Дайте определение автоматической системы кратко

Обновлено: 04.07.2024

Комплекс стандартов на автоматизированные системы

Термины и определения

Information technology. Set of standards for automated systems. Automated systems. Terms and definitions

МКС 01.040.35
35.240
ОКСТУ 0034

Дата введения 1992-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности и приборостроения СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.12.90 N 3399

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

5. ИЗДАНИЕ (июль 2009 г.) с Поправкой (ИУС 1-2003)

Настоящий стандарт устанавливает термины и определения основных понятий в области автоматизированных систем (АС) и распространяется на АС, используемые в различных сферах деятельности (управление, исследования, проектирование и т.п., включая их сочетание), содержанием которых является переработка информации.

Настоящий стандарт не распространяется на системы, предназначенные для обработки (изготовления, сборки, транспортирования) любых изделий, материалов или энергии.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы по автоматизированным системам, входящих в сферу работ по стандартизации и использующих результаты этих работ и рекомендуются для применения в научно-технической, справочной и учебной литературе.

Настоящий стандарт должен применяться совместно с ГОСТ 15971 и ГОСТ 16504.

1. Для каждого понятия установлен один стандартизованный термин. Недопустимые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой "Ндп".

2. Для отдельных стандартизованных терминов приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

3. Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приводится и вместо него ставится прочерк.

4. В стандарте приведены эквиваленты для ряда стандартизованных терминов на английском (en) языке.

5. В стандарте приведены алфавитные указатели терминов на русском языке и их английских эквивалентов.

6. Термины и определения общетехнических понятий, необходимые для понимания текста стандарта, приведены в приложении 1.

7. Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, - светлым, а синонимы - курсивом.

1. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ. ОБЩИЕ ПОНЯТИЯ

1.1 автоматизированная система; AC: Система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций.

automated system; AS

1. В зависимости от вида деятельности выделяют, например, следующие виды АС: автоматизированные системы управления (АСУ), системы автоматизированного проектирования (САПР), автоматизированные системы научных исследований (АСНИ) и др.

2. В зависимости от вида управляемого объекта (процесса) АСУ делят, например, на АСУ технологическими процессами (АСУТП), АСУ предприятиями (АСУП) и т.д.

1.2 интегрированная автоматизированная система; ИАС: Совокупность двух или более взаимоувязанных АС, в которой функционирование одной из них зависит от результатов функционирования другой (других) так, что эту совокупность можно рассматривать как единую АС

1.3 функция автоматизированной системы; функция АС: Совокупность действий АС, направленная на достижение определенной цели

1.4 задача автоматизированной системы; задача АС: Функция или часть функции АС, представляющая собой формализованную совокупность автоматических действий, выполнение которых приводит к результату заданного вида

1.5 алгоритм функционирования автоматизированной системы; алгоритм функционирования АС: Алгоритм, задающий условия и последовательность действий компонентов автоматизированной системы при выполнении ею своих функций

AS operation algorithm

1.6 научно-технический уровень автоматизированной системы; НТУ АС: Показатель или совокупность показателей, характеризующая степень соответствия технических и экономических характеристик АС современным достижениям науки и техники

technical level of AS


2. ОСНОВНЫЕ КОМПОНЕНТЫ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

2.1 пользователь автоматизированной системы; пользователь АС: Лицо, участвующее в функционировании АС или использующее результаты ее функционирования

2.2 эксплуатационный персонал автоматизированной системы; эксплуатационный персонал AC: -

AS maintenance staff

2.3 организационное обеспечение автоматизированной системы; организационное обеспечение АС: Совокупность документов, устанавливающих организационную структуру, права и обязанности пользователей и эксплуатационного персонала АС в условиях функционирования, проверки и обеспечения работоспособности АС

2.4 методическое обеспечение автоматизированной системы; методическое обеспечение АС: Совокупность документов, описывающих технологию функционирования АС, методы выбора и применения пользователями технологических приемов для получения конкретных результатов при функционировании АС

AS methodical support

2.5 техническое обеспечение автоматизированной системы; техническое обеспечение АС: Совокупность всех технических средств, используемых при функционировании АС

2.6 математическое обеспечение автоматизированной системы; математическое обеспечение АС: Совокупность математических методов, моделей и алгоритмов, примененных в АС

2.7 программное обеспечение автоматизированной системы; программное обеспечение АС: Совокупность программ на носителях данных и программных документов, предназначенная для отладки, функционирования и проверки работоспособности АС

2.8 информационное обеспечение автоматизированной системы; информационное обеспечение АС: Совокупность форм документов, классификаторов, нормативной базы и реализованных решений по объемам, размещению и формам существования информации, применяемой в АС при ее функционировании

AS information support

2.9 лингвистическое обеспечение автоматизированной системы; лингвистическое обеспечение АС: Совокупность средств и правил для формализации естественного языка, используемых при общении пользователей и эксплуатационного персонала АС с комплексом средств автоматизации при функционировании АС

AS linguistic support

2.10 правовое обеспечение автоматизированной системы; правовое обеспечение АС: Совокупность правовых норм, регламентирующих правовые отношения при функционировании АС и юридический статус результатов ее функционирования.

Примечание. Правовое обеспечение реализуют в организационном обеспечении АС.

2.11 эргономическое обеспечение автоматизированной системы; эргономическое обеспечение АС: Совокупность реализованных решений в АС по согласованию психологических, психофизиологических, антропометрических, физиологических характеристик и возможностей пользователей АС с техническими характеристиками комплекса средств автоматизации АС и параметрами рабочей среды на рабочих местах персонала АС

AS antropotechnical support

2.12 комплекс средств автоматизации автоматизированной системы; КСА AC: Совокупность всех компонентов АС, за исключением людей

AS automation means complex

2.13 компонент автоматизированной системы; компонент АС: Часть АС, выделенная по определенному признаку или совокупности признаков и рассматриваемая как единое целое

2.14 комплектующее изделие в автоматизированной системе; комплектующее изделие АС: Изделие или единица научно-технической продукции, применяемое как составная часть АС в соответствии с техническими условиями или техническим заданием на него

2.15 программное изделие в автоматизированной системе; программное изделие АС: Программное средство, изготовленное, прошедшее испытания установленного вида и поставляемое как продукция производственно-технического назначения для применения в АС

program product in AS

2.16 информационное средство. Комплекс упорядоченной относительно постоянной информации на носителе данных, описывающей параметры и характеристики заданной области применения и соответствующей документации, предназначенный для поставки пользователю.

Примечание. Документация информационного средства может поставляться на носителе данных.

2.17 информационное изделие в автоматизированной системе; информационное изделие в АС: Информационное средство, изготовленное, прошедшее испытания установленного вида и поставляемое как продукция производственно-технического назначения для применения в АС

AS information product

2.18 программно-технический комплекс автоматизированной системы; ПТК АС: Продукция, представляющая собой совокупность средств вычислительной техники, программного обеспечения и средств создания и заполнения машинной информационной базы при вводе системы в действие достаточных для выполнения одной или более задач АС

2.19 информационная база автоматизированной системы; информационная база АС: Совокупность упорядоченной информации, используемой при функционировании АС

informational background of AS

2.20 внемашинная информационная база автоматизированной системы; внемашинная информационная база АС: Часть информационной базы АС, представляющая собой совокупность документов, предназначенных для непосредственного восприятия человеком без применения средств вычислительной техники

AS external information base

2.21 машинная информационная база автоматизированной системы; машинная информационная база АС: Часть информационной базы АС, представляющая собой совокупность используемой в АС информации на носителях данных

AS computer information base

2.22 автоматизированное рабочее место; АРМ: Программно-технический комплекс АС, предназначенный для автоматизации деятельности определенного вида.

Примечание. Видами АРМ, например являются АРМ оператора-технолога, АРМ инженера, АРМ проектировщика, АРМ бухгалтера и др.


3. СВОЙСТВА И ПОКАЗАТЕЛИ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

3.1 эффективность автоматизированной системы; эффективность АС: Свойство АС, характеризуемое степенью достижения целей, поставленных при ее создании.

Примечание. К видам эффективности АС, например, относят экономическую, техническую, социальную и др.

3.2 показатель эффективности автоматизированной системы; показатель эффективности АС: Мера или характеристика для оценки эффективности АС

AS efficiency index

3.3 совместимость автоматизированных систем; совместимость АС: Комплексное свойство двух или более АС, характеризуемое их способностью взаимодействовать при функционировании.

Примечание. Совместимость АС включает техническую, программную, информационную, организационную, лингвистическую и, при необходимости, метрологическую совместимость

3.4 техническая совместимость автоматизированных систем; техническая совместимость АС: Частная совместимость АС, характеризуемая возможностью взаимодействия технических средств этих систем

3.5 программная совместимость автоматизированных систем; программная совместимость АС: Частная совместимость АС, характеризуемая возможностью работы программ одной системы в другой и обмена программами, необходимыми при взаимодействии АС

AS software compatibility

3.6 информационная совместимость автоматизированных систем; информационная совместимость АС: Частная совместимость АС, характеризуемая возможностью использования в них одних и тех же данных и обмена данными между ними

3.7 организационная совместимость автоматизированных систем; организационная совместимость АС: Частная совместимость АС, характеризуемая согласованностью правил действия их персонала, регламентирующих взаимодействие этих АС

AS organization level

3.8 лингвистическая совместимость автоматизированных систем; лингвистическая совместимость АС: Частная совместимость АС, характеризуемая возможностью использования одних и тех же языковых средств общения персонала с комплексом средств автоматизации этих АС

AS linguistic level

3.9 метрологическая совместимость автоматизированных систем; метрологическая совместимость АС: Частная совместимость АС, характеризуемая тем, что точность результатов измерений, полученных в одной АС, позволяет использовать их в другой

3.10 адаптивность автоматизированной системы; адаптивность АС: Способность АС изменяться для сохранения своих эксплуатационных показателей в заданных пределах при изменениях внешней среды

3.11. надежность автоматизированной системы; надежность АС: Комплексное свойство АС сохранять во времени в установленных пределах значения всех параметров, характеризующих способность АС выполнять свои функции в заданных режимах и условиях эксплуатации.

Примечание. Надежность АС включает свойства безотказности и ремонтопригодности AC, a в некоторых случаях и долговечности технических средств АС

3.12 живучесть автоматизированной системы; живучесть АС: Свойство AC, характеризуемое способностью выполнять установленный объем функций в условиях воздействий внешней среды и отказов компонентов системы в заданных пределах

3.13 помехоустойчивость автоматизированной системы; помехоустойчивость AC: Свойство АС, характеризуемое способностью выполнять свои функции в условиях воздействия помех, в частности от электромагнитных полей

AS noise immunity

4. СОЗДАНИЕ И ФУНКЦИОНИРОВАНИЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

4.1 жизненный цикл автоматизированной системы; жизненный цикл АС: Совокупность взаимосвязанных процессов создания и последовательного изменения состояния АС от формирования исходных требований к ней до окончания эксплуатации и утилизации комплекса средств автоматизации АС

комплекс взаимодействующих между собой механизмов управляемого объекта и автоматического устройства, предназначена для управления объектом (летательным аппаратом, силовой установкой и т. д.) без вмешательства человека. Автоматические системы находят широкое применение в военном деле (например, в зенитных ракетных комплексах, в системах самонаведения ракет)

EdwART. Толковый Военно-морской Словарь , 2010

Смотреть что такое "Автоматическая система" в других словарях:

автоматическая система — automatinė sistema statusas T sritis automatika atitikmenys: angl. automatic system vok. automatisches System, n rus. автоматическая система, f pranc. système automatique, m … Automatikos terminų žodynas

автоматическая система — automatinė sistema statusas T sritis Gynyba apibrėžtis Automatinio valdymo įrenginio ir valdomojo objekto sąveikaujančių mechanizmų kompleksas, kuris valdo objektus be žmogaus įsikišimo. Pagal valdymo principą skiriama uždarojo ciklo automatinė… … Artilerijos terminų žodynas

автоматическая система — automatinė sistema statusas T sritis fizika atitikmenys: angl. automatic system vok. automatisches System, n rus. автоматическая система, f pranc. système automatique, m … Fizikos terminų žodynas

Автоматическая система (АС) — комплекс взаимодействующих механизмов управляемого объекта и автоматического управляющего устройства, обеспечивающий управление объектом (ЛА, силовой установкой, генератором Д дг^ез вмешательства человека. АС находят широкое применение в системах … Словарь военных терминов

автоматическая система — Совокупность управляемого объекта и автоматического управляющего устройства, взаимодействующих между собой. Примечание. В автоматической системе иногда могут быть несколько управляющих объектов или автоматических управляющих устройств … Политехнический терминологический толковый словарь

автоматическая система тревожной сигнализации — Система тревожной сигнализации, обеспечивающая ее автоматический переход из дежурного режима в состояние тревоги и обратно без обращения к другим системам, например электросвязи, электропитания. [РД 25.03.001 2002] автоматическая система… … Справочник технического переводчика

автоматическая система контроля — Система контроля, обеспечивающая проведение контроля без непосредственного участия человека. Пояснения Автоматическая система контроля состоит из средств контроля, выполняющая все функции контролеров. В автоматизированной системе контроля… … Справочник технического переводчика

автоматическая система технического диагностирования (контроля технического состояния) — автоматическая система диагностирования (контроля) Система диагностирования (контроля), обеспечивающая проведение диагностирования (контроля) без участия человека. [ГОСТ 20911 89 ] Тематики техническая диагностика EN automatic test system … Справочник технического переводчика

Автоматическая система управления АЭС — (АСУ) многоуровневая автоматическая система управления, в которой АЭС рассматривается как единый, технологический объект управления и в которой предусмотрены управление системами безопасности и функционально связанными группами оборудования,… … Термины атомной энергетики

Автоматизированные системы сегодня все больше применяются в разнообразных сферах деятельности. Высокую актуальность приобретает возможность внедрения автоматизированных систем управления для малых и больших производств.

Классификация и уровни автоматизированных систем

Общие понятия автоматизированной системы

Все функции автоматизированных систем направлены на достижения определенной цели посредством определенных действий и мероприятий. Основополагающая цель АС – наиболее эффективное использование возможностей и функций объекта управления.

Выделяют следующие цели:

  • Обеспечение релевантных данных, необходимых для принятия решения.
  • Более быстрый и качественных сбор информации и ее обработке.
  • Уменьшение числа решений, которые обязано принимать лицо, принимающее решения (ЛПР ).
  • Увеличение контроля и дисциплинарного уровня.
  • Оперативное управление.
  • Уменьшение затрат ЛПР на реализацию процессов.
  • Четко обоснованные принимаемые решения.

Классификация автоматизированных систем

Основные выделяемые признаки, по которым осуществляется классификация автоматизированных систем:

  • Сфера, в которой функционирует объект управления: строительство, промышленность, непромышленная сфера, сельское хозяйство.
  • Вид рабочего процесса: организационный, экономический, промышленный.
  • Уровень в системе государственного управления.

Категории автоматизированных систем

Классификация структур автоматизированных систем в промышленной сфере разделяется на такие категории:

Децентрализованная структура. Система с данной структурой применяется для автоматизации независимых объектов управления и является наиболее эффективной для этих целей. В системе имеется комплекс независимых друг от друга систем с индивидуальным набором алгоритмов и информации. Каждое выполняемое действие осуществляется исключительно для своего объекта управления.

Централизованная структура. Реализует все необходимые процессы управления в единой системе, осуществляющей сбор и структурирование информации об объектах управления. На основании полученной информации, система делает выводы и принимает соответствующее решение, которое направлено на достижение первоначальной цели.

Централизованная рассредоточенная структура. Структура функционирует по принципам централизованного способа управления. На каждый объект управления вырабатываются управляющие воздействия на основании данных обо всех объектах. Некоторые устройства могут быть общими для каналов.

Алгоритм управления основывается на комплексе общих алгоритмов управления, реализующиеся с помощью набора связанных объектов управления. При работе каждый орган управления принимает и обрабатывает данные, а также передает управляющие сигналы на объекты. Достоинством структуры является не столь строгие требования относительно производительности центров обработки и управления, не причиняя ущерба процессу управления.

Иерархическая структура. В связи с возрастанием количества поставленных задач в управлении сложными системами значительно усложняются и отрабатывающиеся алгоритмы. В результате чего появляется необходимость создания иерархической структуры. Подобное формирование значительно уменьшает трудности по управлению каждым объектом, однако, требуется согласовать принимаемые ими решения.

Типы автоматизированных систем

  • АСУП – системы управления предприятием.
  • АСУТП – системы управления технологическими процессами.
  • АСУПП – системы подготовки производства.
  • ОАСУ – отраслевые системы управления.
  • организационно-административные.
  • АСК – системы контроля качества продукции.
  • ГПС- гибкие производственные системы.
  • ЧПУ – системы управления станками с числовым программным обеспечением.
  • группы систем или интегрированные системы.

Автоматизированные информационные системы

Автоматизированная информационная система – это комплекс аппаратных и программных средств, необходимых для реализации функций хранения данных и управления ими, а также для вычислительных операций.

Главная цель АИС – это хранение данных, обеспечение качественного поиска и передачи данных в зависимости от запросов для наибольшего соответствия запросов пользователей.

Выделяют наиболее важные принципы автоматизации процессов:

  1. надежность;
  2. окупаемость;
  3. гибкость;
  4. безопасность;
  5. соответствие стандартам;
  6. дружественность.

Классификация автоматизированных информационных систем имеет следующую структуру:

  1. Система, охватывающая один процесс в организации.
  2. Осуществляется несколько процессов с организации.
  3. Нормальная работа одного процесса сразу в нескольких взаимосвязанных организациях.
  4. Система, организующая функционирование нескольких процессов в нескольких взаимосвязанных системах.

Классификация по степени автоматизации

Информационные системы классифицируются также по степени автоматизации проводимых операций:

  • ручные;
  • автоматизированные;
  • автоматические.

Ручные – в них отсутствуют современные средства для обработки информации, и все операции осуществляются человеком в ручном режиме.

Автоматические – абсолютно все операции по обработке информации осуществляются с применением технических средств без участия человека.

Автоматизированные информационные системы производят операции как с помощью технических средств, так и с помощью человека, однако, основная роль передается компьютеру. ИС классифицируются по степени автоматизации, а также по сфере применения и характеру деятельности.

Уровни автоматизированных систем

Выделяют три уровня автоматизированных систем управления:

Нижний уровень. Оборудование. На этом уровне внимание отводится датчикам, измерительным и исполнительным устройствам. Здесь производится согласование сигналов с входами устройств и команд с исполнительными устройствами.

Средний уровень. Уровень контроллеров. Контроллеры получают данные с измерительного оборудования, а после передает сигналы для команд управления, в зависимости от запрограммированного алгоритма.

Верхний уровень – промышленных серверов и диспетчерских станций. Здесь осуществляется контроль производства. Для этого обеспечивается связь с низшими уровнями, сбор информации и мониторинг протекания технологического процесса. Этот уровень взаимодействует с человеком. Человек здесь производит контроль оборудования с помощью человеко-машинного интерфейса: графические панели, мониторы. Контроль за системой машин обеспечивает SCADA система, которая устанавливается на диспетчерские компьютеры. Данная программа собирает информацию, архивирует ее и визуализирует. Программа самостоятельно сравнивает полученные данные с заданными показателями, а в случае несоответствия проводит оповещение человека-оператора об ошибке. Программа производит запись всех операций, в том числе и действия оператора, которые необходимы в случае нештатной ситуации. Так обеспечивается контроль ответственности оператора.

Существуют также критичные автоматизированные системы. Это системы, которые реализуют различные информационные процессы в критичных системах управления. Критичность представляет собой вероятную опасность нарушения их стабильности, а отказ системы чреват значительными экономическими, политическими или другими ущербами.

Что же относится к критичным автоматизированным процессам? К критичным относят следующие системы управления: опасными производствами, объектами атомной отрасли, управления космическими полетами, железнодорожным движением, воздушным движением, управление в военных и политических сферах. Почему они критичны? Потому что решаемые ими задачи имеют критичный характер: использование информации с ограниченным доступом, использование биологических и электронных средств обработки информации, сложность технологических процессов. Следовательно, информационные автоматизированные системы становятся элементом критичных систем управления и в результате этого, получили принадлежность к этому классу.

Выводы

Подводя итоги, можно отметить важность автоматизации систем управления в различных сферах. На сегодняшний день внедрение подобных систем обеспечивает более качественное управление производством, сводя к минимуму участие человека в этих процессах и исключая тем самым, ошибки, связанные с человеческим фактором. Развитие и разработка автоматизированных систем управления дает возможность улучшать многие сферы: производство, экономику, энергетику, транспортную сферу и другие.

АС - это А втоматизированная С истема.

АСУ - это А втоматизированная С истема У правления.

В зависимости от вида деятельности можно выделить следующие виды АС:

  • АСУ - автоматизированная система управления.
  • САПР - система автоматизированного проектирования
  • АСНИ - автоматизированные системы научных исследований
  • АСКУ - автоматизированная система контроля и учёта
  • Ну и так далее.

Кроме того, в зависимости от вида управляемого объекта (процесса) АСУ также различаются, например, на:

  • АСУ ТП - АСУ Технологическими Процессами
  • АСУ П - АСУ Предприятием (Производством)
  • АСКУЭ - автоматизированная система контроля и учёта Электроэнергии (Энергоресурсов)
  • Ну и так далее - здесь можно придумывать любые названия

Термины и определения различных АСУ и их составляющих имеются в разных стандартах, в том числе в ГОСТах. Основные ГОСТы по автоматизации начинаются с ГОСТ 24.ххх-хх и ГОСТ 34.ххх-хх (но есть и другие, конечно). Например, для общего развития можете найти и почитать довольно старый, но действующий ГОСТ 24.104-85 “Единая система стандартов автоматизированных систем управления. Автоматизированные системы управления. Общие требования.”

Основные термины и определения описаны в ГОСТ 34.003-90. Согласно этому стандарту:

АС : Система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций.

А теперь ответ на вопрос, чем же автоматизированная система отличается от автоматической?

Любая автоматизированная система всё же подразумевает какое-то участие человека в управлении. Будь то наблюдение за процессами или ввод каких-то значений на основе принятия тех или иных решений.

Автоматическая же система ВСЕ решения принимает сама, без участия человека. То есть работает полностью самостоятельно, человек ей не нужен.

Ну и надо сказать, что автоматических систем достаточно мало. Во всяком случае почти все сложные системы являются автоматизированными - человек пока не может довериться на 100% автоматике.

Даже какой-нибудь марсоход ценой в миллиарды долларов не является на 100% автоматическим, потому что он хоть какие-то команды да получает от человека. Хотя с определёнными оговорками такую систему уже можно назвать автоматической.

Системы автоматики: системы автоматического контроля, управления и регулирования

Системы автоматики: системы автоматического контроля, управления и регулирования

Все элементы автоматики по характеру и объему выполняемых операций подразделяют на системы: автоматического контроля, автоматического управления, автоматического регулирования.

Система автоматического контроля (рис. 1) предназначена для контроля за ходом какого-либо процесса. Такая система включает датчик В, усилитель А, принимающий сигнал от датчика и передающий его после усиления на специальный элемент Р, который реализует заключительную операцию автоматического контроля — представление контролируемой величины в форме, удобной для наблюдения или регистрации.

В частном случае в качестве исполнительного элемента Р могут служить сигнальные лампы или звуковые сигнализаторы. Систему с такими элементами называют системой сигнализации .

Система автоматического контроля

Рис. 1. Система автоматического контроля

В систему автоматического контроля кроме указанных на рис. 1, а могут входить и другие элементы - стабилизаторы, источники питания, распределители (при наличии нескольких точек контроля или нескольких датчиков в одном исполнительном элементе Р) и т. д.

Независимо от количества элементов системы автоматического контроля являются разомкнутыми и сигнал в них проходит только в одном направлении — от объекта контроля Е к исполнительному элементу Р.

Система автоматического управления предназначена для частичного или полного (без участия человека) управления объектом либо технологическим процессом. Эти системы широко применяют для автоматизации, например, процессов пуска, регулирования частоты вращения и реверсирования электродвигателей в электроприводах всех назначений.

Необходимо указать на такую важную разновидность систем автоматического управления, как системы автоматической защиты , которые не допускают аварийного или предельного режима, прерывая в критический момент контролируемый процесс.

Система автоматики

Система автоматического регулирования поддерживает регулируемую величину в заданных пределах. Это наиболее сложные системы автоматики, объединяющие функции автоматического контроля и управления. Составная часть этих систем - регулятор .

Если системы выполняют только одну задачу — поддерживают постоянной регулируемую величину, их называют системами автоматической стабилизации. Однако существуют такие процессы, для которых необходимо изменять во времени регулируемую величину по определенному закону, обеспечивая ее стабильность на отдельных участках. В этом случае автоматическую систему называют системой программного регулирования .

Для обеспечения постоянства регулируемой величины можно использовать один из принципов регулирования - по отклонению, возмущению или комбинированный, которые будут рассмотрены применительно к системам регулирования напряжения генераторов постоянного тока.

При регулировании по отклонению (рис. 2 и 3) элемент сравнения UN сравнивает фактическое напряжение U ф с заданным Uз, определяемым задающим элементом EN. После сравнения на выходе элемента UN появляется сигнал Δ U=Uз - U ф, пропорциональный отклонению напряжения от заданного. Этот сигнал усиливается усилителем А и поступает на рабочий орган L. Изменение напряжения на рабочем органе L, которым является обмотка возбуждения генератора G, приводит к изменению фактического напряжения генератора, устраняющего его отклонение от заданного.

Усилитель А, не изменяющий принципа действия системы, необходим для ее практической реализации, когда мощность сигнала, поступающего от элемента сравнения UN, недостаточна для воздействия на рабочий орган L.

Система автоматического регулирования

Рис. 2. Система автоматического регулирования

Автоматическое регулирование по отклонению

Рис. 3. Автоматическое регулирование по отклонению

Наряду с задающим воздействием на систему могут влиять различные дестабилизирующие факторы Q, которые вызывают отклонение регулируемой величины от заданной. Воздействия дестабилизирующих факторов, один из которых условно обозначен на рисунке буквой Q, могут проявляться в различных местах системы и, как принято говорить, поступать по различным каналам. Так, например, изменение температуры окружающей среды приводит к изменению сопротивления в цепи обмотки возбуждения, что в свою очередь влияет на напряжение генератора.

Однако где бы ни возникали воздействия Q (со стороны потребителя — ток нагрузки, вследствие изменения параметров цепи возбуждения), система регулирования будет реагировать на вызванное ими отклонение регулируемой величины от заданной.

Пульт управления автоматической системы

Наряду с рассмотренным принципом регулирования используют регулирование по возмущению , при котором в системе предусматривают специальные элементы, измеряющие воздействия Q и влияющие на рабочий орган.

В системе, использующей только такой принцип регулирования (рис. 4 и 5), фактическое значение регулируемой величины не учитывается. Принимают во внимание только одно возмущающее воздействие — ток нагрузки I н. В соответствии с изменением тока нагрузки происходит изменение магнитодвижущей силы (мдс) обмотки возбуждения L2, являющейся измерительным элементом данной системы. Изменение мдс этой обмотки приводит к соответствующему изменению напряжения на выводах генератора.

Автоматическое регулирование по возмущению

Рис. 4. Автоматическое регулирование по возмущению

Принципиальная схема системы автоматики

Рис. 5. Принципиальная схема системы автоматики

Система, осуществляющая комбинированное регулирование (по отклонению и возмущению), может быть получена объединением ранее рассмотренных систем в одну (рис. 6)

Система автоматики комбинированного регулирования

Рис. 6. Система автоматики комбинированного регулирования

В системе автоматического регулирования задающий элемент представлял собой эталон напряжения, с которым сравнивалась регулируемая величина U ф. Значение U p принято называть уставкой регулятора. В общем случае регулируемую величину обозначают буквой Y , а ее уставку Yo .

Если уставку Yo в заданных пределах оператор изменяет вручную, а регулируемой величиной является Y , система работает в режиме стабилизации. Если уставка регулятора изменяется произвольно во времени, система автоматики, поддерживая значение Δ Y = Yo - Y = 0, будет работать в следящем режиме, т. е. следить за изменением Yo .

И наконец, если уставку Yo изменять не произвольно, а по заранее известному закону (программе), система будет работать в режиме программного управления. Такие системы называют системами программного регулирования .

не имеет замкнутой цепи воздействия по регулируемой величине, поэтому ее называют разомкнутой.

Системы автоматики по принципу действия подразделяют на статические и астатические. В статических системах регулируемая величина не имеет строго постоянного значения и с увеличением нагрузки изменяется на некоторую величину, называемую ошибкой регулирования.

Рассмотренные системы (рис. 1 - 6) являются примерами простейших статических систем. Наличие ошибки регулирования в них обусловлено тем, что для обеспечения большего тока возбуждения необходимо большее отклонение напряжения.

Внешние характеристики систем автоматики: а - статической, б - астатисческой

Рис. 7. Внешние характеристики систем автоматики: а - статической, б - астатисческой

Зависимость напряжения генератора от тока нагрузки в виде прямой наклонной линии показана на рис. 7, а. Наибольшее относительное отклонение напряжения от заданного называют статизмом системы по напряжению: Δ = = (Um a x - Umin)/Um a x, где (Um a x, Umin - напряжения генератора на холостом ходу и под нагрузкой. Обобщая сделанное заключение для любой статической системы, можно записать: Δ = ( Y m a x - Y min)/ Y m a x, где Y — регулируемая величина.

Иногда статизм определяют по другой формуле: Δ = ( Y m a x - Y min)/ Y ср, причем Y ср = 0,5( Y m a x + Y min) - среднерегулируемая величина Y . Статизм называют положительным, если с ростом нагрузки значение Y уменьшается, и отрицательным, если значение Y увеличивается.

В астатических системах статизм равен нулю и поэтому зависимость регулируемой величины от нагрузки представляет собой линию, параллельную оси нагрузки (рис. 7,6).

Рассмотрим, например, астатическую систему автоматики (см. рис. 8), в которой напряжение генератора регулируется изменением сопротивления реостата R , включенного в цепь обмотки возбуждения L.

Астатическая система автоматики

Рис. 8. Астатическая система автоматики

Серводвигатель М начинает вращаться и перемещать ползунок реостата R всякий раз, когда на входе усилителя А появляется сигнал Δ16; U об отклонении напряжения генератора U ср от заданного значения U p . Ползунок реостата перемещается до тех пор, пока сигнал об отклонении не станет равным нулю. Такая система отличается от другой системы тем, что для поддержания нового значения тока возбуждения не требуется сигнала на выходе усилителя А. Это отличие и позволяет избавиться от статизма.

Во всех ранее приведенных примерах предполагалось, что воздействие на рабочий орган производилось непрерывно в течение всего промежутка времени, пока существует отклонение регулируемой величины от заданной. Такое управление называется непрерывным , а системы — системами непрерывного действия .

Однако существуют системы, называемые дискретными, в которых воздействие на рабочий орган осуществляется с перерывами, например система регулирования температуры подошвы утюга, в которой регулирующее воздействие может принимать только одно из двух фиксированных значений при непрерывном изменении регулируемой величины — температуры.

В этой системе регулирование температуры осуществляется включением и отключением нагревательного элемента R по сигналу датчика температуры (смотрите - Базовые элементы автоматики). При увеличении температуры сверх уставки датчик размыкает свой контакт и отключает нагревательный элемент. При снижении температуры ниже уставки нагревательные элементы включаются. Эта система не имеет устойчивого промежуточного состояния рабочего органа, а он занимает лишь два положения — включено в сторону "больше" или включено в сторону "меньше".

Объект регулирования в системе автоматики

Для обеспечения необходимого качества процесса регулирования в системе могут быть предусмотрены специальные устройства, называемые обратными связями . Эти устройства отличаются от других тем, что сигнал в них имеет направление, обратное основному управляющему сигналу.

Для примера на рис. 8 изображена обратная связь Е по отклонению регулируемой величины Δ U , соединяющая выход усилителя А со входом элемента сравнения UN. При положительной обратной связи Е на выходе элемента сравнения UN получается сумма величин Δ U и Z, а при отрицательной — их разность.

Структурная схема системы телемеханики

Рис. 9. Структурная схема системы телемеханики

Рассмотренные системы автоматики предполагают непосредственную связь всех входящих в них элементов. Если элементы системы автоматики расположены на значительном удалении друг от друга, для их соединения используют передатчики, каналы связи и приемники. Такие системы называют телемеханическими .

Телемеханическая система состоит из пункта управления, где находится оператор, управляющий работой системы, одного или нескольких контролируемых пунктов, на которых расположены объекты контроля A 1 - An, линий связи L1A - LnA (каналы передачи данных), соединяющих пункт управления Е1М с контролируемыми пунктами Е2А - Еn (рис. 9). В телемеханической системе по линиям связи можно передавать как все, так и некоторые виды контрольной и управляющей информации.

При передаче информации только о параметрах ОК телемеханическую систему называют с истемой телеизмерения , в которой сигналы с выходов датчиков (измерительных преобразователей, установленных на ОК) передаются на пункт управления Е1М и воспроизводятся в виде показаний стрелочных или цифровых измерительных приборов. Информация может передаваться как непрерывно, так и периодически, в том числе и по команде оператора.

Если на пункт управления передается только информация о состоянии, в котором находится тот или иной объект контроля ("включен", "выключен", "исправен", "неисправен"), такую систему называют системой телесигнализации .

Телесигнализация, как и телеизмерение, выдает оператору исходные данные для принятия решения по управлению ОК или служит для выработки управляющих воздействий в системах телеуправления и телерегулировки. Основное отличие этих систем от предыдущих заключается в том, что в первой из них используются дискретные сигналы типа "включить", "выключить", а во второй — непрерывные, подобно обычным системам регулирования.

Читайте также: