Биологическая роль органических соединений кратко

Обновлено: 28.06.2024

Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.

Химический состав клетки

Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.

Макро- и микроэлементы

Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.

О микроэлементах

Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:

  • фтор (формирует зубную эмаль);
  • йод (синтезирует гормон щитовидной железы);
  • кобальт (составная часть витамина В12);
  • медь (участвует в дыхании);
  • цинк (входит в состав инсулина);
  • магний (входит в состав молекулы хлорофилла у растений);
  • кремний (образование коллагеновых волокон);
  • литий (регулирует процессы размножения).

Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.

Про макроэлементы

Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:

  • азоту;
  • углероду;
  • водороду;
  • кислороду.

Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.

При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая их количество в пище.

Неорганические вещества клетки

В категорию неорганических соединений относят минеральные соли и воду.

Органические вещества клетки

К органическим соединениям, находящимся внутри живого относят:

  1. Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки) и транспортная (перенос кислорода гемоглобином).
  2. Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
  3. Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться как запасные питательные вещества в виде крахмала и гликогена.
  4. Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
  5. Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.

Взаимосвязь строения и функций неорганических и органических веществ

Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.

Содержание липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.

Роль химических веществ в клетке и организме человека

Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц.

Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.

Органические вещества — это вещества, которые входят в состав живых организмов и образуются только при их участии. Как правило, все живые существа содержат органические вещества.

К органическим веществам относятся белки, жиры и углеводы, которых насчитывается около 10 миллионов.

Виды органических веществ, классификация

Белки

Белки — это строительные блоки жизни. Они жизненно важны для нашего существования и присутствуют в каждом организме на Земле. Белки — наиболее распространенные молекулы, встречающиеся в клетках. На самом деле они составляют больше сухого вещества клетки, чем жиры, углеводы и все другие молекулы вместе взятые.

Белки являются наиболее распространенными органическими компонентами человеческого организма и во многих отношениях наиболее важными. Они составляют от 10 до 30 % клеточной массы и являются основными структурными материалами организма.

Белки жизненно важны для многих функций организма. На поверхности клеток некоторые белки соединяются с углеводами, превращаясь в гликопротеины. Они позволяют клеткам реагировать на определенные молекулы, которые связываются с ними.

Белки включают биологические катализаторы (ферменты), сократительные белки мышц и гемоглобин крови. В человеческом организме насчитывается более 200 000 типов белков, полный набор которых известен как протеом.

Антитела — это белки, которые обнаруживают и уничтожают чужеродные вещества.

Все белки содержат атомы углерода, водорода, кислорода и азота, а также небольшое количество серы. Двадцать распространенных аминокислот, как незаменимых, так и несущественных, составляют белки, существующие в организме человека и большинства других живых организмов.

Аминокислоты являются строительными блоками белков, состоящими из двух основных групп: аминов и органических кислот. Все аминокислоты абсолютно одинаковы, за исключением одной группы атомов, известной как группа SR аминокислоты.

Белки бывают самых разнообразных форм и выполняют широкий спектр функций. Примеры белков включают ферменты, антитела и некоторые гормоны, помогающие ускорить химические реакции, защищающие от болезней и регулирующие активность клеток. Белки также играют важную роль в движении, структурной поддержке, хранении, коммуникации между клетками, пищеварении и транспортировке веществ по организму.

Существуют моторные белки, такие как миозин и динеины. Они обладают способностью преобразовывать химическую энергию в движение.

Миозин — это белок, содержащийся в мышцах и вызывающий сокращение мышечных волокон в них. Динеины обеспечивают энергию, приводящую в движение жгутики. Жгутики — это длинные тонкие структуры, прикрепленные снаружи к определенным клеткам (таким, как сперматозоиды), и отвечающие за их подвижность.

Многие белки обеспечивают структурную поддержку определенным частям организма. Кератин, например, является белком, содержащимся во внешних слоях кожи, и делает кожу прочным защитным слоем от внешнего мира. Кератин также является структурным белком, из которого состоят волосы, рога и ногти.

Как только сигнал попадает внутрь клетки, он обычно передается между несколькими белками, прежде чем достигнет конечного пункта назначения (чаще всего тоже это белок).

Пищеварение также управляется белками. Ферменты — это белки, которые стимулируют пищеварение, ускоряя химические реакции. Пищеварение — это расщепление пищи из крупных нерастворимых молекул на более мелкие молекулы, которые могут растворяться в воде. Поскольку более мелкие молекулы растворимы в воде, они могут попадать в кровь и транспортироваться по всему организму.

Пищеварительные ферменты — это ферменты, ответственные за расщепление молекул пищи на более мелкие, растворимые в воде молекулы. Некоторые примеры пищеварительных белков включают:

  • амилазу — фермент в слюне, расщепляющий крахмал на растворимые сахара;
  • липазу — расщепляет жиры и другие липиды;
  • пепсин — расщепляет белки в пище.

Жиры нерастворимы в воде, но могут растворяться в других липидах, маслах, эфире, хлороформе или спирте. Липиды включают в себя множество соединений, таких как триглицериды, фосфолипиды и стероиды, выполняющие жизненно важные клеточные функции.

Жиры являются наиболее распространенным типом липидов. Они обеспечивают примерно в два раза больше энергии, чем углеводы. Липиды помогают поддерживать температуру тела. Подобно углеводам, молекулы жира также содержат углерод, водород и кислород, но имеют гораздо меньше атомов кислорода, чем углеводы. Некоторые сложные липиды также содержат фосфор.

Жиры — это триглицерид (тип липида), который обычно является твердым при комнатной температуре. Другими типами липидов являются жирные кислоты, глицерин, глицерофосфолипид, сфинголипид, стерол-липид.

По определению, липид представляет собой жирное или воскообразное органическое соединение, которое легко растворимо в неполярном растворителе (например, эфире), но не в полярном растворителе (воде).

В пищевой науке жир и липид считаются одним и тем же веществом. Однако не все липиды являются жирами. Масло также отличается от жира, оно является одним из видов липидов. В отличие от жира, масло не затвердевает при комнатной температуре. Это происходит потому, что масло состоит из коротких или ненасыщенных цепей жирных кислот, которые при комнатной температуре остаются жидкими.

Жиры служат средством накопления энергии для большинства эукариот, а также служат источником пищи. Они обладают самым высоким потенциалом накопления энергии среди макроэлементов и очень химически стабильны, что делает их идеальными для хранения энергии для последующего использования.

Макроэлементы относятся не к размеру молекулы, а к количеству, необходимому для поддержания жизни. Витамины и минералы считаются микроэлементами.

Углеводы

Углеводы — это природные органические соединения, содержащиеся во всех клетках живых организмов и выполняющие важные функции.

Они жизненно важны для жизни на Земле и выполняют целый ряд функций, таких как обеспечение энергией и структурная поддержка. Углевод — это либо сахар, либо полимер сахаров. Полимер — это два или более простых сахара, соединенных вместе.

Углеводы — это молекулы на основе углерода, в которых водород и кислород связаны цепочкой атомов углерода.

Некоторые из более сложных углеводов обеспечивают структурную поддержку и защиту. Клетки растений и грибов имеют клеточные стенки, состоящие из углеводов. Эти клеточные стенки обеспечивают защиту и поддержку клетки и всего организма.

Углеводы также участвуют в межклеточном распознавании. Клетки имеют углеводы на внешней поверхности своих клеточных мембран, которые действуют как рецепторы. Рецепторы могут взаимодействовать с углеводами на мембранах других клеток и помогать клеткам идентифицировать друг друга.

Углеводы обеспечивают большую часть энергии, необходимой клеткам организма, и помогают строить клеточные структуры.

Нуклеиновые кислоты

Нуклеиновые кислоты — это биомолекулы, которые необходимы для каждой формы жизни, присутствующей на земле. Они присутствуют во всех организмах, от мелких вирусов и бактерий до крупных и сложных животных, таких как люди и киты.

Две нуклеиновые кислоты различаются по своей структуре, функциям, свойствам и расположению внутри клетки:

1. ДНК, также известная как дезоксирибонуклеиновая кислота, является наиболее важной биологической молекулой, присутствующей в живых клетках. Вся генетическая информация хранится в клетке в виде ДНК. Происшествие ДНК присутствует во всех живых клетках в той или иной форме.

Биологические функции ДНК заключаются в следующем:

  1. Генетическая информация упакована в клетках в виде ДНК.
  2. Вся структурная и функциональная информация организма присутствует в форме ДНК.
  3. ДНК кодирует синтез всех типов белков.
  4. Генетическая информация передается следующему поколению клеток в виде ДНК.

2. РНК, также известная как рибонуклеиновая кислота, является второй по значимости нуклеиновой кислотой, присутствующей в живых организмах. Это полимер рибонуклеотидов, содержащий рибозу в качестве пентозного сахара.

В большинстве живых клеток ДНК и РНК работают сообща, выполняя свои функции.

РНК также присутствует почти во всех живых клетках. У бактерий он присутствует в цитоплазме клетки, а также в бактериальных рибосомах. Эта кислота в изобилии присутствует в цитоплазме в свободной форме и в составе рибосом. Она синтезируется в ядре из ДНК в процессе транскрипции. Три типа РНК полностью отличаются друг от друга по структуре и функциям:

Роль органических веществ огромна: например: углеводы ( сахариды ) молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.
Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.
Моносахариды
Полисахариды
Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде.
Жиры ( триглицериды, нейтральные жиры ) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.
Встречаются в живых клетках и свободные жирные кислоты : пальмитиновая, стеариновая, рициновая.
Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.
Функция ферментов заключается в снижении энергии активации, т. е. в снижении уровня энергии, необходимой для придания реакционной способности молекуле.
В состав гемоглобина эритроцитов крови человека, всех других позвоночных и некоторых беспозвоночных входит окисное железо, которое и придаёт крови красный цвет.
Витамины имеют высокую физиологическую активность, сложное и разнообразное химическое строение. Они необходимы для нормального роста и развития организма. Витамины регулируют окисление углеводов, органических кислот, аминокислот, некоторые из которых входят в состав НАД, НАДФ.
Органические кислоты - к этой группе относятся органические вешества, способные образовывать при диссоциации в водных растворах катионы водорода. Содержатся в значительном количестве в клетках животных и особенно растительных организмов. Органические кислоты являются продуктами превращения углсврдов; при синтезе белков они обрязуют углеродную основу аминокислот.
Функции белков разнообразны.
1. Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы.
2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента) . Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок.
3. Двигательная функция – сократительные белки вызывают всякое движение.
4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям.
5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ.
6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж.
Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.
Солнце мое это очень кратко и не все еще очень долго писать в и-нете все есть, это я тебе как учитель говорю, а в учебнике все кратко и доступно не ленись смотри внимательно.

Роль органических веществ в нашей жизни.
Молекулы органических веществ играют исключительную роль в нашей жизни.
В настоящее время органическая химия – это развивающаяся отрасль химической науки и производства.
С помощью органического синтеза получают многие современные продукты и материалы, которые необходимы нам в повседневной жизни: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды, синтетические витамины, гормоны, лекарства и т. д.

В любом организме протекает множество превращений одних органических веществ в другие. Без знания органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм. Т. е. органическая химия служит фундаментом для многих наук, изучающих живую природу, в частности для молекулярной биологии, биохимии, фармакологии, медицины.

Для нормальной жизнедеятельности организма человека и хорошего усвоения еды человеческий организм должен получать все питательные вещества в определенных соотношениях. Например, нормальное соотношение белков, жиров и углеводов должен быть 1 : 1,1 :4,1 для молодых мужчин и женщин, занятых умственным трудом, и 1 : 1,3:5 для тех же людей, если они заняты тяжелым физическим трудом. Эти вещества не имеют одинаковой питательной ценности и каждая из них имеет свое особенное значение для организма.
Белки принадлежат к жизненно необходимым веществам, без которых невозможная жизнь, рост и развитие организма. Они важнейшие компоненты питания, которые обеспечивают пластичные и энергетические потребности организма. Белки — это органические вещества, которые состоят из аминокислот, которые, совмещаясь между собой в разных композициях, предоставляют белкам разнообразных свойств. Пищевая и биологическая ценность белков определяется сбалансированностью аминокислот, которые входят в их состав.
Роль жиров в питании определяется их высокой калорийностью и участием в процессах обмена. Жиры обеспечивают в среднем 33 % суточной энергоценности рациона. С жирами в организм поступают необходимые для жизнедеятельности вещества: витамины А, О, Е, незаменимые жирные кислоты, лецитин. Жиры обеспечивают всасывание из кишечника ряда минеральных веществ и жирорастворимых витаминов. Они улучшают вкус еды и вызывают ощущение сытости.
Углеводы являются основной частью пищевого рациона. Физиологичное значение углеводов в основном определяется их энергетическими свойствами. Вони — головне источник энергии организма. При всех видах физического труда наблюдается повышенная потребность в углеводах. С едой поступают простые и сложные углеводы, легкоусвояемые и неусваиваемые углеводы. Основными простыми углеводами является глюкоза, галактоза, фруктоза, сахароза, лактоза и мальтоза

Органическое - то, что природное, живое. Любой биологический организм состоит из органических веществ, органические вещества необходимы для осуществления любых процессов, протекающих в организме на протяжении всей его жизнедеятельности.

Для нормальной жизнедеятельности организма человека и хорошего усвоения еды человеческий организм должен получать все питательные вещества в определенных соотношениях. Например, нормальное соотношение белков, жиров и углеводов должен быть 1 : 1,1 :4,1 для молодых мужчин и женщин, занятых умственным трудом, и 1 : 1,3:5 для тех же людей, если они заняты тяжелым физическим трудом. Эти вещества не имеют одинаковой питательной ценности и каждая из них имеет свое особенное значение для организма.
Белки принадлежат к жизненно необходимым веществам, без которых невозможная жизнь, рост и развитие организма. Они важнейшие компоненты питания, которые обеспечивают пластичные и энергетические потребности организма. Белки — это органические вещества, которые состоят из аминокислот, которые, совмещаясь между собой в разных композициях, предоставляют белкам разнообразных свойств. Пищевая и биологическая ценность белков определяется сбалансированностью аминокислот, которые входят в их состав.
Роль жиров в питании определяется их высокой калорийностью и участием в процессах обмена. Жиры обеспечивают в среднем 33 % суточной энергоценности рациона. С жирами в организм поступают необходимые для жизнедеятельности вещества: витамины А, О, Е, незаменимые жирные кислоты, лецитин. Жиры обеспечивают всасывание из кишечника ряда минеральных веществ и жирорастворимых витаминов. Они улучшают вкус еды и вызывают ощущение сытости.
Углеводы являются основной частью пищевого рациона. Физиологичное значение углеводов в основном определяется их энергетическими свойствами. Вони — головне источник энергии организма. При всех видах физического труда наблюдается повышенная потребность в углеводах. С едой поступают простые и сложные углеводы, легкоусвояемые и неусваиваемые углеводы. Основными простыми углеводами является глюкоза, галактоза, фруктоза, сахароза, лактоза и мальтоза

Задумайтесь! Мы с вами состоит из миллиардов атомов. Все атомы находятся в круговороте, и все атомы, которыми мы обладаем, в ком-то и где-то находились те 4,5 млрд. лет, которые существует Земля. Они были частями животных, растений, грибов и бактерий - а сейчас принадлежат нам на короткое время.

Круговорот атомов

С химической точки зрения ответ на вопрос "Жив ли изучаемый объект?" - не представляется возможным. Понятию "жизнь" дано колоссальное количество определений. Жизнь - это самовоспроизведение с изменением, способ существования белковых тел, постоянный обмен веществ с внешней средой.

Мы приступаем к изучению неорганических и органических веществ клетки. Начнем с неотъемлемого компонента клетки, благодаря которому жизнь на Земле в принципе стала возможна - вода.

Составляет 60-80% массы клетки. Молекула воды обладает уникальным свойством - полярностью, которое возникает из-за разницы в электроотрицательности (ЭО) между атомами кислорода и водорода (у кислорода ЭО больше).

Вода полярная молекула

Поскольку молекула воды полярна, ее называют диполь. Между молекулами воды возникают непрочные водородные связи: водородная связь начинается от отрицательно заряженного атома кислорода (2δ - ) одной молекулы воды и тянется до положительно заряженного атома водорода другой молекулы воды (δ + )

  • Гидрофильные (греч. hydro - вода и philéo - люблю) - вещества, которые хорошо растворяются в воде. Гидрофильными веществами являются сахара, соли, альдегиды, спирты, аминокислоты.
  • Гидрофобные (греч. hydro - вода и phobos — страх) - вещества, которые не растворяются в воде. Гидрофобными веществами являются жиры.

    Вода - универсальный растворитель

Большинство реакций, которые протекают в клетке, идут в растворе (водной среде). Полярность молекулы воды позволяет ей быть отличным растворителем для других гидрофильных (полярных) веществ.

Вода может поглощать теплоту при минимальном изменении температуры. Это настоящее "спасение" для клеток: чуть только температура меняется, вода начинает поглощать избыток тепла, защищая клетку от перегревания. Выделяясь на поверхность кожи с потом, вода испаряется, поверхность кожи при этом охлаждается.

Она не только создает среду для реакций в клетке, но и сама активно участвует во многих из них. Расщепление питательных веществ, попавших в клетку, происходит за счет реакции гидролиза (греч. hydro - вода и lysis - расщепление).

Питательные вещества, газы перемещаются по организму с током крови. Вода составляет 90-92% плазмы крови, является ее основным компонентом. С помощью воды происходит не только доставка веществ к клеткам, но и удаление из организма побочных продуктов обмена веществ.

Транспортная функция воды

Вода придает тканям тургор (лат. turgor — наполнение) - внутреннее осмотическое давление в живой клетке, создающее напряжение оболочек клеток. Вода составляет от 60 до 95% цитоплазмы, придает клеткам форму. Изменение тургора клеток растений приводит к перемещениям их частей, раскрытию устьиц, цветков.

Осмотическое давление - избыточное гидростатическое давление на раствор, отделенный от чистого растворителя с помощью полупроницаемой мембраны.

Главное - понимать суть: если мы поместим живую клетку в гипертонический раствор, то вода (растворитель) устремится из клетки в раствор (в сторону большей концентрации соли) - это приведет к сморщиванию клеток.

Если же клетка окажется в гипотоническом растворе, то вода извне устремится внутрь клетки (опять-таки в сторону большей концентрации солей), приводя при этом к разбуханию (и возможному разрыву) клетки.

Эритроциты в гипер- и гипотоническом растворе

Элементы

Процентное содержание элемента не коррелирует с его важностью и биологической значимостью. Так, к примеру, микроэлемент I играет важную роль в синтезе гормонов щитовидной железы: тироксина, трийодтиронина. За нормальные рост и развитие организмов отвечают Zn, Mn, Cu.

Благоприятно влияют на сперматозоиды Zn, Ca, Mg, защищая их от оксидативного стресса (окисления). Невозможным становится нормальное образование эритроцитов без должного уровня Fe и Cu.

Микроэлементы

В водной среде клетки соли диссоциируют (распадаются) на положительно заряженные ионы - катионы (Na + , K + , Ca 2+ , Mg 2+ ) и отрицательно заряженные - анионы (Cl - , SO4 2- , HPO4 2- , H2PO4 - ).

Для процессов возбуждения клетки (нейрона, миоцита - мышечной клетки) внутри клетки должна поддерживаться низкая концентрация ионов Na + и высокая концентрация ионов K + . В окружающей клетку среде все наоборот: много Na и мало K. В мембране существует специальный натрий-калиевый насос, который поддерживает необходимое равновесие. Если это соотношение нарушится, то нейрон не сможет сгенерировать нервный импульс, а клетка мышцы - сократиться.

Натрий-калиевый насос

  • Участвуют в активации ферментов
  • Создают буферные системы (бикарбонтаную, фосфатную, белковую)
  • Поддерживают кислотно-щелочное состояние (КЩС)
  • Создают осмотическое давление клетки
  • Создают мембранный потенциал клеток (натрий-калиевый насос)
  • Являются основным минеральным составляющим скелета внутреннего и наружного (у моллюсков)

Функции солей в клетке

Мы переходим к органическим компонентам клетки, к которым относятся: жиры, углеводы, белки и нуклеиновые кислоты.

Белки, или пептиды (греч. πεπτος - питательный)

Белки - полимеры, мономерами которых являются аминокислоты. Белки представляют линейную структуру, образованную из длинной цепи аминокислот, между которыми возникают пептидные связи. Пептидная связь образуется между карбоксильной группой (COOH) одной аминокислоты и аминогруппой другой аминокислоты (NH2).

Образование пептидной связи

Между понятиями пептиды и белки существует определенная разница. Белки состоят из сотен тысяч аминокислот. Пептидами называют небольшие белки, содержащие до 10 аминокислот. Ими являются некоторые гормоны: окситоцин, вазопрессин, тиреолиберин - эти пептиды выполняют регуляторную функцию.

  • Первичная - полипептидная цепь, в которой аминокислоты расположены линейно
  • Вторичная - полипептидная цепь закручивается в спираль, формируется α или β структура
  • Третичная - спирали скручиваются в глобулу (лат. globulus - шарик)
  • Четвертичная - образуется у сложных белков путем соединения нескольких глобул

Структуры белка

При резком изменении оптимальных для белка условий он подвергается денатурации: при этом происходит переход от высших структур организации к низшим, или "раскручивание белка". Важно заметить, что аминокислотная последовательность (первичная структура белка) при этом не меняется, однако свойства белка меняются кардинально (теряется его гидрофильность).

Осмелюсь сделать заявление: вы часто начинаете свой день с денатурации белка. Простейший способ провести такой эксперимент - пожарить яичницу. Заметьте, что изначально яичный белок прозрачный и текучий, но по итогу жарки эти свойства утрачиваются: он становится непрозрачным и вязким.

Денатурация белка

    Каталитическая (греч. katalysis - разрушение)

Белки - природные катализаторы, ускоряющие реакции в организме в десятки и сотни тысяч раз. Эту роль главным образом выполняют белки-ферменты (энзимы).

Иногда в состав белков входят так называемые ко-факторы - небелковые соединения, которые необходимы ферменту для его биологической активности (в роли ко-факторов могут выступать Zn 2+ , Mg 2+ ).

Белки входят в состав клеточных мембран. Сложные белки: коллаген, эластин - входят в состав соединительных тканей организма, придавая им некоторую прочность и эластичность.

Некоторые гормоны, регулирующие обменные процессы в организме, имеют белковое происхождение: инсулин, глюкагон, адренокортикотропный гормон (АКТГ).

Говоря об этой функции, прежде всего, стоит вспомнить об антителах - иммуноглобулинах, которые синтезируют B-лимфоциты. Антитела нейтрализуют чужеродные организму антигены (разрушают бактерии).

Антитела иммуноглобулины

Помимо антител, защитную функцию выполняют также белки свертывающей системы крови (тромбин и фибриноген): они предохраняют организм от кровопотери.

Фибриноген и фибрин

При недостаточном питании в организме начинают окисляться молекулы белков. При расщеплении 1 г белков выделяется 17,6 кДж энергии.

Некоторые белки крови способны присоединять к себе и переносить различные молекулы. Альбумины участвуют в транспорте жирных кислот, глобулины - гормонов и некоторых ионов (Fe, Cu). Основной белок эритроцитов - гемоглобин - способен переносить кислород, углекислый и угарный газы (угарный конечно нежелательно ему переносить, будет отравление)

Двигательные белки, актин и миозин, на уровне саркомера обеспечивают сокращение мышц. При возбуждении мышечной ткани тонкие нити актина начинают тереться о толстые нити миозина, приводя к сокращению.

Двигательные белки

На поверхности мембраны белки образуют многочисленные рецепторы, которые, соединяясь с гормонами, приводят к изменению обмена веществ в клетке. Таким образом, гормоны реализуют воздействие на клетки органов-мишеней.

Жиры, или липиды (греч. lipos - жир)

С химической точки зрения жиры являются сложными эфирами, образованными трехатомным спиртом глицерином и высшими карбоновыми кислотами (жирными кислотами). Среди их свойств надо выделить то, что они практически нерастворимы в воде. Вспомните, как тяжело смыть жир с рук водой.

Почему именно мыло смывает жир с рук? Дело в том, что молекула мыла повторяет свойства жира: одна часть ее гидрофобна, а другая гидрофильна. Мыло соединяется с молекулой жира гидрофобной частью, и вместе они легко смываются водой.

Моющее действие мыла

При окислении жиров выделяется много энергии: 1 г - 38,9 кДж. Это вдвое больше выделяющейся энергии при расщеплении 1г углеводов.

Жиры имеют способность накапливаться в клетках, расположенных в подкожно-жировой клетчатке, внутренних органах. Эти запасы являются резервом организма на случай голодания или при недостаточном питании.

В жирах также запасается вода: в 100 г жира содержится 107 мл воды. Многим пустынным животным (верблюдам) жировые запасы помогают длительное время обходиться без воды.

Жиры входят в состав биологических мембран клеток человека вместе с белками. Из фосфолипидов построены мембраны всех клеток органов и тканей!

Так, к примеру, холестерин - обязательный компонент мембраны, придает ей определенную жесткость и совершенно необходим для нормальной жизнедеятельности (заболевания возникают только при нарушении липидного обмена).

Строение мембраны

Жиры обладают плохой теплопроводностью. Располагаясь в подкожно-жировой клетчатке, они образуют термоизолирующий слой. Особенно хорошо он развит у ластоногих (моржи и тюлени), китов, защищает их от переохлаждения.

Некоторые гормоны по строению относятся к жирам: половые (андрогены - мужские и эстрогены - женские), гормон беременности (прогестерон), кортикостероиды.

Производное жира - витамин D - принимает важное участие в обмене кальция и фосфора в организме. Он образуется в коже под действием ультрафиолетового излучения (солнечного света). При недостатке витамина D возникает заболевание - рахит.

Рахит

Углеводы

    Моносахариды (греч. monos — единственный)

Простые сахара, легко растворяющиеся в воде и имеющие сладкий вкус. Моносахариды подразделяются на гексозы (имеют 6 атомов углерода) - глюкоза, фруктоза, и пентозы (имеют 5 атомов углерода) - рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот.

При гидролизе олигосахариды распадаются на моносахариды. В состав олигосахаридов может входить от 2 до 10 моносахаридных остатков. Если в состав олигосахарида входят 2 остатка моносахарида, то его называют дисахарид. К дисахаридам относятся сахароза, лактоза, мальтоза. При гидролизе сахароза распадается на глюкозу и фруктозу.

Олигосахариды

Это биополимеры, в состав которых входят сотни тысяч моносахаридов. Они обладают высокой молекулярной массой, нерастворимы в воде, на вкус несладкие.

Крахмал, целлюлоза, гликоген, хитин и муреин - все это биополимеры. Давайте вспомним, где они находятся.

Клеточная стенка образована: у растений - целлюлозой, у грибов - хитином, у бактерий - муреином. Запасным питательным веществом растений является крахмал, животных - гликоген.

Целлюлоза

В результате расщепления 1 г углеводов высвобождается 17,6 кДж энергии.

Запасным питательным веществом растений и животных соответственно являются крахмал и гликоген. Расщепление гликогена позволяет нам оставаться в сознании и быть активными между приемами пищи.

Гликоген представляет собой разветвленную молекулу, состоящую из остатков глюкозы. За счет больших размеров такая молекула хорошо удерживается в клетке, а ее разветвленность позволяет ферментам быстро отщеплять множество молекул глюкозы одновременно.

Гликоген

Существуют заболевания, при которых распад гликогена нарушается: в результате нейроны не получают глюкозы (источника энергии, соответственно не синтезируются и молекулы АТФ). Из-за этого становятся возможны частые потери сознания.

Целлюлоза входит в состав клеточных стенок растений, придавая им необходимую твердость. Хитин образует клеточную стенку грибов и наружный скелет членистоногих.

Классификация углеводов

Нуклеиновые кислоты (от лат. nucleus — ядро)

Для ДНК характерны следующие азотистые основания: аденин - тимин, гуанин - цитозин; для РНК: аденин - урацил, гуанин - цитозин. Исходя из принципа комплементарности, данные основания соответствуют друг другу, в результате чего между ними образуются связи.

Между аденином и тимином образуется 2 водородные связи, а между гуанином и цитозином - 3.

Азотистые основания

Именно по этой причине количество аденина в молекуле ДНК всегда совпадает с количеством тимина. К примеру, если в ДНК 20% аденина, то с уверенностью можно сказать, что в ней 20% тимина. Выходит на оставшиеся основания - цитозин и гуанин - остается 60%, значит, цитозин и гуанин составляют в ДНК 30% каждый. Таким нехитрым образом, зная процент содержания одного основания, можно подсчитать все остальные.

В ДНК остаток сахара - дезоксирибоза, в РНК - рибоза.

Строение ДНК

    Рибосомальная РНК (рРНК)

Синтезируется в ядрышке. рРНК входит в состав малых и больших субъединиц рибосом. В процентном отношении рРНК составляет 80-90% всей РНК клетки.

Синтезируется в ядре в ходе процесса транскрипции (лат. transcriptio — переписывание). Фермент РНК-полимераза строит цепь иРНК по принципу комплементарности с ДНК. Исходя из данного принципа, гуанин (Г) в молекуле ДНК соединяется с цитозином (Ц) в РНК. Далее соответственно: цитозин (Ц) - гуанин (Г), аденин (А) - урацил (У), тимин (Т) - аденин (А).

Комплементарность ДНК и РНК

Обеспечивает транспорт аминокислоты к рибосоме во время синтеза белка. Благодаря этому становится возможным соединение аминокислот друг с другом, образуется белок. тРНК имеет характерную форму клеверного листа.

тРНК

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: