Электромашинные усилители принцип действия кратко

Обновлено: 05.07.2024

Автор: Евгений Живоглядов.
Дата публикации: 28 сентября 2014 .
Категория: Статьи.

Общие сведения

В автоматических устройствах возникает необходимость усиления электрической мощности, получаемой от различных маломощных измерительных элементов или преобразователей (температуры, давления, влажности, химического свойства среды и так далее). В частности, преобразователями скорости вращения являются тахогенераторы, рассмотренные в статье "Исполнительные двигатели и тахогенераторы". Используемые для указанной цели устройства называются усилителями.

В технике применяются различные виды усилителей электрической мощности: электронные (ламповые), полупроводниковые, магнитные и электромашинные. Последние представляют собой специальную разновидность электромашинных генераторов, которые приводятся во вращение приводными электрическими двигателями с n = const. Усиление мощности при этом происходит за счет мощности, получаемой от приводного двигателя. Электромашинные усилители (ЭМУ) применяются для автоматического управления работой электрических машин в различных производственных и транспортных установках.

Коэффициентом усиления усилителя kу называется отношение выходной мощности Pвых к входной мощности Pвх:

Мощность Pвх называется также мощностью управления или сигнала. Коэффициент усиления мощности электромашинного усилителя достигает значений kу = 1000 – 10000.

Различают также коэффициенты усиления тока

Очевидно, коэффициент усиления мощности

Обычно требуется, чтобы при изменении режима работы электромашинного усилителя kу = const. Для этого машинные системы электромашинного усилителя выполняются ненасыщенными.

От электромашинного усилителя требуется также большое быстродействие работы, то есть быстрое изменение Pвых при изменении Pвх. Быстродействие определяется электромагнитными постоянными времени обмоток электромашинного усилителя:

Быстродействие электромашинного усилителя можно оценить некоторой эквивалентной постоянной времени Tэ, учитывающей скорость протекания переходных процессов в электромашинном усилителе в целом. Обычно Tэ = 0,05 – 0,3 с.

Во избежание замедляющего действия вихревых токов, индуктируемых при изменении потока Ф в магнитопроводе, последний изготовляется полностью из листовой электротехнической стали высокого качества. Влияние гистерезиса магнитной цепи сводится к минимуму выбором соответствующей марки стали, а также специальными дополнительными мерами.

Для оценки качества электромашинного усилителя вводится также понятие добротности kд, которая определяется как

Желательно чтобы kд было больше, что возможно при больших kу и малых Tэ. Однако увеличение kу обычно приводит к увеличению Tэ и наоборот. Например, при увеличении сечений магнитопровода электромашинного усилителя магнитный поток, выходное напряжение, выходная мощность и коэффициент усиления мощности увеличиваются. Однако одновременно увеличиваются также индуктивности и постоянные времени обмоток. Поэтому значения kу и Tэ приходится выбирать компромиссным образом.

Номинальная выходная мощность современных электромашинных усилителей достигает 100 кВт. Мощность управления колеблется от долей ватта до нескольких ватт. Первые электромашинные усилители построены в 1937 году.

Одноступенчатые электромашинные усилители с независимым возбуждением

В качестве простейшего электромашинного усилителя можно рассматривать обычный генератор постоянного тока с независимым возбуждением с расслоенной магнитной цепью индуктора и якоря. При этом обмотка возбуждения является обмоткой управления, а цепь якоря – выходной цепью. Так как в таких генераторах Pв = (0,01 – 0,02) × Pн, то kу = 50 – 100. Ввиду малого значения kу такие усилители применяются редко. Впрочем, в качестве подобных электромашинных усилителей можно рассматривать обычные электромашинные возбудители крупных машин постоянного и переменного тока.

Двухмашинные электромашинные усилители

Рассмотренные выше простейшие электромашинные усилители имеют одну ступень усиления мощности – от обмотки возбуждения (управления) к обмотке якоря. Для увеличения kу электромашинные усилители изготовляются с двумя или большим числом ступеней усиления. Общий коэффициент усиления kу при этом равен произведению коэффициентов усиления отдельных ступеней. Например, в двухступенчатых усилителях

Простейший двухступенчатый усилитель представляет собой каскадное соединение двух генераторов постоянного тока (рисунок 1). Обмотка возбуждения генератора 1 является обмоткой управления ОУ. Якорь генератора 1 питает обмотку возбуждения генератора 2, цепь якоря последнего (U2, I2) является выходной цепью, подключаемой к управляемому объекту.

Электромашинные усилители по схеме рисунка 1 изготовлялись западногерманской фирмой "Сименс-Шуккерт" под названием "рапидин". Обе машины располагались в общем корпусе. При этом достигалось kу = 10000.

Схема двухмашинного усилителя

Рисунок 1. Схема двухмашинного усилителя

Обычно все электромашинные усилители имеют несколько обмоток управления, которые размещаются рядом друг с другом на общем участке магнитной цепи (полюсах). При этом можно осуществлять управление в зависимости от нескольких величин (например, в зависимости от скорости вращения и тока якоря двигателя прокатного стана и тому подобного).

Двухступенчатые электромашинные усилители с поперечным полем

Такие электромашинные усилители являются самыми распространенными электромашинными усилителями и были разработаны фирмой "Дженерал электрик" в 1937 г. под названием "амплидин". Они изготовлялись обычно с неявновыраженными полюсами и с числом пар полюсов 2p = 2. В СССР такие электромашинные усилители выпускались серийно.

Рассматриваемый вид электромашинного усилителя является конструктивным развитием генератора поперечного поля (смотрите статью "Специальные типы генераторов и преобразователей постоянного тока") и по принципу действия аналогичен ему.

Обмотки управления ОУ (рисунок 2) создают первоначальный поток Фу по продольной оси. Этот поток индуктирует электродвижущую силу, которая вызывает ток I1 = k1 × Фу в короткозамкнутой цепи якоря (щетки 11). Ток I1 протекая по обмотке якоря и поперечной подмагничивающей обмотке ПО, создает поток Ф1 = k × I1 поперечного поля. Поток Ф1 индуктирует электродвижущую силу в выходной цепи (щетки 22), в результате чего в цепи нагрузки возникает ток I2 = Iвых и на выходных зажимах – напряжение U2 = Uвых.

Схема электромашинного усилителя с поперечным полем

Рисунок 2. Схема электромашинного усилителя с поперечным полем

Продольная размагничивающая намагничивающая сила тока I2 практически полностью компенсируется обмоткой КО, чтобы снизить мощность управления и увеличить коэффициент усиления. Если действие КО является слишком сильным, то возникает опасность самовозбуждения электромашинного усилителя как генератора последовательного возбуждения, в результате чего нормальная работа электромашинного усилителя нарушается. Обычно КО выполняется с некоторым запасом (перекомпенсация), и регулирование (ослабление) ее действия производится с помощью шунтирующего сопротивления Rш (рисунок 2).

Форма вырубок листов стали статора электромашинного усилителя и расположение обмоток статора показаны на рисунке 3. Компенсационную обмотку, с целью достижения компенсации реакции якоря не только по величине, но и по форме, выполняют распределенной. Обмотка якоря обычно имеет укорочение шага. Применение поперечной подмагничивающей обмотки ПО позволяет уменьшить ток I1 и улучшить тем самым коммутацию под щетками 11 (смотрите рисунок 2). Поэтому добавочных полюсов в поперечной оси обычно не делают. Коммутация под щетками 22 улучшается с помощью добавочных полюсов (рисунок 3).

Форма вырубок листов стали статора электромашинного усилителя

Рисунок 3. Форма вырубок листов стали статора электромашинного усилителя с поперечным полем и размещение обмоток статора
1 – обмотки управления; 2 – поперечная подмагничивающая обмотка; 3 – компенсационная обмотка; 4 – обмотка добавочных полюсов выходной цепи

Для уменьшения влияния гистерезиса вокруг спинки сердечника статора наматывают размагничивающую обмотку, питаемую переменным током. Поток этой обмотки замыкается в сердечнике статора по окружности и не проникает в якорь. Ширина петли гистерезиса при таком размагничивании сужается. На рисунке 3 эта обмотка не показана.

Двухступенчатые электромашинные усилители с поперечным полем обычно имеют мощность до Pн = 20 кВт и коэффициент усиления до kу = 10000. Построены также многополюсные электромашинные усилители мощностью до Pн = 100 кВт с сильной поперечной подмагничивающей обмоткой и добавочными полюсами для улучшения коммутации щеток 11. Существуют также некоторые другие, менее распространенные типы электромашинных усилителей.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Сущность усиления мощности ЭМУ состоит в том, что при всяком изменении величины и направления тока в цепи возбуждения будет происходить такое же по характеру изменение тока в цепи якоря. При этом выделяемая мощность в 100 ÷ 10000 раз больше той мощности, которая затрачивается на управление в цепи возбуждения.

Усиление сигнала по мощности происходит за счет механической энергии приводного двигателя, вращающего якорь генератора, то есть происходит преобразование энергии вращения электродвигателя в электрическую энергию на выходном валу ЭМУ.

ЭМУ большой мощности приводится во вращение отдельным двигателем.

Коэффициентом усиления ЭМУ по мощности называется отношение мощности на выходе ЭМУ к мощности, подводимой к обмотке возбуждения (управления)

Электромашинный усилитель состоит из генератора постоянного тока с несколькими обмотками возбуждения и вспомогательного двигателя, предназначенного для вращения якоря генератора с постоянной скоростью.

- с независимым возбуждением;

- со смешанным возбуждением;

- с поперечным полем.

ЭМУ с независимым возбуждением

Изменением величины тока I в обмотке управления (ОУ) можно регулировать величину тока Iя , проходящего через нагрузку Rн рис. 5, а.Для повышения коэффициента усиления ЭМУ магнитную цепь генератора выполняют из материалов с высокой магнитной проницаемостью μ, а величину воздушного зазора берут минимальной

кр = 20 ÷ 25


ЭМУ со смешанным возбуждением

Схема ЭМУ со смешанным возбуждением представлена на рис. 5, б. Обмотка О1 параллельна обмотке возбуждения. Магнитный поток, создаваемый обмоткой О1 недостаточен для самовозбуждения

Однако такой коэффициент получить нельзя из-за явления магнитного насыщения материала полюсов

кн = 500 ÷ 1000

ЭМУ с поперечным полем

Наиболее совершенным типом ЭМУ является ЭМУ с поперечным полем. Он представляет собой генератор постоянного тока, в котором используется поток реакции якоря в качестве рабочего потока возбуждения.

Якорь генератора приводится во вращение специальным двигателем. Одна пара щеток генератора А1 и А2 расположена на поперечной оси, как у обычного генератора, а другая пара Б1 и Б2 – на продольной оси.

Щетки А1 и А2 соединены накоротко и образуют вместе с частью обмотки якоря генератора замкнутый контур (рис. 6).


Ток Iу создает поток Фу, направленный по продольной оси. В якоре, вращающемся в потоке Фу, возникает ЭДС, которая снимается к.з. щетками А1 и А2. Ток Iк создает поток Фк, направленный по поперечной оси. Величина этого потока зависит от величины Фу, угловой скорости якоря и сопротивления к.з. контура.

В якоре ЭМУ, вращающемся в потоке Фк, возникает новая ЭДС, которая снимается щетками Б1 и Б2, расположенными на продольной оси ЭМУ. Возникающий от тока нагрузки Iя поток реакции якоря Фя направлен по продольной оси ЭМУ навстречу Фу. Для того, чтобы устранить влияние реакции якоря, служит компенсационная обмотка (КО), поток Фо, который направлен навстречу потоку Фя и сводит его значение до нуля. Величина потока Фо регулируется реостатом R0 .

1-й каскад усиления Ку1 = 100

2-й каскад усиления Ку2 = 100.

Ку = Ку1 Ку2 = 100 · 100 = 10 000.

Четвертый учебный вопрос

Сущность усиления мощности ЭМУ состоит в том, что при всяком изменении величины и направления тока в цепи возбуждения будет происходить такое же по характеру изменение тока в цепи якоря. При этом выделяемая мощность в 100 ÷ 10000 раз больше той мощности, которая затрачивается на управление в цепи возбуждения.

Усиление сигнала по мощности происходит за счет механической энергии приводного двигателя, вращающего якорь генератора, то есть происходит преобразование энергии вращения электродвигателя в электрическую энергию на выходном валу ЭМУ.

ЭМУ большой мощности приводится во вращение отдельным двигателем.

Коэффициентом усиления ЭМУ по мощности называется отношение мощности на выходе ЭМУ к мощности, подводимой к обмотке возбуждения (управления)

Электромашинный усилитель состоит из генератора постоянного тока с несколькими обмотками возбуждения и вспомогательного двигателя, предназначенного для вращения якоря генератора с постоянной скоростью.

- с независимым возбуждением;

- со смешанным возбуждением;

- с поперечным полем.

ЭМУ с независимым возбуждением

Изменением величины тока I в обмотке управления (ОУ) можно регулировать величину тока Iя , проходящего через нагрузку Rн рис. 5, а.Для повышения коэффициента усиления ЭМУ магнитную цепь генератора выполняют из материалов с высокой магнитной проницаемостью μ, а величину воздушного зазора берут минимальной

кр = 20 ÷ 25


ЭМУ со смешанным возбуждением

Схема ЭМУ со смешанным возбуждением представлена на рис. 5, б. Обмотка О1 параллельна обмотке возбуждения. Магнитный поток, создаваемый обмоткой О1 недостаточен для самовозбуждения

Однако такой коэффициент получить нельзя из-за явления магнитного насыщения материала полюсов

кн = 500 ÷ 1000

ЭМУ с поперечным полем

Наиболее совершенным типом ЭМУ является ЭМУ с поперечным полем. Он представляет собой генератор постоянного тока, в котором используется поток реакции якоря в качестве рабочего потока возбуждения.

Якорь генератора приводится во вращение специальным двигателем. Одна пара щеток генератора А1 и А2 расположена на поперечной оси, как у обычного генератора, а другая пара Б1 и Б2 – на продольной оси.

Щетки А1 и А2 соединены накоротко и образуют вместе с частью обмотки якоря генератора замкнутый контур (рис. 6).


Ток Iу создает поток Фу, направленный по продольной оси. В якоре, вращающемся в потоке Фу, возникает ЭДС, которая снимается к.з. щетками А1 и А2. Ток Iк создает поток Фк, направленный по поперечной оси. Величина этого потока зависит от величины Фу, угловой скорости якоря и сопротивления к.з. контура.

В якоре ЭМУ, вращающемся в потоке Фк, возникает новая ЭДС, которая снимается щетками Б1 и Б2, расположенными на продольной оси ЭМУ. Возникающий от тока нагрузки Iя поток реакции якоря Фя направлен по продольной оси ЭМУ навстречу Фу. Для того, чтобы устранить влияние реакции якоря, служит компенсационная обмотка (КО), поток Фо, который направлен навстречу потоку Фя и сводит его значение до нуля. Величина потока Фо регулируется реостатом R0 .

1-й каскад усиления Ку1 = 100

2-й каскад усиления Ку2 = 100.

Ку = Ку1 Ку2 = 100 · 100 = 10 000.

Четвертый учебный вопрос

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Электрическая машина, предназначенная для усиления мощности подаваемого на обмотку возбуждения сигнала за счёт энергии первичного двигателя (обычно электрического). ЭМУ применяют в системах автоматического управления и регулирования; выпускаются на мощности от долей вт до десятков квт с коэффициентом усиления (отношение мощности на выходе к мощности на входе) 10 4 —10 5 Небольшое изменение мощности, подводимой в цепь возбуждения, вызывает во много раз большее изменение мощности, отдаваемой ЭМУ. Различают ЭМУ продольного поля (с одной ступенью усиления) и ЭМУ поперечного поля (с двумя ступенями). Наиболее распространены ЭМУ поперечного поля (рис.). Такой ЭМУ представляет собой генератор постоянного тока, обычно двухполюсный с двумя парами щёток на коллекторе. На полюсах статора расположены одна или несколько обмоток возбуждения, чаще называемые обмотками управления (ОУ). При подаче в ОУ сигнала, подлежащего усилению, она создаёт магнитный поток Ф1, направленный вдоль оси d—d. В обмотке якоря наводится эдс, которая достигает наибольшего значения на щётках а—а и равна нулю на щётках b—b. Т. к. якорь замкнут накоротко щётками а—а, то даже при незначительной эдс в цепи (обмотке) якоря возникает достаточно большой ток Ia, обусловливающий увеличение мощности сигнала (первая ступень усиления). Этот ток создаёт сильное поперечное магнитное поле (магнитный поток Фаq). При вращении якоря в поперечном поле на щётках b—b, связанных с внешней цепью, появляется напряжение U2. В результате этого во внешней цепи возникает большой ток I2, обусловливающий большую выходную мощность (вторая ступень усиления). Дополнительная обмотка, называется компенсационной, создаёт намагничивающую силу Fko, равную Fad, устраняя искажение сигнала.

Принципиальная схема включения электромашинного усилителя поперечного поля: 1 и 2 — щётки якоря; ОУ — обмотка управления; КО — компенсационная обмотка; Ф1 — магнитный поток по оси d — d; Фаq — магнитный поток поперечного поля; U1 и I1 — напряжение и ток в обмотке управления; U2 и I2 — напряжение и ток на выходе; Fad и Fko — намагничивающие силы якоря и компенсационной обмотки

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Электромашинные усилители (ЭМУ) применяют на судах в схемах автоматического регулирования, а также в качестве возбудителей генераторов и двигателей.

Простейшим ЭМУ является генератор постоянного тока с независимым возбуждением, у которого мощность управляющего сигнала в цепи возбуждения Ру=IуUу значительно меньше мощности выходного сигнала на нагрузку Рн=IнUн. Отношение мощности выходного сигнала к мощности управляющего сигнала называется коэффициентом усиления ЭМУ по мощности kу=Pн/Pу. Коэффициент усиления у простейшего ЭМУ небольшой (80—100), поэтому широкого применения такие ЭМУ не нашли. Наибольшее применение получили многоступенчатые ЭМУ, коэффициенты усиления которых достигают 10—12 тыс.

В системах автоматического регулирования широко применяют ЭМУ с поперечным полем (амплидины), представляющие собой двух- или четырехполюсные генераторы постоянного тока со специальной конструкцией статора. На полюсах ЭМУ расположено несколько обмоток управления (ОУ).

При подаче питания на ОУ (рис. 1,а) по ней течет ток Iу, который создает двухполюсный магнитный поток Фу. При вращении якоря в этом потоке в проводниках якоря наводится э. д. с. Еа, направление которой на рисунке указано точками в верхней параллельной ветви якоря и крестиками — в нижней. Так как ток Iу мал, то и э. д. с. Еа мала.

Для снятия наибольшего значения этой э. д. с. вторую пару щеток устанавливают по продольной оси bb. При замыкании щеток bb на нагрузку по цепи течет ток Ib. Под действием этого тока создается поток Фb, направленный навстречу потоку управления Фу. Так как поток Фb велик, то он полностью уничтожает действие потока Фу, и усилитель работать не будет.

ЭМУ с поперечным полем

Для нормальной работы усилителя на статоре расположена компенсационная обмотка ОК, которая включается последовательно в цепь якоря (рис. 1,б). Поток компенсационной обмотки Фк направлен встречно потоку Фb. Для полной компенсации необходимо, чтобы Фк = Фb.

Недокомпенсация или перекомпенсация оказывает значительное влияние на работу электромашинного усилителя. Для настройки компенсации параллельно компенсационной обмотке включен шунтирующий резистор R1.

Рабочие свойства ЭМУ

Рабочие свойства ЭМУ определяются его внешней характеристикой, представляющей собой зависимость напряжения выхода Uв от тока нагрузки Iн при постоянстве частоты вращения и тока управления (рис. 2). При значительной перекомпенсации работа усилителя неустойчива, так как возникает опасность лавинообразного увеличения тока нагрузки и выхода из строя ЭМУ. Обычно ЭМУ настраивают на небольшую недокомпенсацию.

Внешние характеристики ЭМУ

Рис.2. Внешние характеристики ЭМУ: 1 - нормальная компенсация; 2 - перекомпенсация; 3 - недокомпенсация

ЭМУ имеет две ступени усиления мощности. Первая ступень — обмотка управления ОУ и щетки аа, вторая — щетки аа и bb. В схеме ЭМУ щетки расположены условно.

Достоинства и недостатки ЭМУ

Достоинством ЭМУ является возможность управления значительными мощностями при небольшой мощности управляющего сигнала. Недостатками ЭМУ по сравнению с магнитными усилителями являются меньшая надежность, большие масса и габарит, сложность в эксплуатации.

Современные электромашинные усилители с поперечным полем имеют до четырех обмоток управления, что позволяет изменять напряжение на выходе усилителя в зависимости от изменения четырех параметров регулирования.

Читайте также: