Энергия в экологических системах кратко

Обновлено: 05.07.2024

Найди готовую курсовую работу выполненное домашнее задание решённую задачу готовую лабораторную работу написанный реферат подготовленный доклад готовую ВКР готовую диссертацию готовую НИР готовый отчёт по практике готовые ответы полные лекции полные семинары заполненную рабочую тетрадь подготовленную презентацию переведённый текст написанное изложение написанное сочинение готовую статью

Сделан в Word, графики в электронном виде с ссылками. Курсовая работа. Вариант 33. Гидравлический расчет гидросистемы стенда для испытания центробежных насосов.

Энергия в экосистемах.

Законы преобразования энергии. Энергия (гр. деятельность) - источник жизни, основа и средство управления всеми природными и общественными системами.

Энергия – одно из основных свойств материи – способность производить работу. Законы превращения энергии проявляются во всех процессах, происходящих в природе и обществе, включая экономику, культуру, науку и искусство. Энергия – движущая сила мироздания. Компонент энергии есть во всем: в материи, информации, произведениях искусства и человеческом духе.

Фундаментальные законы термодинамики имеют универсальное значение в природе. Любая естественная или искусственная система, не подчиняющаяся этим законам, обречена на гибель. Для управления энергетическими процессами прежде всего необходимо понять роль энергии в экологических системах. Знание закономерностей энергетических потоков в природных экосистемах поможет предсказать будущее антропогенных систем.

Природные экологические системы могут служить моделью общих принципов управления основанного на энергетических процессах. Эти системы существуют на Земле много миллионов лет. Изучив природные системы, можно познать многие законы, справедливые для антропогенных экосистем. Несмотря на огромное разнообразие природных систем, приспособленных к конкретным климатическим и биологическим условиям существования, в их поведении есть общие черты, связанные с принципиальным сходством энергетических процессов.

Превращение энергии Солнца в энергию пищи путем фотосинтеза, происходящего в зеленом листе, находится в соответствии с двумя законами термодинамики. Солнечная энергия Qсол ,получаемая поверхностью зеленого листа, уравнивается рассеянной (отраженной и тепловой)qрасс и концентрированной (фотосинтезируемого вещества)qконц формами энергии: Qсол = qрасс + qконц .

Первый закон термодинамики – закон сохранения энергии. Он гласит: Энергия не создается и не исчезает. Для любого химического процесса общая энергия в замкнутой системе всегда остается постоянной. Экология изучает связь между солнечным светом и экологическими системами, внутри которых происходят превращения энергии света. Энергия не создается заново и никуда не исчезает. Свет как одна из форм энергии может быть превращен в работу, теплоту или потенциальную энергию химических веществ пищи. Из этого следует, что если какая-либо система (как неживая, так и живая) получает или затрачивает энергию, то такое же количество энергии должно быть изъято из окружающей ее среды. Энергия может лишь перераспределяться либо переходить в другую форму в зависимости от ситуации, но при этом она не может возникнуть ниоткуда или бесследно исчезнуть.

Энергия передается от организма к организму, создающих пищевую, или трофическую цепь: от автотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4—6 раз с одного трофического уровня на другой.

Трофический уровень — это место каждого звена в пищевой цепи. Первый трофический уровень — это продуценты, все ос­тальные — консументы. Второй трофический уровень — это рас­тительноядные консументы; третий — плотоядные консумен­ты, питающиеся растительноядными формами; четвертый — консументы, потребляющие других плотоядных, и т. д. Следовательно, можно и консументов разделить по уровням: консу­менты первого, второго, третьего и т. д. порядков.

Четко распеределяются по уровням лишь консументы, спе­циализирующиеся на определенном виде пищи. Однако есть ви­ды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.

Пища, поглощаемая консументом, усваивается не полно­стью — от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, ко­торые называют тратой на дыхание, оцениваемая общим коли­чеством С02, выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питатель­ных веществ, т. е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рас­сеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в тепло­вую и рассеивается в окружающей среде.

Таким образом, большая часть энергии при переходе с од­ного трофического уровня на другой, более высокий, теряется.

Приблизительно потери составляют около 90%: на каждый сле­дующий уровень передается не более 10% энергии от предыду, щего уровня. Так, если калорийность продуцента 1000 Дж, то при попаданиии в тело фитофага остается 100 Дж, в теле хищ­ника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т. е. 0,1 % от калорийности растительной пищи.

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи эко­систем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.

Нельзя забывать еще и мертвую органику, которой питаетcя значительная часть гетеротрофов. Среди них есть и сапрофаги и сапрофиты (грибы), использующие энергию, заключен­ную в детрите. Поэтому различают два вида трофических це­пей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные це­пи разложения, которые начинаются с остатков отмерших рас­тений, трупов и экскрементов животных.

Таким образом, входя в экосистему, поток лучистой энер­гии разбивается на две части, распространяясь по двум видам трофических сетей, но источник энергии общий — солнечный свет.

Важнейший источник энергии, которая поступает в экосистему, это солнце. Из космоса поступает солнечный свет, который попадает на самую верхнюю границу биосферы , энергия этого света равна $8,4 Дж / см^2$ в одну минуту. Однако, во время пути через атмосферу, она рассеивается (поглощается газами и пылью , отражается), и в безоблачный летний день до нижних слоев биосферы доходит не более $5.63 Дж/ см^2$ мин энергии. Число солнечной энергии, которая доходит до автотрофного слоя экосистемы за один день в умеренной зоне достигает от $420 \ до \ 3360 \ Дж/ см^2$(в среднем $1260- 1680 \ Дж/ см^2$), что составляет $4620 -6300 \ МДж/м^2$ в год. Энергия лучей солнца, которая доходит до земной поверхности, состоит приблизительно на 10 % из УФ излучения, на 45 % из ИК излучения и на 45 % из видимого света.

Автотрофам нужна энергия солнечного света не только в виде света (для фотосинтеза), а также в виде тепловой энергии, так как процессы биосинтеза и фотосинтеза требуют определенной температуры протоплазмы. Однако, если в ходе фотосинтеза соединяется энергия красных и синих лучей (видимый свет), то в качестве источника тепла используется главным образом дальняя инфракрасная радиация, которая хорошо поглощается влагой листьев.

Тепловое воздействие на растения иногда бывает таким сильным, что создает угрозу перегрева растений (а следовательно и угрозу процессу фотосинтеза). Для предотвращения последствий перегрева создается ток воды через растения (транспирация), которая выполняет и другие функции. Для биохимических процессов (биосинтеза) основная форма энергии - энергия химических связей глюкозы. Гетеротрофным организмам необходима в первую очередь энергия пищи, т. е. солнечная энергия, связанная в биомассе автотрофов. Но им также необходима энергия в виде прямых солнечных лучей и энергия в виде тепла.

Готовые работы на аналогичную тему

Таким образом, биотическое сообщество экосистемы подвергается мощному воздействию как видимого солнечного излучения, так и теплового, исходящего не только от солнца, но и от всех тел на земле, у которых температура больше абсолютного нуля. Но если поток солнечного излучения имеет четко выраженную направленность (сверху вниз), то длинноволновое тепловое излучение распространяется беспрерывно во всех направлениях. Число тепловой энергии, которую получают за сутки животным или растением на открытой местности летом, может в несколько раз превышать направлешюе вниз излучение Солнца.

Энергия необходима не только живым организмам, но и для других процессов (физико-химических , химических, физических), протекающих в экосистемах, биосфере, так как любая работа затрачивает энергию. Так, например, для поддержания гидрологического цикла на планете затрачивается около 23 % поступающей солнечной радиации.

Другие источники энергии в экосистемах

Для нормального функционирования отдельные экосистемы употребляют не только энергию солнечного света, но и другие источники. Всякий источник энергии, уменьшающий затраты энергии на самоподдержание экосистемы и увеличивающий ту долю энергии, которая может перейти в продукцию, называют дополнительным (вспомогательным) источником энергии, или энергетической субсидией.

Так, прибрежные мелководные заливы (эстуарии) получают дополнительную энергию в виде отмерших листьев, растущих на берегу деревьев, и биогенных элементов, приносимых водой во время приливов и отливов. В этом случае источником дополнительной энергии является солнечная энергия, связанная в биомассе листьев и энергия лунного притяжения, вызывающая приливы и отливы.

Таким образом, биотическое сообщество экосистемы подвергается мощному воздействию как видимого солнечного излучения, так и теплового, исходящего не только от солнца, но и от всех тел на земле, у которых температура больше абсолютного нуля. Но если поток солнечного излучения имеет четко выраженную направленность (сверху вниз), то длинноволновое тепловое излучение распространяется беспрерывно во всех направлениях.

Число тепловой энергии, которую получают за сутки животным или растением на открытой местности летом, может в несколько раз превышать направлешюе вниз излучение Солнца. Энергия необходима не только живым организмам, но и для других процессов (физико-химических , химических, физических), протекающих в экосистемах, биосфере, так как любая работа затрачивает энергию. Так, например, для поддержания гидрологического цикла на планете затрачивается около 23 % поступающей солнечной радиации.


Энергия и питательные или химические вещества проходят через экосистему. В то время как энергия течет через экосистему и не может быть переработана, питательные вещества циркулируют внутри экосистемы и используются повторно. Как поток энергии, так и химический цикл помогают определить структуру и динамику экосистемы.

Производители и потребители

Продуценты, такие как растения или фитопланктон, используют солнечную энергию для синтеза питательных веществ посредством фотосинтеза и являются источниками всей энергии в экосистеме. Продуценты также нуждаются в питательных или химических веществах, таких как азот, фосфор и железо, чтобы расти. Питательные вещества и сахара доступны для первичных консументов (первого порядка), травоядных животных, которые питаются продуцентами, и вторичных консументов (второго порядка), хищников, которые едят консументов первого порядка.

Поток энергии и круговорот веществ


Энергия, протекающая через экосистему, не может быть переработана повторно. Она доступна живым организмам в виде солнечного света, который необходим для процесса фотосинтеза. Консументы используют сахара, жиры и белки, которые они получают от продуцентов, в качестве источника энергии для роста и поддержания своих клеток. Они теряют часть этой энергии в виде тепла (смотрите схему выше). Питательные вещества перерабатываются путем разложения. Когда продуценты или консументы умирают, грибы и другие деструкторы получают энергию, перерабатывая их остатки, и в процессе возвращая в почву основные питательные вещества, такие как азот, чтобы растения могли использовать их снова.

Доступность энергии и питательных веществ может ограничивать продуктивность экосистемы. В открытом океане, например, много света на поверхности, но мало на глубине. Более того, таких питательных веществ, как азот и железо, также мало, поэтому производительность ограничена. В тех регионах океана, где апвеллинг выносит питательные вещества на поверхность, как, например, у побережья Чили в годы, не связанные с Эль-Ниньо, продуктивность экосистемы возрастает.

Читайте также: