК содержит сахар дезоксирибозу, РНК — рибозу, которая содержит одну дополнительную, по сравнению с дезоксирибозой, гидроксильную группу. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК. , комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.
  2. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК [23] [24] .

Синтез

Синтез РНК в живой клетке проводится ферментом — РНК-полимеразой. У эукариот разные типы РНК синтезируются разными, специализированными РНК-полимеразами. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Например, полиовирусы используют РНК-зависимую РНК-полимеразу для репликации генетического материала, состоящего из РНК [25] . Но РНК-зависимый синтез РНК, который раньше считался характерным только для вирусов, происходит и в клеточных организмах, в процессе так называемой РНК-интерференции [26] .

Например, у кишечной палочки гены рРНК расположены в составе одного оперона (в rrnB порядок расположения такой: 16S — tRNA Glu 2 — 23S —5S) считываются в виде одной длинной молекулы, которая затем подвергается расщеплению в нескольких участках с образованием сначала пре-рРНК, а затем зрелых молекул рРНК [28] . Процесс изменения нуклеотидной последовательности РНК после синтеза носит название процессинга или редактирования РНК.


Типы РНК

Матричная (информационная) РНК — РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка [29] . Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК) или быть производными интронов [30] . Классические, хорошо изученные типы некодирующих РНК — это транспортные РНК (тРНК) и рРНК, которые участвуют в процессе трансляции [31] . Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Существуют также молекулы некодирующих РНК, способные катализировать химические реакции, такие как разрезание и лигирование молекул РНК [32] . По аналогии с белками, способными катализировать химические реакции — энзимами (ферментами), каталитические молекулы РНК называются рибозимами.

Участвующие в трансляции


Информация о последовательности аминокислот белка содержится в мРНК. Три последовательных нуклеотида (кодон) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК.

В безъядерных клетках (бактерии и археи) рибосомы могут присоединяться к мРНК сразу после транскрипции участка РНК. И у эукариот, и у прокариот цикл жизни мРНК завершается её контролируемым разрушением ферментами рибонуклеазами [29] .

Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК [30] .

Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой [29] . Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки [33] .

Необычный тип РНК, который действует в качестве тРНК и мРНК (тмРНК) обнаружен во многих бактериях и пластидах. При остановке рибосомы на дефектных мРНК без стоп-кодонов тмРНК присоединяет небольшой пептид, направляющий белок на деградацию [34] .

Участвующие в регуляции генов

В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется. [35] . Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов. [36] . Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК [37] . Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам [38] . У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA, 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет [39] [40] . Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов [41] .

Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию [42] . Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами. [43] . У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов, [44] . В качетве примера можно привести Xist, присоединяющуюся и инактивирующую одну из двух Х-хромосом у самок млекопитающих. [45] .

Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5' и 3' нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин. [46] .

В процессинге РНК

Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК) [31] . Кроме того, интроны могут катализировать собственное вырезание. [47] . Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля [30] . После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК [48] [49] Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте - особом участке митохондрии протистов-кинетопластид (например, трипаносом).

Геномы, состоящие из РНК


Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и которые для размножения копируются в ДНК-копию и обратно (ретровирусы).

РНК-содержащие вирусы

Многие вирусы, например, вирус гриппа, на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на

Вироиды — другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина [50] .

Ретровирусы и ретротранспозоны

У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома — ретротранспозоны [51]

Гипотеза РНК-мира

Читайте также: