Флуктуация это в физике определение кратко и понятно

Обновлено: 02.07.2024

Толковый словарь Ушакова
1. ж. Случайное отклонение физической величины от ее среднего значения.
2. ж. Ощущение одной рукой колыхания, получаемого при толчкообразных движениях пальцев другой руки при пальпации над скоплениями жидкости в полостях (в медицине).

Флуктуа́ция (от лат. fluctuatio — колебание) — любое периодическое изменение. В квантовой механике — отклонение от среднего значения случайной величины, характеризующей систему из большого числа хаотично взаимодействующих частиц; такие отклонения вызываются тепловым движением частиц или квантовомеханическими эффектами.

Примером флуктуаций являются флуктуации плотности вещества в окрестностях критических точек, приводящие, в частности, к сильному рассеиванию света и потере прозрачности (опалесценция).

Флуктуации, вызванные квантовомеханическими эффектами, присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы. Пример проявления квантовомеханических флуктуаций — эффект Казимира, а также силы Ван-дер-Ваальса. Непосредственно наблюдаемы квантовомеханические флуктуации для заряда, прошедшего через квантовый точечный контакт — квантовый дробовой шум.

В физике наблюдаемая Y = f(x) это комбинация двух функций G(x) + delta(x).
g(x) описывает среднюю величину, delta(x) - изменения, которая претерпевает величина по каким-то причинам (например, из-за внутреннего движения)
delta - возникает из собственного поведения частицы, а меняется
только из-за внешнего воздействия. Например, скорость не будет меняться до тех пор, пока на частицу не подействует другое тело. Но состояние покоя не возможно - внутреннее движение тела приводит к тому, что любая частица осциллирует, колеблется и эта внутренняя энергия собственного движения называется энергией покоя, нулевой энергией. Движение в природе происходит так, что величина флуктуаций уменьшается, а среднее значение со временем почти не меняется (принцип наименьшего действия).

Флуктуация - неустранимое собственное движение, обусловленное внутренней природой системы, взаимодействием ее частей.

естественно речь идет об очень малых промежутках времени. Например, эволюция обусловлена флуктуациями, происходящими при репликации ДНК.
За малое время изменений почти не видно. Но за миллионы лет накапливаются существенные отличия между эффективными генетическими программами.

Причем тут "принцип наименьшего действия" ? Это же совсем из другой оперы - из классической механики.



Рис. 1

Квантовые флуктуации тесно связаны с принципом неопределённости Гейзенберга. Вот классический, простейший пример (рис. 1). Если поместить шарик на дно чаши, он бесконечно останется там в покое. Этого можно ожидать на основании повседневного опыта. И в отсутствии квантовой механики так бы всё и было. Но если вы поместите очень лёгкую частицу в крохотную чашу или в ловушку другого типа, вы обнаружите, что ей не сидится на дне. Если бы она неподвижно находилась внизу, это нарушило бы принцип неопределённости – гарантирующий, что вы не можете одновременно узнать точно, где находится частица (то есть, на дне) и как она движется (в нашем случае – не движется). Это можно представлять, пусть неидеально, зато практично, как некое постоянное дрожание, влияющее на частицу и не дающее ей успокоиться так, как вам подсказывает интуиция на примере шариков и чаш. Один полезный аспект этой несовершенной картины – она даёт понять, что с этим дрожанием может быть связана энергия.

В квантовой теории поля – квантовых уравнениях для полей, таких, как электрическое, наблюдается схожий эффект. Давайте я его объясню.

Флуктуации квантовых полей

Каждая элементарная частица (а я сейчас говорю о реальных частицах) в нашей Вселенной – это рябь, небольшая волна, волна минимальной возможной интенсивности, идущая по соответствующему элементарному квантовому полю (рис. 2). Частица W – это волна в поле W; фотон – волна в электрическом поле; верхний кварк – волна в поле верхнего кварка.

А если частиц нет? Даже там, где, как мы считаем, есть только пустое пространство, поля всё равно существуют – сидит себе тихонечко, так же, как в пруду есть вода, даже если ни ветер, ни камешки не порождают рябь на его поверхности, и как в комнате есть воздух, даже если там нет никаких звуков.



Рис. 2

Очевидный вопрос: а уверены ли вы в наличии квантовых флуктуаций полей? Ответ: да, хотя пока я объяснять это не буду. Один пример: квантовые флуктуации приводят к тому, что сила взаимодействий плавает, когда вы измеряете её на всё более и более коротких расстояниях – и мы не только наблюдаем этот эффект, он ещё и с высокой точностью совпадает с тем, что мы можем подсчитать при помощи Стандартной Модели. Этот успех подтверждает не только наличие квантовых флуктуаций, но и детальную структуру Стандартной Модели, вплоть до дистанций порядка одной миллионной миллионной миллионной доли метра. Ещё пример: реакцию электрона на магнитное поле можно измерить с точностью до одной триллионной; также её можно подсчитать через Стандартную Модель с точностью до одной триллионной, предполагая наличие флуктуаций в известных нам полях. Удивительно, но измерения совпадают с подсчётами Стандартной Модели.

Что важно, это дрожание порождает определённое количество энергии – довольно много. Сколько? Чем лучше ваш микроскоп (или ускоритель частиц), тем больше дрожания вы видите, и тем больше энергии дрожания вы обнаруживаете.

Энергия квантовых флуктуаций и космологическая постоянная

Рассмотрим коробку с ребром в один метр и спросим: сколько энергии, связанной с дрожанием одного квантового поля, можно насчитать в этой коробке (рис. 3)?

Сравните это с обычной материей, чья плотность энергии равна нескольким энергиям массы протона или нейтрона (то есть энергиям массы атомного ядра) на каждый атом, чей объём, поскольку протон или нейтрон в 100 000 раз меньше радиуса атома, в 1 000 000 000 000 000 раз больше объёма протона. (Вспомните, что атом относительно гораздо более пустой, чем Солнечная система). Это значит, что плотность энергии квантовых флуктуаций электрического поля грубо в миллион миллионов миллионов раз больше, чем у обычной материи, поэтому энергия массы флуктуаций электрического поля с ребром в метр примерно в миллион миллионов миллионов раз больше энергии, содержащейся в кубическом метре твёрдой материи. А сколько это энергии? Достаточно, чтобы взорвать всю планету, или даже звезду! Она сравнима по величине с общей энергией Солнца. Конечно, эту энергию из вакуума высвободить нельзя, ни на зло, ни на добро, поэтому волноваться не нужно – она не опасна. Но этого достаточно для того, чтобы понять масштабы проблемы космологической постоянной.

Подсчёт 2: допустим, как это связано с вопросом о проблеме иерархии и естественности Вселенной, что Стандартная Модель описывает все процессы физики частиц вплоть до масштабов, на которых гравитация становится сильным взаимодействием – на т.н. планковской длине, которая, в свою очередь, ещё в тысячу миллионов миллионов раз меньше, чем расстояния из подсчёта 1. Тогда количество энергии флуктуаций электрического поля, содержащееся в кубическом метре, больше, чем в подсчёте 1 в

(1 000 000 000 000 000) 4 = 1 с 60 нулями

Если взять это число и перемножить его с числом из подсчёта 1, у вас будет достаточно энергии, чтобы взорвать все звёзды во всех галактиках в видимой части Вселенной много много много раз. И именно столько энергии содержится в каждом кубическом метре – если Стандартная Модель правильно описывает физические процессы на масштабах вплоть до планковской длины.



Рис. 3

Эти утверждения могут показаться вам странными. Они и есть странные – но ведь квантовая физика полна странностей. Более того, ни квантовая механика, ни квантовая теория поля пока нас не подводили. Как я упоминал ранее, у нас есть полно доказательств того, что простейшие подсчёты, аналогичные приведённым, прекрасно работают в квантовой теории поля. Факт существования квантовых флуктуаций вместе с их энергией так глубоко встроен в квантовую механику, что для того, чтобы объявить их ложными, вам нужно будет объяснить целую библиотеку экспериментальных результатов, которым квантовая механика сделала правильные предсказания. Так что, как у учёных, у нас нет другого выхода, как относиться к этим расчётам серьёзно, и пытаться их понять.

У вас может появиться пара очевидных вопросов: почему мы не можем просто определить, есть там эта энергия или нет? Почему вся эта огромная энергия никак не действует на обычную материю и на нас самих? Первая часть ответа: поскольку в каждом кубическом метре пространства содержится одно и то же количество энергии, внутри и снаружи любого куба (рис. 4), который вы сможете нарисовать. Аналогия: внутри дома есть давление воздуха, но дом из-за этого не взрывается, пока снаружи дома находится равное давление воздуха. Точно так же, тот факт, что эта энергия плотности крохотных квантовых флуктуаций постоянна во всём пространстве и времени, означает, что она не оказывает никакого влияния на объекты, покоящиеся или движущиеся сквозь неё. Только изменения энергии во времени или в пространстве будут действовать на частицы, на атомы, состоящие из этих частиц, на людей и планеты, состоящих из этих атомов. И действительно, эта энергия квантовых флуктуаций одинакова везде и всегда, поэтому её невозможно ощутить, попробовать или воспользоваться ею.



Рис. 4

Следующий очевидный вопрос: а вы уверены, что у квантовых флуктуаций на самом деле есть энергия, или же, возможно, её там нет, что могло бы устранить проблему космологической постоянной? Ответ: да, я уверен, что у квантовых флуктуаций есть энергия. Она называется нулевой энергией, и она фундаментальна для квантовой механики, благодаря опять-таки принципу неопределённости. И это можно проверить: в хитроумном эксперименте энергию можно заставить работать благодаря эффекту Казимира, который был предсказан в 1940-х, впервые наблюдался в 1970-х и более точно проверен в 1990-х. Однако существуют споры по поводу того, связан ли он на самом деле с нашей темой.

Проблема космологической постоянной весьма серьёзна. Экспериментально нам известно, что Вселенная не расширяется с невероятной скоростью; она делает это довольно медленно; это будет измерение 0 на рис. 3 (снизу). Поэтому:

• Либо этот подсчёт (и даже подсчёт 1, который не делает никаких предположений о том, что нам неизвестно из Стандартной Модели) в чём-то ошибочен, и этой энергии нет,
• Либо действие этой энергии на расширение Вселенной не такое, как мы думаем, поскольку мы неправильно понимаем гравитацию,
• Либо подсчёт правильный, но он отвечает не на тот вопрос каким-то непонятным нам образом.

Этого точно никто не знает. Я расскажу о возможных решениях этой проблемы в отдельной статье о космологической постоянной. Но я упомянул одно интересное решение, которое однозначно не работает, поскольку оно будет связано с другой темой.

Может ли энергия различных полей взаимно уничтожаться?

Есть такая хитрая идея о том, как избавиться от этой энергии. Оказывается, что:

• Энергия флуктуаций бозонных полей (полей для фотона, глюона, W, Z и Хиггса, и даже гравитона) положительна,
• Энергия флуктуаций фермионных полей (полей для электрона, мюона, тау, трёх нейтрино и 6 кварков) отрицательна!

Так что, возможно, хотя энергия каждого поля огромна, когда вы просуммируете энергию всех полей, то общая энергия окажется нулевой – или хотя бы очень малой?

Вы можете провести такие расчёты, и в Стандартной Модели вы увидите, что это не работает; есть слишком много фермионов, и в пустом пространстве должно существовать огромное количество отрицательной энергии.

Одна из крутых вещей теории суперсимметрии в том, что она заставляет вас добавлять именно те частицы, что нужно (суперпартнёры для каждого из известных типов частиц) так, что вы автоматически получаете это взаимное уничтожение! И, на самом деле, это единственный вид теории, известной человечеству, в которой это возможно.

К сожалению, на самом деле это не решает проблемы космологической константы. Если суперсимметрия не проявляется явно [а в нашем мире это невозможно – массы всех известных частиц должны быть идентичны массам их гипотетических суперпартнёров, и тогда мы бы их уже давным-давно нашли], тогда это взаимное уничтожение работает только частично. Частичное уничтожение, способное опровергнуть подсчёт 2, всё равно оставляет вам огромное количество энергии из подсчёта 1. Как отмечено на рис. 3, этого гигантского количества энергии достаточно, чтобы Вселенная вела себя совсем не так, как мы видим, если только с теорией гравитации Эйнштейна что-то не так.

Короче говоря, на сегодня никто не знает хитрого способа автоматически взаимно уничтожить плотность энергии флуктуаций различных полей в мире, описываемом Стандартной Моделью вплоть до БАКовских расстояний. На самом деле, никто даже не знает, как это сделать в любой немного несуперсимметричной квантовой теории поля (и всё равно, комбинирование суперсимметрии с гравитацией возрождает эту проблему).

Иначе говоря: даже если допустить существование особого взаимного уничтожения между бозонными полями природы и фермионными полями природы, судя по всему, такое взаимное уничтожение может произойти только случайно, и в очень-очень малой доле квантовых теорий поля или квантовых теорий любого типа (включая струнную теорию). Таким образом, только очень-очень крохотная часть вселенных, которые можно себе представить, могут хотя бы приблизительно напоминать нашу с вами (или хотя бы ту её часть, которую мы можем наблюдать при помощи глаз и телескопов). В этом смысле, проблема космологической постоянной является проблемой естественности, как этот термин понимают специалисты по физике частиц и их коллеги: поскольку во Вселенной, в которой мы живём, содержится так мало тёмной энергии по сравнению с тем, что мы ожидаем, наша Вселенная очень необычна и нетипична.

(от лат. fluctuatio — колебание), случайные отклонения физ. величин от их ср. значений. Ф. происходят у любых величин, зависящих от случайных факторов. Количеств. хар-ка Ф. основана на методах матем. статистики и теории вероятностей. Простейшей мерой Ф. величины х служит её дисперсия s2х, т. е. ср. квадрат отклонения х от ср. значения х=, s2х=(х-x=)2 = x=2-x2 , где черта сверху означает статистич. усреднение. Эквивалентной мерой Ф. явл. среднеквадратичное отклонение sх, равное корню квадратному из дисперсии, или его относит. величина

В статистич. физике Ф. вызываются хаотич. тепловым движением образующих систему ч-ц. Наблюдаемые значения физ. величин (т. и. экстенсивных, т. е. пропорциональных объёму системы, напр. энергии) очень близки к их ср. статистич. значениям, т. е. Ф. очень малы: относит. Ф. пропорц. 1/?N, где N — число ч-ц системы.

Однако для выделенных малых объёмов они могут быть легко обнаружены (особенно вблизи критических точек), напр. по рассеянию света, рентг. лучей или медл. нейтронов. Ф. имеют принципиальное значение, ограничивая пределы применимости термодинамич. понятий лишь большими (содержащими много ч-ц) системами, для к-рых Ф. значительно меньше самих флуктуирующих величин. Существование Ф. уточняет смысл второго начала термодинамики — утверждение о невозможности вечного двигателя 2-го рода остаётся справедливым, но оказываются возможными Ф. системы из равновесного состояния в неравновесные, обладающие меньшей энтропией; однако на основе таких Ф. нельзя построить вечный двигатель 2-го рода. Для ср. величин остаётся справедливым закон возрастания энтропии в изолированной системе.

Основы теории Ф. были заложены в работах амер. физика Дж. У. Гиббса (1902), А. Эйнштейна (1905—06), польск. физика М. Смолуховского (1906).

С помощью Гиббса распределений как в классич., так и в квант. случае можно вычислить Ф. в состоянии статистич. равновесия для систем, находящихся в разл. физ. условиях; при этом Ф. выражаются через равновесные термодинамич. параметры и производные потенциалов термодинамических. Напр., для системы с пост. объёмом V и пост. числом ч-ц N, находящейся в контакте с термостатом (с темп-рой Т), канонич. распределение Гиббса даёт для Ф. энергии (?):D?2=(kT)2cV, где сV— теплоёмкость при пост. объёме. Такое же выражение для Ф. справедливо и в случае квант. статистики, различаются лишь явные выражения для сV. В приведённом примере флуктуирует пропорц. объёму (т. н. экстенсивная) величина — энергия. Её относит. квадратичные Ф. D?2/?2 пропорциональны величине UN (нормальные Ф.) и, следовательно, очень малы. В точках фазовых переходов Ф. сильно возрастают и их относит. величина может убывать с увеличением N медленнее. Для более детальной хар-ки Ф. нужно знать ф-цию распределения их вероятностей.

Можно найти не только Ф. величины xi, но и корреляции между ними DxiDxk,, определяющие их взаимное влияние (лишь для статистически независимых величин DxiDxk=DxiХDxk=0); примером могут служить корреляции объёма и давления: DVDp=-kT. Для физ. величин А (х, t), В (х, t), зависящих от координат (х) и времени (t), вообще говоря, имеют место пространственно-временные корреляции между их Ф. в разл. точках пр-ва в разл. моменты времени:

ф-ции F наз. пространственно-временными корреляц. (или коррелятивными) ф-циями, в состоянии статистич. равновесия они зависят лишь от разностей координат и времени.

Ф. связаны с неравновесными процессами. Такие неравновесные хар-ки системы, как кинетич. коэффициенты (электропроводность, вязкость и пр.), пропорциональны интегралам по времени от временных корреляц. ф-ций потоков физ. величин. Напр., электропроводность пропорциональна интегралу от корреляц. ф-ций плотностей токов, коэфф. теплопроводности, вязкости, диффузии пропорциональны соответственно интегралам от корреляц. ф-ций плотностей потоков тепла, импульса и диффузного потока; это справедливо как для классич., так и для квант. систем, однако в последнем случае ф-лы неск. усложняются.

В общем случае существует связь между Ф. физ. величин в равновесном состоянии и неравновесными св-вами системы при внеш. возмущении, определяемая флуктуационно-диссипативной теоремой.

Ф. в системах заряж. ч-ц проявляются как хаотич. изменения потенциалов, токов или зарядов; они обусловлены как дискретностью электрич. заряда, так и тепловым движением носителей заряда. Эти Ф. явл. причиной электрич. шумов и определяют предел чувствительности приборов для регистрации слабых электрич. сигналов (см. ФЛУКТУАЦИИ ЭЛЕКТРИЧЕСКИЕ).

Ф. можно наблюдать по рассеянию света: случайные изменения плотности среды из-за Ф. вызывают случайные изменения по объёму показателя преломления, и в однородной по составу среде или даже в химически чистом в-ве рассеяние света может происходить так же, как в мутной среде. Это явление особенно заметно в бинарных растворах при темп-ре, близкой к критич. темп-ре растворения,— т. н. критич. рассеяние света. Ф. также очень велики в критич. точке равновесия жидкость — пар (см. КРИТИЧЕСКИЕ ЯВЛЕНИЯ). Ф. давления проявляются в броуновском движении взвешенных в жидкости (или газе) малых ч-ц под влиянием нескомпенсированных точно ударов молекул окружающей среды.

В квантовой теории поля Ф. вакуума, связанные с возможностью рождения и поглощения виртуальных частиц, приводят к изменению значений массы и заряда ч-ц.

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(от лат. fluctuatio - колебание) - случайные отклонения физ. величин от их средних значений. Ф. испытывают любые величины, зависящие от случайных факторов. Количественные характеристики Ф. основаны на методах матем. статистики и теории вероятностей. Простейшей мерой Ф. случайной величины х служит её дисперсия , т. е. ср. квадрат отклонения х от ср. значения х, где черта сверху означает статистич. усреднение. Эквивалентной мерой Ф. является среднеквадратичное отклонение , равное корню квадратному из дисперсии, или его относит, величина . Взаимное влияние Ф. неск. величин х i определяется их корреляциями где . Для статистически независимых величин и, следовательно, корреляции равны нулю (см. также Корреляционная функция в статистич. физике).

В статистич. физике Ф. вызываются хаотическим тепловым движением частиц, образующих систему. Даже в состоянии статистич. равновесия наблюдаемые физ. величины испытывают Ф. около ср. значений. С помощью Гиббса распределений как в классическом, так и в квантовом случае можно вычислить равновесные Ф. для систем, находящихся в разл. внеш. условиях; при этом Ф. выражаются через равновесные термодинамич. параметры и производные потенциалов термодинамических. Напр., для системы с пост, объёмом V и пост, числом частиц N, находящейся в контакте с термостатом (с темп-рой T), каноническое распределение даёт для Ф. энергии результат: где C V - теплоёмкость системы при пост, объёме. В приведённом примере флуктуирует т. н. экстенсивная (пропорц. объёму) физ. величина - энергия. Её относит, квадратичные Ф. пропорциональны 1/N, т. е. очень малы. Равновесные Ф. др. экстенсивных величин (объёма, числа частиц, энтропии и т. д.) ведут себя с ро-

стом числа частиц аналогичным образом. T. о., в состоянии статистич. равновесия макроскопич. величины с очень большой точностью равны своим ср. значениям Однако для выделенных малых объёмов Ф. могут быть легко обнаружены (особенно вблизи критических точек), напр., по рассеянию света, рентг. лучей или медленных нейтронов.

Для детальной характеристики Ф. вводится функция распределения их вероятностей (см. также Статистическая физика). Если флуктуирующая величина х описывает состояние системы в целом или к.-л. её макроскопич. части, то неравновесное состояние системы, связанное с появлением Ф., можно рассматривать как неполное статистич. равновесие с заданным значением рассматриваемой величины. Для изолированной системы вероятность w(x)dx величине х иметь значение в интервале между х и x + dx пропорциональна соответствующему статистич. весу, а ф-ция распределения равна w(x) = Cexp, где S (х) - энтропия неполного равновесия, характеризуемого точным значением флуктуирующей величины. Постоянная С находится из условия нормировки ф-ции распределения. Для неск. флуктуирующих макроскопич. величин Xi равновесная ф-ция распределения Ф. имеет вид

2444444-68.jpg

2444444-69.jpg

где энтропия рассматривается как ф-ция точных значений всех флуктуирующих величин. Приведённая ф-ла для ф-ции распределения Ф. макроскопич. величин является основой т. н. термодинамической теории флуктуации, впервые сформулированной А. Эйнштейном (1910). T. к. относительные Ф. макроскопич. величин малы, то энтропия 5 (x 1 , . х n )может быть разложена в ряд по степеням отклонений . С точностью до членов 2-го порядка по этим отклонениям равновесная ф-ция распределения макроскопич. величин совпадает с Гаусса распределением

2444444-70.jpg

где -матрица, обратная корреляционной матрице, -её определитель. Для Ф. термодинамич. величин подсистемы, к-рая находится в равновесии с остальными частями изолир. системы (термостатом), ф-ла (1) даёт

2444444-74.jpg

где -изменения давления, объёма, темп-ры и энтропии подсистемы при Ф., T- темп-pa термостата. Выбирая в ф-ле (2) в качестве независимых переменных разл. параметры подсистемы, можно вычислить все характеристики равновесных термодинамич. Ф.

Вблизи критических точек жидкостей и растворов, а также вблизи точек фазовых переходов наблюдается аномальный рост Ф. нек-рых физ. величин (параметров порядка) и их взаимодействие. Для чистых жидкостей параметрами порядка являются плотности массы и энергии, для растворов - концентрации компонент, для ферромагнетиков в окрестности Кюри точки - намагниченность и т. д. Рост Ф. приводит к ряду аномалий в поведении термодинамич. величин и в реакции системы на внеш. воздействие (критические явления).

2444444-75.jpg

Существует связь между Ф. физ. величин в равновесном состоянии и линейными диссипативными процессами, вызванными как внеш. механич. возмущениями (электропроводность, реакция на внешнее переменное магн. поле), так и внутр. неоднородностями в системе (напр., диффузия, теплопроводность и вязкость). Соотношения, связывающие характеристики линейных диссипативных процессов (проводимость, магн. восприимчивость, коэффициенты диффузии, теплопроводности, вязкости и т. д.) с пространственно-временными корреляционными ф-циями флуктуирующих динамич. переменных, наз. флуктуационно-диссипативными теоремами. К флук-

туационно-диссипативным теоремам относятся Кубо формулы для тензоров электропроводности и магн. восприимчивости и Трина - Кубо формулы для коэф. переноса. Флук-туационно-диссипативные теоремы для общего случая были сформулированы X. Кэлленом (H. В. Callen) и T. Уэлтоном (Th. A. Welton) в 1951 как обобщение Най-квиста формулы для электрич. шумов в линейных цепях; они оказываются полезными для вычисления спектральной плотности временных корреляционных ф-ций равновесных Ф. в тех случаях, когда обобщённые восприимчивости удаётся вычислить с помощью Грина функций (в статис-гич. физике) или к.-л. др. методом.

Ур-ния, описывающие эволюцию неравновесной макро-скопич. системы, напр, кинетическое уравнение Больцмана для классич. газа или ур-ния гидродинамики, являются ур-ниями для физ. величин, усреднённых по статистич. ансамблю. Вследствие теплового движения в системе эти величины испытывают Ф. около ср. значений.

Кинетические Ф. в газе характеризуются корреляц. ф-пией , где является отклонением точной, микроскопич. ф-ции распределения f от ср. значения этой ф-ции определяемого кинетич. ур-нием. В равновесном газе корреляц. ф-ция зависит только от разности времен t 1 - t 2 и разности координат r 1 -r 2 , а есть независящая от времени равновесная одночастич-ная ф-ция распределения. В частности, если нет внеш. поля, эта ф-ция совпадает с Максвелла распределением f 0 (p).

Вычисление корреляц. ф-ции для кинетич. Ф. в равновесном газе можно свести к решению обобщённого Ланжевена уравнения

2444444-80.jpg

2444444-81.jpg

Левая часть этого ур-ния совпадает с линеаризов. кинетич. ур-нием Больцмана, где -линейный интегральный оператор (оператор столкновений), а правая часть представляет собой случайный источник, моменты к-рого определяются соотношениями

2444444-82.jpg

Интенсивность источника, описывающего влияние теплового движения частиц на Ф. одночастичной ф-ции распределения, имеет вид

2444444-83.jpg

2444444-84.jpg

где -равновесная концентрация частиц. Метод Ланжеве-на применим и к исследованию кинетич. Ф. в неравновесном газе, однако выражение для второго момента случайного источника является значительно более сложным. Кинетич. Ф. в квантовых газах описываются ур-ниями Ланжевена для отклонений одночастичной матрицы плотности или одночастичной Вигнера функции распределения от ср. значений, определяемых квантовым кинетич. ур-нием.

Для крупномасштабных гидродинамич. Ф. в газах и жидкостях применимо понятие локального (частичного) равновесия в малых объёмах при фиксиров. значениях флуктуирующих термодинамич. параметров. Поэтому в гидродинамич. пределе, когда длина волны Ф. велика по сравнению с микроскопич. размерами (межатомным расстоянием в жидкости и длиной пробега в газе), вычисление временных корреляц. ф-ций Ф. плотности, темп-ры, скорости и т. д. сводится к решению гидродинамич. ур-ний с дополнительными ланжевеновскими источниками, описывающими тепловой шум. Метод вычисления корреляц. ф-ций крупномасштабных Ф. в равновесном состоянии, основанный на линейных ур-ниях гидродинамики со случайными источниками, был предложен Л. Д. Ландау и E. M. Лифшицем в 1957. В случае однокомпонентной классич. жидкости тензор вязких напряжений тт,, и вектор потока тепла q записываются в виде

2444444-85.jpg

где -коэф. вязкости, -коэф. теплопроводности. Кроме обычных членов с градиентами скорости и градиентом темп-ры, эти выражения содержат ланжевенов-ские источники и ; они описывают спонтанные напряжения и потоки тепла, вызванные тепловым движением частиц.

Статистич. свойства источников в приближении локального термодинамического равновесия могут быть установлены методами термодинамики неравновесных процессов.Cp. значения источников равны нулю, а вторые моменты даются ф-лами

2444444-90.jpg

Решив систему линеаризованных гидродинамич. ур-ний, в к-рых тензор вязких напряжений и вектор потока тепла имеют вид (3), можно выразить временные корреляционные ф-ции Ф. локальных гидродинамич. переменных через равновесные термодинамич. величины и коэффициенты переноса. В частности, таким способом можно вычислить корреляц. ф-цию Ф. плотности числа частиц , через к-рую выражается динамический структурный фактор жидкости, измеряемый в экспериментах по рассеянию света и медленных нейтронов.

Нелинейное взаимодействие гидродинамич. Ф. необходимо учитывать вблизи критич. точки, где сильный рост равновесных крупномасштабных Ф. приводит к аномалиям наблюдаемых коэффициентов переноса, а также в неравновесных состояниях, когда система теряет гидродинамич. устойчивость. Характерными примерами являются конвективная неустойчивость и возникновение турбулентности в жидкостях и газах. Взаимодействие крупномасштабных Ф. описывается нелинейными членами в ур-ниях гидродинамики, где локальные термодинамич. величины рассматриваются как случайные переменные.

Лит.: Ландау Л. Д., Лифшиц E. M., Статистическая физика, ч. 1, 3 изд., M., 1976; Зубарев Д. H., Неравновесная статистическая термодинамика, M., 1971; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., M., 1982; Климонтович Ю. Л., Статистическая физика, M., 1982; Лифшиц E. M., Питаевский Л. П., Статистическая физика, ч. 2, M., 1978; Форстер Д., Гидродинамические флуктуации, нарушенная симметрия и корреляционные функции, пер. с англ., M., 1980. В. Г. Морозов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Если частицы определённого типа (например, электроны) в принципе существуют в нашем мире, то они могут время от времени возникать из пустоты в виде пар частица-античастица. И не только могут, а постоянно делают это. Эти события и называются квантовыми флуктуациями.

Разумеется, это запрещено законом сохранения энергии. Поэтому пара частиц, родившись из ниоткуда, должна тут же исчезнуть обратно без следа (для этого эти две частицы должны соединиться), возможно, успев немножко повзаимодействовать с окружающими обычными частицами (либо исчезнет одна из нормальных частиц, а свежеродившаяся останется -- никакой разницы нет, они же одинаковые). В результате, хотя квантовые флуктуации происходят всё время повсюду, они обычно очень слабо влияют на мир. Но немножко всё-таки влияют, это подтверждается экспериментами.

Ещё, возможно (твёрдого экспериментального подтверждения нет), бывает, что такие пары рождаются на границе чёрной дыры, и одна частица из пары оказывается снаружи границы, а другая -- внутри. А внутри чёрной дыры всё сложно, там свои законы, и в некотором смысле там частица может иметь отрицательную энергию, так что эта родившаяся из пустоты пара оказывается не нарушающей никаких законов и не обязанной исчезать -- а она как раз и не может исчезнуть, ведь одну частицу из пары засосало в чёрную дыру, а другая улетела.

Может ли возникнуть очень большая квантовая флуктуация, видимая невооружённым глазом (скажем, в виде многих частиц, как-то организованных)? Почему бы и нет; но в обычных условиях она обязана будет исчезнуть за невообразимо, исчезающе маленький промежуток времени.

ФЛУКТУА́ЦИИ (от лат. fluctuatio – ко­ле­ба­ние), слу­чай­ные от­кло­не­ния фи­зич. ве­ли­чин от их сред­них зна­че­ний. Ф. ис­пы­ты­ва­ют лю­бые ве­ли­чи­ны, за­ви­ся­щие от слу­чай­ных фак­то­ров. Ко­ли­че­ст­вен­ное опи­са­ние Ф. ос­но­ва­но на ме­то­дах ма­те­ма­тич. ста­ти­сти­ки и тео­рии ве­ро­ят­но­стей. По­сколь­ку ср. зна­че­ние Ф. для лю­бой слу­чай­ной ве­ли­чи­ны рав­но ну­лю, Ф. ха­рак­те­ри­зу­ют­ся свои­ми дис­пер­сия­ми – ср. зна­че­ния­ми квад­ра­тов Ф. од­ной и той же фи­зич. ве­ли­чи­ны в дан­ный мо­мент вре­ме­ни в дан­ной точ­ке про­стран­ст­ва – или кор­ре­ля­ция­ми – ср. зна­че­ния­ми про­из­ве­де­ний двух Ф. од­ной и той же фи­зич. ве­ли­чи­ны в разл. мо­мен­ты вре­ме­ни и/или в разл. точ­ках про­стран­ст­ва.

Читайте также: