Биологическая роль моносахаридов кратко

Обновлено: 02.07.2024

Моносахариды – это простые углеводы, имеющие в составе одно звено. Данные компоненты регулярно поступают в организм человека вместе с пищей, они требуются для функционирования внутренних органов, для поддержания жизненных сил и энергии, но их количество должно быть умеренным. Они являются твердыми сладкими элементами, которые полностью растворяются в воде, а вот растворимость в спиртах протекает хуже: они практически не вступают в реакцию с эфирами. Существуют разные виды данных соединений, которые обладают характерными особенностями.

Общее описание

Данные компоненты являются простой формой углеводов. Однако они способны объединяться, образуя более сложные формы соединений. К примеру, при соединении двух моносахаридов образуются дисахариды, соединения, состоящие от 3 до 10 компонентов – олигосахариды, а вот 11 и больше моносахаридов – полисахариды.

Для справки! Исследователи смогли впервые получить глюкозу в 1811 году. Русский ученый Константин Сигизмунд для гидролиза данного вещества использовал крахмал. Через 33 года другой русский ученый К. Шмидт придумал углеводам название.

Моносахариды – это официальное название, которое обычно используется в области пищевой и химической промышленности.

Но в пище они представлены тремя известными элементами:

  • глюкозой;
  • фруктозой;
  • галактозой.

Общая формула моносахаридов – С6Н12О6. Каждый имеет в основе 6 атомов углерода, которые входят в гексозную группу. Но размещение элементов у каждого вещества может быть разным. По этой причине их называют структурными изомерами.

Классификация простых углеводов

Классификация используется для разделения моносахаридов на отдельные формы. Каждая из них обладает определенными качествами и свойствами, которые могут влиять на состав углеводов.

Видео

Разработаны две формы моносахаридов:

Изомеры моносахаридов

В основе почти всех простых углеводов имеются асимметричные атомы углерода. Именно это привело к появлению двух оптических стереоизомеров – D и L. Глицериновый альдегид является исходным компонентом для всех моносахаридов. Последующие преобразования осуществляются при удлинении цепей глицеринового альдегида. Формы D и L – зеркальные отражения друг друга. В природе часто встречаются представители D-формы, а вот синтетические элементы представляются в виде L-варианта. Однако стоит учитывать, что обе формы имеют разные качества.

Биохимические свойства

Качества определяются функциональными группами данных компонентов. Они способны вступать в реакции окисления и восстановления, при этом не меняя структуры и состава.

Видео

Во время окисления образуются различные классы кислот:

  • Альдоновые кислоты. Они появляются после окислительных реакций в альдегидной группе С1-атома, в результате которых образуется карбоксильная группа.
  • Альдаровые кислоты. Данные вещества образуются после окислительных реакций альдегидной группы или первичной спиртовой С6-атома углерода.
  • Альдуроновая кислота формируется при окислении первичной спиртовой группы С6-углерода.

Главные функции простых сахаров

Моносахариды для человека имеют важное значение. Они являются главными источниками энергии, благодаря им поддерживаются жизненные силы. Многие имеют в 1 грамме 4 килокалории.

Важно! Чтобы мозг человека нормально работал, ему требуется не менее 150-160 граммов моносахаридов.

Но все же данные элементы, углеводы, не считаются незаменимыми питательными веществами для организма человека.

Видео

Однако они выполняют важные функции для человека, это связано с их уникальными качествами. Например, глюкоза – основное топливо для клеточных структур организма. Фруктоза принимает участие в обменных процессах. Галактоза была выявлена в эритроцитах у людей, имеющих третью группу крови.

Моносахариды и сахар в крови

Всасывание моносахаридов в организме осуществляется на уровне тонкой кишки. А поглощение происходит без предварительного ферментирования и расщепления. Другие, более сложные углеводы организм всасывает в форме моновеществ.

Обратите внимание: Что касается глюкозы и галактозы, то эти элементы организм человека способен быстро и легко усваивать, в отличие от других углеводов. А вот поглощение фруктозы происходит долго, на этот процесс требуются силы. Данное вещество может усваиваться не полностью.

Обычно глюкоза и галактоза моментально проникают в состав крови и одновременно с этим данные компоненты вызывают резкий подъем уровня сахара. Это связано с тем, что они имеют высокий гликемический индекс. А вот фруктоза имеет низкий показатель гликемического индекса, она вызывает медленное и мягкое повышение сахара.

В роли питательных элементов

В виде питательных элементов моносахариды применяются в натуральной и полуискусственной формах. Их объединяет общая функция – все компоненты являются основной подкормкой мозга. Его клеточные структуры без необходимого количества сахаров не могут нормально функционировать.

Видео

Среди натуральных в природе встречаются:

  • глюкоза;
  • фруктоза;
  • галактоза;
  • манноза;
  • рибоза;
  • целлюлоза;
  • дезоксирибоза.

Все вышеперечисленные компоненты являются гексозами, а именно состоят из 6 атомов углерода.

Полуискусственные моносахара

Гексозы имеют в составе 6 атомов углерода. К ним относятся:

  • D- и L-аллоза;
  • D- и L-альтроза;
  • D- и L-фукоза;
  • D- и L-гудоза;
  • D-сорбоза;
  • D-тагатоза.

Видео

Пентозы имеют в основе 5 атомов углерода. В эту группу входят:

  • D- и L-арабиноза;
  • D- и L-ликсоза;
  • рамноза;
  • D-рибоза;
  • рибулоза и ее синтетическая форма;
  • D-ксилоза (древесный сахар).

Тетрозы (имеют 4 атома углерода):

  • D- и L-эритроза;
  • эритрулоза;
  • D- и L-треоза.

Ниже имеется список продуктов, которые имеют в составе моносахариды:

  • фрукты и соки из фруктов;
  • мед;
  • сиропы;
  • десертные вина;
  • различные напитки (без содержания алкоголя, энергетики, ликеры), шоколад, молочные десерты. В данной продукции имеется глюкоза.

Особенности пищевых моносахаридов

К моносахаридам относятся различные соединения, но среди пищевых обычно используются глюкоза, фруктоза, галактоза. Характеристика каждого углевода обладает определенными особенностями, которые необходимо тщательно рассмотреть.

Видео

Глюкоза

Данный моносахарид является белым веществом в кристаллической форме. Оно формируется естественным путем, но обычно для его образования применяется гидролиз или процессы фотосинтеза. Соединение обладает специальной формулой, которая применяется для его обозначения, – С6Н12О6. Компонент отлично растворяется в воде, имеет сладкие вкусовые качества.


Глюкоза играет важную роль для организма человека. Она обеспечивает мозговые и мышечные ткани требуемой энергией. При проникновении в организм компонент быстро усваивается, далее он всасывается в состав крови и переходит во все внутренние системы. Далее осуществляются окислительные реакции глюкозы, в результате которых происходит высвобождение энергии.

Обратите внимание: Если отмечается недостаточный уровень глюкозы, то может развиться гипогликемия. Она отрицательно влияет на структуры головного мозга. Но и высокий уровень данного компонента в крови также представляет опасность для организма, это может привести к развитию сахарного диабета.

Фруктоза

Компонент имеет сходные свойства с глюкозой. Но отличие состоит в медленной скорости усвоения. Чтобы произошло полноценное усвоение данного компонента в организме, требуется, чтобы фруктоза перешла в состояние глюкозы.

Видео

Поэтому фруктоза не представляет особой угрозы для состояния здоровья больных сахарным диабетом. Потребление данного компонента не провоцирует резкий скачок сахара в крови. Но лучше употреблять его с особой осторожностью.

Важно! Фруктоза способна быстро преобразовываться в состояние жирных кислот. Это может стать основным фактором развития ожирения. Также компонент понижает чувствительность к инсулину, это может вызвать появление сахарного диабета второго типа.

Компонент входит в состав ягод, фруктов, также содержится в меде. Соединение имеет белую окраску. Оно обладает сладкими вкусовыми качествами, которые более выражены, в отличие от глюкозы.

Галактоза

Этот компонент не встречается в природе, его получают путем гидролиза лактозы, которая имеется в составе молока. Это соединение обладает плохой растворимостью в воде и менее выраженным сладким вкусом. Но у него имеются определенные плюсы – оно образует гликолипиды и гликопротеины, которые имеются в составе многих тканей. Он предоставляется в двух формах – циклической и ациклической. Этот компонент имеется в основе многих растений, но также является компонентом определенных полисахаридов, включая бактериальные. По этой причине он часто принимает участие в процессах брожения, преобразованиях в лактозные дрожжи.

Видео

Химия реакций этого компонента способна привести к тому, что он может быстро перейти в состояние глюкозы. А при определенных обстоятельствах галактоза способна переходить в галактуроновую или аскорбиновую кислоту. Галактоза выявляется в небольших количествах в составе молока, помидоров, других овощей и фруктов. В области пищевой промышленности вещество применяется при изготовлении энергетических напитков.

К положительным свойствам галактозы стоит отнести:

  • Она способствует быстрому снижению лишнего веса.
  • Сдерживает вес на одном месте.
  • Является отличной профилактикой против сахарного диабета у взрослых.
  • Считается стабильным источником энергии для спортсменов.

Роль моносахаридов в жизни

Моносахариды и полисахариды имеют важное значение для жизни человека, они требуются для работы внутренних органов, для поддержания жизненных сил. Благодаря им организм насыщается требуемой энергией, которая необходима для функционирования всех систем.

Видео

В более частом потреблении моносахаридов нуждаются люди, которые занимаются тяжелой физической и умственной работой, спортсмены. Данные вещества показаны детям в период активного роста, людям с психическими расстройствами, депрессией, нарушениями работы органов пищеварительной системы, со слишком низким весом. Сладкое требуется в периоды сильной интоксикации организма.

Практический совет: А вот людям, которые имеют лишнюю массу тела, гипертоникам, пожилым и ведущим малоподвижный образ жизни стоит отказаться от потребления моносахаридов. Иначе могут возникнуть серьезные проблемы со здоровьем.

Моносахариды – необходимые компоненты для организма человека. Они играют особую роль в функционировании внутренних органов и головного мозга, поэтому эти компоненты обязательно должны периодически поступать в организм. Но все же стоит их потреблять в умеренных количествах, особенно людям с лишней массой тела и больным сахарным диабетом.

Углеводы – важнейшая составляющая растительных организмов. Углеводы также являются элементом биосистемы. Они входят в пищевой рацион людей и многих животных. Углеводы, или сахариды – органические соединения, общая формула которых Cn(H2O)n. В них может присутствовать гидроксильная группа – ОН, либо карбонильная группа –С=О, либо альдегидная группа – СНО. Углеводы составляют около 80 % сухого вещества растений и около 2 % сухого вещества животных. Углеводы синтезируются в растительных организмах в результате процесса фотосинтеза. Реакция получения углеводов протекает в присутствии света. 6 СО2 + 6 Н2О →С6Н12О6 + 6 О2

План урока:

Виды углеводов

Номенклатура углеводов

Моносахариды

Моносахариды, или монозы – гетерофункциональные соединения, которые включают одну альдегидную или кетонную группу и гидроксильные группы. Моносахариды классифицируются на альдегидоспирты и кетоспирты.

Кристаллические монозы при растворении в воде показывают свою оптическую активность. Если в течение первого часа они будут показывать себя как левовращающие, то к концу часа они могут поменять сторону вращения.

Изомерия моносахаридов

Для молекул углеводов моносахаридов характерно несколько видов изомерии.

  • Изомерия между альдегидоспиртами и кетоспиртами.

Например, глюкоза изомерна фруктозе.

Оптическая изомерия углеводов связана с различным положением гидроксильной группы при наличии ассиметричного центра. Число оптических изомеров можно определить по формуле:

N=2 n , где n – количество ассиметричных атомов углерода.

Оптические изомеры глюкозы

В кольчато-цепной таутомерии отражается динамическое равновесие между циклической и открытой формой моносахаридов в растворе.

Физические свойства моносахаридов

Моносахариды – прозрачные кристаллы со сладким вкусом. Они хорошо растворимы в воде, но не растворимы в эфирах. У углеводов моносахаридов небольшая температура кипения.

У моносахаридов разные степени сладости. Например, фруктоза в три раза слаще глюкозы.

Химические свойства моносахаридов

В зависимости от характера реагента в реакцию вступают линейная или циклическая форма.

Взаимодействие с бромной водой:

Взаимодействие с аммиачным раствором оксида серебра (качественная реакция на альдегиды):

Взаимодействие с гидроксидом меди:

Взаимодействие с реактивом Фелинга:

Взаимодействие с сильным окислителем – концентрированной азотной кислотой:

Щелочи с высокой концентрацией вызывают осмоление сахаров. При взаимодействии с разбавленным раствором щелочи образуется ендиол.

В растворе глюкозы, хранящемся в стеклянной склянке, через 5 суток хранения будет 66,5 % глюкозы, 31 % фруктозы и 2,5 % монозы. Такой же процесс происходи и в живых организмах, но под действием ферментов.

  • Реакции циклических формы моносахаридов
  • Образование ярко-синего комплекса сахарата меди (II)

В мягких условиях алкилирование протекает только у той гидроксильной группы, где связь самая непрочная (при полуацетальном гидроксиле).

Спиртовое брожение протекает в присутствии дрожжей:

Молочнокислое брожение протекает в присутствии молочнокислых бактерий:

В результате маслянокислого брожения образуется масляная кислота.

Биологическая роль моносахаридов

Моносахариды – источник энергии. Человеческий мозг в день требует не менее 160 г углеводов. Фруктоза применяется в метаболических процессах, а галактоза находится в эритроцитах у людей с третьей группой крови. Рибоза – часть ДНК.

Применение моносахаридов

Процессы брожения моносахаридов используют при производстве спиртов, кисломолочных продуктов, сыров, при квашении овощей и т.д. Моносахариды применяются не только в пищевой, но и в медицинской промышленности. Производные глюкозы используются в качестве инъекций. Глюкозу применяют для получения аскорбиновой кислоты (витамина С).

Дисахариды

Дисахариды – вещества, которые включают остатки двух моносахаридов, между которыми гликозидная связь.

Строение углеводов – дисахаридов

Для дисахаридов характерно наличие гликозидной связи. Она формируется при взаимодействии полуацетального (гликозидного) гидроксила и полуацетального или спиртового гидроксила.

  • Связь между полуацетальными гидроксилами двух моносахаридов
  • Связь между полуацетальным гидроксилам одного моносахарида и спиртовым гидроксилом другого моносахарида

Классификация дисахаридов

Дисахариды можно поделить на две группы.

Они характеризуются одним полуацетальным гидроксилом. Этот гидроксил при таутомерном превращении формирует альдегидную группу. Поэтому сахариды мальтоза и лактоза обладают восстановительными свойствами.

У них нетполуацетального гидроксида, поэтому им не характерны восстановительные свойства.

Физические свойства дисахаридов

Дисахариды – твердые кристаллические вещества со сладким вкусом. Они хорошо растворяются в воде.

Химические реакции углеводов – дисахаридов

Гидролиз дисахаридов проходит в присутствии кислот или ферментов. В ходе реакции дисахарид расщепляется на моносахариды. При этом происходит процесс инверсии (обращения). Смесь с равными молярных количествах компонентов включает вещества с разными вращениями.

Природный инвертный сахар – мед.

Применение дисахаридов

Дисахариды – один из источников энергии. Лактоза – необходимый компонент питания детей. Мальтоза входит в состав проросших зерен злаков, меде, патоке и других продуктах. Она также синтезируется при гидролизе крахмала в присутствии ферментов.

Полисахариды

Полисахариды – природные углеводы, которые состоят из множества остатков моносахаридов. Для полисахаридов характерна высокая молекулярная масса. Они содержат тысячи остатков моносахаридов, между которыми располагаются гликозидные связи.

Крахмал и целлюлоза

Также в число полисахаридов входит гликоген, который синтезируется в человеческих или животных организмах с помощью биохимических превращений из углеводов растений.Его строение схоже с крахмалом, т.к. он тоже состоит из остатков α-глюкозы.

Физические свойства полисахаридов

Полисахариды – аморфные соединения. Они не растворимы в спирте и неполярных растворителях, но некоторые представители полисахаридов растворимы в воде. Например, амилоза при взаимодействии с водой образует коллоидные растворы, а пектин формирует гели. Такие макромолекулы как клетчатка и хитин совсем не растворяются с водой.

Химические свойства полисахаридов

Гидролиз полисахаридов протекает в разбавленных минеральных кислотах. Эта реакция характеризуется разрывом гликозидных связей.

Применение полисахаридов

Сложные углеводы широко применяются в промышленности и медицине. Например, крахмал используют при добывании глюкозы и спирта, а также при изготовлении клея пластмасс. Из целлюлозы изготавливают картон, бумагу и вискозу.

Клеточная стенка растений состоит из целлюлозы, а грибов – из хитина. Полисахариды выполняют в организме человека и животных защитную, структурную, запасающую и другие функции.

Сахароза глюкоза фруктоза

Моносахариды – это простейшие углеводные соединения, имеющие в своем составе одно звено. Они являются мономерами, остатки которых образуют более сложные углеводные соединения: дисахариды, олигосахариды, полисахариды.

Основные свойства моносахаридов: имеют твердую структуру, сладкий вкус. У мономеров, в отличие от других углеводных групп, отсутствует реакция гидролиза. Они не способны реагировать с водой и разлагаться на более простые вещества. Моносахариды легко растворяются в воде, сложнее – в спиртовых соединениях. С эфирными соединениями в реакцию не вступают.

Общая характеристика моносахаридов

Способность моносахаридов к объединению дает возможность образоваться дисахаридам (из двух мономеров), олигосахаридам (из 3 – 10 мономеров), полисахаридам (из 11 и более мономеров).

В начале 19 века русским химиком Г. Э. Кирхгофом в процессе гидролиза крахмала была получена глюкоза. Немного позже А. М. Бутлеров синтезировал моносахариды из формальдегида при использовании щелочной среды. В середине 19 века русским двадцатидвухлетним доктором медицины Карлом Шмидтом был предложен термин углеводы.

Природным моносахаридом является глюкоза. Пищевые моносахариды, известные человеку, представлены в трех видах. К моносахаридам относятся:

  • глюкоза;
  • фруктоза;
  • галактоза.

В общей формуле моносахаридов присутствуют углеродные, водородные и кислородные атомы. Выглядит она так: Сn(H₂O)n, значение n различно, колеблется от 3 до 9. Расположены атомы в веществах по-разному, поэтому глюкоза, фруктоза, галактоза – структурные изомеры. Моносахариды относятся к полигидроксикарбональным соединениям, для которых характерна связь каждого атома углерода с объединенными атомами водорода и кислорода.

Молекулярное количество атомов углерода позволяет образоваться тетрозам (в них три атома углерода), пентозам (в них пять атомов углерода), гексозам (в них шесть атомов углерода).

Для природы более характерны пентозные соединения, например, рибоза, и гексозные соединения, например, глюкоза и фруктоза.

Строение моносахаридов изображается с помощью проекционных формул Эмиля Германа Фишера. В них цепь углеродов изображается вертикально, верхнюю часть занимает альдегидная группа (для альдоз) или первичноспиртовая группа – соседняя с карбональной группой (для кетоз). Атом водорода, гидроксильная группа располагаются горизонтально.

Еще одним способом изображения моносахаридов являются перспективные формулы Уолтера Нормена Хеуоса. С помощью перспективных формул удобно изображать мономеры с циклической формой. В изображении идеализированные плоские циклы с пятью или шестью членами, в каждом из которых есть атом кислорода, позволяют понимать взаимное расположение всех заместителей относительно плоскости кольца.

Моносахариды

Химические свойства моносахаридов:

  • растворимость в воде;
  • способность кристаллизоваться;
  • гигроскопичность;
  • сладкий вкус;
  • низкая температура плавления;
  • проявление слабых кислотных свойств, которые проверяются с помощью лакмусовой бумажки;
  • способность восстанавливаться до образования спирта;
  • способность окисляться до монокарбоновых, дикарбоновых, гликуроновых кислот;
  • способность образовывать сложные эфиры;
  • способность образовывать гликозиды;
  • способность к брожению: спиртовому, молочнокислому, лимоннокислому, маслянокислому.

Пищевые моносахариды

Основными моносахаридами, присутствующими в пищевых продуктах, являются глюкоза, фруктоза, галактоза.

Глюкоза

Глюкоза (декстроза) называется еще виноградным сахаром, потому что содержится в соке винограда, в соке других фруктов.

Глюкоза

  • Глюкоза – наиболее распространенный моносахарид, простой углевод.
  • Глюкоза имеет формулу С₆H₁₂O₆.
  • Глюкоза — кристаллическое сладкое вещество, быстро растворяется в воде.
  • Глюкоза не способна гидролизоваться.
  • Глюкоза образуется в процессе фотосинтеза.
  • Глюкоза есть в крови, в зеленых органах растений.
  • Дисахариды и полисахариды в своем составе содержат глюкозу.
  • Природное образование глюкозы – фотосинтез.
  • Искусственное образование глюкозы – гидролиз и ферментирование из крахмала, целлюлозы.
  • В организм человека глюкоза поставляет энергию, необходимую для нормальной работы мышц, для умственной деятельности.

Фруктоза

Фруктоза – плодовый сахар, также она называется фруктовым сахаром. Такие наименования появились у фруктозы потому, что ее содержат ягоды, фрукты. Много фруктозы в меде. В химии фруктозу еще называют левулозой.

  • Фруктоза слаще, чем глюкоза.
  • Фруктоза — единственный моносахарид, который содержит сперма людей, быков.
  • Производители мороженого используют фруктозу в качестве основного компонента для производства вкусного продукта для предотвращения песчанистости.
  • Употребление большого количества фруктозы приводит к сбою в работе органов пищеварения, сердечно — сосудистой системы.

Фруктоза

Галактоза

  • Галактоза менее сладкое вещество в сравнении с глюкозой и фруктозой.
  • Галактоза медленнее растворяется в воде, чем другие простые углеводы.
  • Галактоза участвует в образовании гликолипидов и гликопротеинов, которые являются основой большинства органических тканей человека.
  • Женский организм производит галактозу из глюкозы, затем образуется лактоза, поступающая в молочные железы.
  • При производстве энергетиков галактоза является активным компонентом напитков.
  • Галактоза стремительно снижает, стабилизирует вес.
  • Галактоза способна предотвратить сахарный диабет.
  • Галактоза — энергетический источник для людей, ведущих активный образ жизни, испытывающих большие физические нагрузки.

Продукты богатые моносахаридами

Лидерами по содержанию простых углеводов являются сиропы, шоколад, мучные изделия, безалкогольные сладкие напитки, крупы, бобовые, злаковые.

В природе нахождение моносахаридов свойственно в первую очередь фруктам и ягодам, имеющим сладкий вкус. Присутствуют углеводы в овощах.

Содержание моносахаридов в продуктах растительного происхождения (на 100 грамм продукта):

Из хлебобулочных изделий больше всего простых углеводов содержится в пшеничном хлебе – от 50 до 60 грамм в ста граммах продукта. В ржаном хлебе – 35 грамм в ста граммах продукта.

У каких продуктов богатое содержание моносахаридов (на сто грамм):

  • у сахара-песка – 99,8 г;
  • у леденцовой карамели – 96 г;
  • у муки из риса, пастилы, зефира, жевательного мармелада – 80 г;
  • у пряников – 75 г;
  • у сахарного печенья, варенья из клубники, риса – 74 г;
  • у муки из кукурузы – 72 г;
  • у баранок сушек, крупы из кукурузы – 71 г;
  • у манки, гречки, пшеничной крупы, макарон, варенья из малины, пшеничной муки – 70 г;
  • у пшеничной крупы, сдобного печенья – 68 г;
  • у перловой крупы, сдобных сухарей, пшенной крупы – 67 г;
  • у муки из ржи, отрубей овса – 66 г;
  • у ячневой крупы, овсяной муки, толокна – 65 г;
  • у бисквитных пирожных, вафель – 63 г;
  • у риса, геркулеса – 62 г;
  • у овсяной крупы, пшеницы, шоколадных конфет – 60 г;
  • у сгущенного молока – 57 г;
  • у ячменя, гречихи, ржи, сдобных булочек – 56 г;
  • у овса – 55 г;
  • у подсолнечной халвы – 54 г;
  • у сухого молока – 53 г;
  • у песочного пирожного – 52 г;
  • у батона – 51 г;
  • у молочного шоколада – 50 г.

Моносахариды не содержатся в клетках животных организмов, или их там незначительное количество. Например, устрицы содержат на 100 г всего около одного гр. глюкозы, желток яйца курицы – 0,2 г, коровье молоко средней жирности – 0,01 г.

Основные функции

Основная биологическая роль моносахаридов заключается в том, что они снабжают организм человека энергией. Один грамм углеводов дает в среднем четыре килокалории. Для мозговой деятельности вдень человеку необходимо получать от 160 до 200 грамм моносахаридов.

Глюкозе отведена роль основного энергетического источника, фруктозе – участие в процессах обмена. Галактозные соединения содержат эритроциты, содержащиеся в третьей группе крови.

Полезные свойства моносахаридов и их влияние на организм

Полезные свойства углеводов заключаются в их питательности. Они подкармливают мозг для осуществления его деятельности, помогают осуществлять метаболические процессы.

Глюкозу, фруктозу, галактозу, маннозу, рибозу, дезоксирибозу в химии относят к натуральным формам моносахаридов. Гексозу, пентозу, тетрозу – к искусственным углеводам.

Углеводные соединения содержатся в продуктах питания, при помощи которых в основном поступают в организм человека.

Необходимость моносахаридов

Углеводы необходимы каждому человеку для поддержания жизненно важных функций организма. Люди, испытывающие повышенные физические и умственные нагрузки, активно занимающиеся спортом, нуждаются в повышенном потреблении углеводов.

Очень важно, чтобы моносахариды в достаточном количестве поступали в организм детей, когда они интенсивно растут, для получения сил и энергии. Нужны они человеку, страдающему психическими расстройствами, депрессиями, болезнями пищеварительного тракта.

Недостаток веса, интоксикация, кальциевый дефицит, нехватка аскорбиновой кислоты – показания, при которых следует увеличить употребление продуктов, богатых углеводами.

Последствиями голоданий, строгих диет, несбалансированного питания часто бывает гипогликемия (дефицит сахара), что приводит к расстройствам памяти, нарушению обменных процессов, проблемам с сердцем, бессоннице, хронической усталости, депрессивным состояниям.

Причины, при которых следует уменьшить потребление углеводов: лишний вес, ожирение, пожилой возраст, гипертония, малоподвижный образ жизни, непереносимость лактозы. Переизбыток потребления моносахаридов выразится в дистрофии печени, снижении давления, кислотно-щелочном дисбалансе организма.

Моносахариды и сахар в крови

Усвоение моносахаридов организмом происходит не сразу, для этого необходимо пройти определенные стадии.

  1. Всасывание тонкой кишкой.
  2. Поступление в кровь.
  3. Повышение уровня сахара в крови.

Глюкоза, галактоза быстро усваиваются и попадают в кровь, поэтому резко увеличивают уровень сахара. Связано быстрое усвоение с высоким гликемическим индексом веществ. У фруктозы его показания значительно ниже, поэтому усвоение моносахарида происходит медленнее, процесс повышения сахара в крови происходит мягко, постепенно.

Применение моносахаридов необходимо человеку, в то же время оно должно быть разумным, продуманным.

моносахариды это относительно небольшие молекулы, которые составляют структурную основу более сложных углеводов. Они различаются по своей структуре и стереохимической конфигурации..

Наиболее выдающимся примером моносахарида, а также наиболее распространенного в природе, является d-глюкоза, состоящая из шести атомов углерода. Глюкоза является незаменимым источником энергии и является основным компонентом некоторых полимеров, таких как крахмал и целлюлоза..


Моносахариды представляют собой соединения, полученные из альдегидов или кетонов и содержащие по меньшей мере три атома углерода в своей структуре. Они не могут подвергаться процессам гидролиза для разложения на более простые единицы.

В целом, моносахариды представляют собой твердые вещества белого цвета с кристаллическим внешним видом со сладким вкусом. Поскольку они являются полярными веществами, они хорошо растворимы в воде и нерастворимы в неполярных растворителях..

Они могут быть связаны с другими моносахаридами посредством гликозидных связей и образуют различные соединения, имеющие большое биологическое и структурное значение, очень разнообразные.

Большое количество молекул, которые могут образовывать моносахариды, позволяет им быть богатыми как информацией, так и функцией. На самом деле, углеводы являются наиболее распространенными биомолекулами в организмах.

Объединение моносахаридов приводит к образованию дисахаридов - таких как сахароза, лактоза и мальтоза - и к более крупным полимерам, таким как гликоген, крахмал и целлюлоза, которые выполняют функции накопления энергии в дополнение к структурным функциям..

  • 1 Общая характеристика
  • 2 Структура
    • 2.1 Стереоизомия
    • 2.2 Гемиацет и гемицеты
    • 2.3 Конформации: кресло и корабль
    • 3.1 Мутаротация и аномерные формы d-глюкозы
    • 3.2 Модификация моносахаридов
    • 3.3 Действие рН в моносахаридах
    • 4.1 Источник питания
    • 4.2 Сотовое взаимодействие
    • 4.3 Компоненты олигосахаридов
    • 6.1 Гликозиды
    • 6.2 N-гликозиламины или N-гликозиды
    • 6.3 Мурмовая кислота и нейраминовая кислота
    • 6.4 Сахарные спирты
    • 7.1 -Aldosas
    • 7.2 -Celses

    Общие характеристики

    Моносахариды - самые простые углеводы. Конструктивно они являются углеводами, и многие из них могут быть представлены эмпирической формулой (C-H2O)N. Они представляют собой важный источник энергии для клеток и являются частью различных молекул, необходимых для жизни, таких как ДНК.

    Моносахариды состоят из атомов углерода, кислорода и водорода. Когда они находятся в растворе, преобладающая форма сахаров (таких как рибоза, глюкоза или фруктоза) не является открытой цепью, но они образуют энергетически более стабильные кольца.

    Самые маленькие моносахариды состоят из трех атомов углерода и представляют собой дигидроксиацетон и d- и l-глицеральдегид..

    Углеродный скелет моносахаридов не имеет разветвления, и все атомы углерода, кроме одного, обладают гидроксильной группой (-ОН). На оставшемся атоме углерода находится карбонильный кислород, который можно объединить в ацетальную или кетальную связь.

    структура


    стереоизомеризм

    Моносахариды - за исключением дигидроксиацетона - имеют асимметричные атомы углерода, то есть они связаны с четырьмя различными элементами или заместителями. Эти атомы углерода ответственны за появление хиральных молекул и, следовательно, оптических изомеров..

    Например, глицеральдегид имеет один асимметричный атом углерода, и поэтому двумя формами обозначенных стереоизомеров являются буквы d- и l-глицералид. В случае альдотетрозов у ​​них есть два асимметричных атома углерода, в то время как у альдопентозов есть три.

    Альдогексозы, как и глюкоза, имеют четыре асимметричных атома углерода, поэтому они могут существовать в форме 16 различных стереоизомеров..

    Эти асимметричные атомы углерода проявляют оптическую активность, и формы моносахаридов различаются по природе в соответствии с этим свойством. Наиболее частые формы глюкозы - правовращающие, а обычная форма фруктозы - левовращающая..

    Когда появляется более двух атомов асимметричного углерода, префиксы d- и l- относятся к асимметричному атому дальше от карбонильного углерода.

    Гемиацет и полушарий

    Моносахариды обладают способностью образовывать кольца благодаря наличию альдегидной группы, которая реагирует со спиртом и образует полуацеталь. Кроме того, кетоны могут реагировать со спиртом и, как правило, гемикетал.

    Например, в случае глюкозы углерод в положении 1 (в линейной форме) реагирует с углеродом в положении 5 той же структуры, образуя внутримолекулярный полуацеталь.

    В зависимости от конфигурации заместителей, присутствующих на каждом атоме углерода, сахара в их циклической форме могут быть представлены в соответствии с формулами проекции Хауорта. На этих диаграммах край кольца, который находится ближе всего к читателю, и эта часть представлена ​​жирными линиями (см. Основное изображение).

    Таким образом, сахар, имеющий шесть терминов, является пиранозой, а кольцо с пятью терминами называется фуранозой..

    Таким образом, циклические формы глюкозы и фруктозы называются глюкопиранозой и фруктофуранозой. Как обсуждалось выше, d-глюкопираноза может существовать в двух стереоизомерных формах, обозначаемых буквами α и β.

    Конформации: кресло и корабль

    Диаграммы Хауорта предполагают, что структура моносахаридов имеет плоскую структуру, однако это представление не соответствует действительности..

    Кольца не являются плоскими из-за тетраэдрической геометрии, присутствующей в их атомах углерода, поэтому они могут принимать два типа конформаций, называемых стул и корабль или неф.

    Конформация в форме стула, по сравнению с конформой корабля, более жесткая и стабильная, поэтому в растворах, содержащих гексозы, преобладает конформация.

    В форме кресла можно выделить два класса заместителей, называемых аксиальными и экваториальными. В пиранозе экваториальные гидроксильные группы проходят процессы этерификации легче, чем аксиальные.


    Свойства моносахаридов

    Мутаротация и аномерные формы d-глюкозы

    Когда они обнаруживаются в водных растворах, некоторые сахара ведут себя так, как будто они имеют дополнительный асимметричный центр. Например, d-глюкоза существует в двух изомерных формах, которые отличаются специфическим вращением: α-d-глюкоза, β-d-глюкоза.

    Хотя элементный состав идентичен, оба вида различаются по своим физическим и химическим свойствам. Когда эти изомеры входят в водный раствор, изменение оптического вращения подтверждается с течением времени, достигая конечного значения в равновесии..

    Это явление называется мутаротацией и происходит, когда одну треть альфа-изомера смешивают с двумя третями бета-изомера при средней температуре 20 ° С..

    Модификация моносахаридов

    Моносахариды могут образовывать гликозидные связи со спиртами и аминами с образованием модифицированных молекул.

    Таким же образом они могут быть фосфорилированы, то есть фосфатная группа может быть добавлена ​​к моносахариду. Это явление имеет большое значение в различных метаболических путях, например, первая стадия гликолитического пути включает фосфорилирование глюкозы с получением промежуточного глюкозо-6-фосфата.

    По мере развития гликолиза образуются другие метаболические интермедиаты, такие как дигидроксиацетонфосфат и глицеральдегид-3-фосфат, которые являются фосфорилированными сахарами..

    Процесс фосфорилирования дает отрицательный заряд сахару, препятствуя тому, чтобы эти молекулы легко покидали клетку. Кроме того, это дает им реактивность, так что они могут образовывать связи с другими молекулами.

    Действие PH в моносахаридах

    Моносахариды стабильны в условиях высокой температуры и с разбавленными минеральными кислотами. Напротив, при воздействии высококонцентрированных кислот сахара подвергаются процессу дегидратации, в результате которого образуются альдегидные производные фурана, называемые фурфуролами..

    Например, нагревание d-глюкозы вместе с концентрированной соляной кислотой приводит к образованию соединения, называемого 5-гидроксиметилфурфурол.

    Когда фурфурол конденсируется с фенолами, они производят окрашенные вещества, которые можно использовать в качестве маркеров при анализе сахаров..

    С другой стороны, мягкие щелочные среды вызывают перегруппировки вокруг аномерного углерода и соседнего углерода. При обработке d-глюкозы основными веществами образуется смесь d-глюкозы, d-фруктозы и d-маннозы. Эти продукты встречаются при комнатной температуре.

    Когда происходит повышение температуры или концентрации щелочных веществ, моносахариды подвергаются процессам фрагментации, полимеризации или перегруппировки..

    функции

    Источник питания

    Моносахариды и углеводы вообще незаменимые элементы в рационе питания как источники энергии. Помимо функционирования в качестве клеточного топлива и накопления энергии, они выступают в качестве промежуточных метаболитов в ферментативных реакциях..

    Клеточное взаимодействие

    Они также могут быть связаны с другими биомолекулами - такими как белки и липиды - и выполнять ключевые функции, связанные с взаимодействием клеток.

    Нуклеиновые кислоты, ДНК и РНК, являются молекулами, ответственными за наследование, и имеют в своей структуре сахара, в частности пентозу. D-рибоза является моносахаридом, обнаруженным в скелете РНК. Моносахариды также являются важными компонентами сложных липидов..

    Компоненты олигосахаридов

    Моносахариды являются основными структурными компонентами олигосахаридов (от греч. олиго, что означает мало) и полисахариды, которые содержат много единиц моносахаридов, как отдельных, так и различных.

    Эти две сложные структуры функционируют как биологические хранилища топлива, например, крахмал. Существуют также важные структурные компоненты, такие как целлюлоза, содержащаяся в жестких клеточных стенках растений и в древесных и волокнистых тканях различных органов растений..

    классификация

    Моносахариды классифицируются двумя различными способами. Первое зависит от химической природы карбонильной группы, поскольку это может быть кетон или альдегид. Вторая классификация фокусируется на количестве атомов углерода, присутствующих в сахаре.

    Моносахаридам присваивается конкретное название в зависимости от количества атомов углерода, содержащихся в их структуре. Таким образом, сахар с четырьмя, пятью, шестью и семью атомами углерода называют тетрозами, пентозами, гексозами и гептозами соответственно..

    Из всех упомянутых классов моносахаридов гексозы являются наиболее распространенной группой.

    Обе классификации могут быть объединены, и название, данное молекуле, представляет собой смесь числа атомов углерода и типа карбонильной группы..

    В случае глюкозы (С6H12О6) считается гексозой, потому что она имеет шесть атомов углерода и также является альдозой. Согласно двум классификациям эта молекула является альдогексозой. Точно так же рибулоза является кетопентозой.

    Основные производные моносахаридов

    глюкозиды

    В присутствии минеральной кислоты альдопираноза может вступать в реакцию со спиртами и образовывать гликозиды. Это асимметричные смешанные ацетали, образованные реакцией аномерного атома углерода, полученного из полуацеталя, с гидроксильной группой спирта.

    Образовавшаяся связь называется гликозидной связью и может также образовываться в результате реакции аномерного углерода моносахарида с гидроксильной группой другого моносахарида с образованием дисахарида. Таким образом, образуются олигосахаридная и полисахаридная цепи..

    Они могут быть гидролизованы определенными ферментами, такими как глюкозидазы, или при воздействии кислотности и высоких температур..

    N-гликозиламины или N-гликозиды

    Альдозы и кетозы способны реагировать с аминами и приводить к N-гликозидам.

    Эти молекулы играют важную роль в нуклеиновых кислотах и ​​нуклеотидах, где обнаружено, что атомы азота оснований образуют N-гликозиламиновые связи с атомом углерода в положении 1 d-рибозы (в РНК) или 2-дезокси-d-рибозы (в ДНК).

    Мозаичная кислота и нейраминовая кислота

    Эти два производных аминосахаров имеют девять атомов углерода в своей структуре и являются важными структурными компонентами бактериальной архитектуры и оболочки клеток животных, соответственно.

    Структурной основой бактериальной клеточной стенки является N-ацетилмураминовая кислота, и она образована аминосахаром N-ацетил-d-глюкозамином, связанным с молочной кислотой..

    В случае N-ацетил-нейраминовой кислоты она является производной N-ацетил-d-маннозамина и пировиноградной кислоты. Это соединение содержится в гликопротеинах и гликолипидах клеток животных..

    Сахарные спирты

    В моносахаридах карбонильная группа способна восстанавливать и образовывать сахарные спирты. Эта реакция происходит в присутствии газообразного водорода и металлических катализаторов..

    В случае d-глюкозы в результате реакции образуется сахарно-спиртовой d-глюцитол. Аналогично, реакция с d-маннозой дает d-маннит.

    Естественно, есть два очень распространенных сахара, глицерин и инозит, оба из которых имеют биологическое значение. Первый является компонентом определенных липидов, а второй содержится в фосфатидилинозитоле и фитиновой кислоте..

    Соль, поступающая из фитиновой кислоты, является фитином, материалом незаменимой поддержки в растительных тканях..

    Примеры моносахаридов

    глюкоза

    Это самый важный моносахарид и присутствует во всех живых существах. Эта газированная цепь необходима для существования клеток, так как обеспечивает их энергией..

    Он состоит из карбонизированной цепочки из шести атомов углерода и дополнен двенадцатью атомами водорода и шестью атомами кислорода..

    -альдозами

    Эта группа образована карбонилом на одном конце карбонизированной цепи.

    богинь

    гликолевого

    триозе

    глицериновый

    Этот моносахарид является единственной альдозой, которая образована тремя атомами углерода. Для того, что известно как триоза.

    Это первый моносахарид, полученный при фотосинтезе. В дополнение к тому, чтобы быть частью метаболических путей, таких как гликолиз.

    tetroses

    Эритроса и Треоза

    Эти моносахариды имеют четыре атома углерода и альдегидную группу. Эритроза и тоза отличаются по конформации киральных углеродов.

    В трео они имеют конформации D-L или L-D, в то время как в эритрозе конформации обоих атомов углерода являются D-D или L-L.

    пентозы

    Внутри этой группы мы находим газированные цепи, которые имеют пять атомов углерода. По карбонильному положению мы различаем моносахариды рибозу, дезоксирибозу, арабинозу, ксилозу и ликсозу..

    рибоза Это один из основных компонентов РНК, который помогает формировать нуклеотиды, такие как АТФ, которые обеспечивают энергию для клеток живых существ..

    дезоксирибоза дезоксиазугар, полученный из моносахарида с пятью атомами углерода (пентоза эмпирической формулы C5H10O4)

    Арабиноза Это один из моносахаридов, которые появляются в пектине и гемицеллюлозе. Этот моносахарид используется в бактериальных культурах в качестве источника углерода.

    Ксилоза Он также широко известен как древесный сахар. Его основная функция связана с питанием человека и является одним из восьми основных сахаров для человеческого организма..

    Ликсоза Это редкий по природе моносахарид, встречающийся в бактериальных стенках некоторых видов..

    гексозы

    В этой группе моносахаридов есть шесть атомов углерода. Они также классифицируются в зависимости от того, где находится ваш карбонил:

    Алоса Это необычный моносахарид, который был получен только из листьев африканского дерева.

    Альтрозе Это моносахарид, содержащийся в некоторых штаммах бактерий. Butyrivibrio fibrisolvens.

    глюкоза состоит из карбонизированной цепи из шести атомов углерода и дополнен двенадцатью атомами водорода и шестью атомами кислорода.

    Манноза Он имеет состав, аналогичный глюкозе, и его основной функцией является производство энергии для клеток..

    Гулоса это искусственный моносахарид со сладким вкусом, который не сбраживается дрожжами.

    Хорошая является эпимером глюкозы и используется в качестве источника энергии внеклеточного матрикса клеток живых существ.

    галактоза является моносахаридом, который входит в состав гликолипидов и гликопротеинов и находится в основном в нейронах головного мозга.

    Талос другой искусственный моносахарид, который растворим в воде и имеет сладкий вкус

    -кетоз

    В зависимости от количества атомов углерода можно выделить дигидроксиацетон, образованный тремя атомами углерода, и эритрулозу, образованную четырьмя.

    Аналогичным образом, если они имеют пять атомов углерода и в зависимости от положения карбонила, мы находим рибулозу и ксилулозу. Сформированные из шести атомов углерода, мы имеем сикозу, фруктозу, сорбозу и тагатозу.

    Читайте также: