Золи и суспензии доклад

Обновлено: 19.05.2024

Ключевые слова конспекта: Дисперсные системы: дисперсная фаза и дисперсионная среда. Классификация дисперсных систем по агрегатному состоянию и размеру частиц дисперсной фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли. Тонкодисперсные системы: золи и гели. Синерезис и коагуляция.

В природе индивидуальные вещества почти не встречаются, а образуют различные смеси, в том числе и дисперсные системы (от лат. dispersus — рассеянный, рассыпанный). Но можно ли чистый горный воздух назвать такой системой? Очевидно, нет, потому что у него отсутствует такой важный признак, как гетерогенность (от лат. heterogenes — неоднородный по составу), т. е. поверхность раздела фаз веществ системы.

Агрегатные состояния дисперсной фазы и среды в двухкомпонентной дисперсной системе позволяют выделить восемь типов дисперсных систем.

  • Если размер частиц дисперсной фазы составляет от 1 до 100 нм, систему называют тонкодисперсной, или коллоидной системой.
  • Если размер частиц дисперсной фазы превышает 100 нм, систему называют грубодисперсной системой.

В свою очередь, грубодисперсные системы делятся на эмульсии, суспензии и аэрозоли.

Дисперсные системы

К эмульсиям относятся жиросодержащие продукты питания: молоко, сливки, сметана, сливочное масло, маргарин, майонез и др. Нерастворимые в воде жидкие растительные и твёрдые животные жиры, попадая в организм, под действием желчи разрушаются на мелкие капельки, образуя водную эмульсию. Эта эмульсия с помощью ферментов (например, липазы) гидролизуется до глицерина и жирных кислот, которые транспортируются в кровь.

В медицине широко применяются эмульсии, позволяющие оказать энергетическую поддержку ослабленному организму, которые готовят на основе растительного масла (оливкового, соевого или хлопкового). В фармацевтической и косметической промышленности эмульсиями являются многие лекарственные и косметические препараты. В сельском хозяйстве для борьбы с вредителями используют эмульсии пестицидов. В металлообработке эмульсии используются в качестве охлаждающих и смазочных жидкостей.

В суспензиях частицы фазы отражают видимый свет, а потому визуально они воспринимаются как мутные системы.

Если вы помогали проводить ремонт дома, хотя бы косметический, то суспензии вы использовали часто. Это вододисперсионные краски, цементный раствор, бетон (строительные растворы). Широко распространены суспензии среди косметических и гигиенических средств: кремы, мази, зубные пасты.

В медицинской практике для лечения кожных заболеваний используют суспензии, содержащие кальциевые, магниевые, цинковые и другие препараты, а также пасты — предельно концентрированные суспензии. В сельском хозяйстве ядохимикаты, пестициды, минеральные удобрения применяют в основном в виде суспензий.

В быту обычной практикой стало применение таких грубодисперсных систем, как аэрозоли.

Аэрозоли с жидкой дисперсной фазой называются туманами, а с твёрдой — дымами. К естественным туманам относятся некоторые виды облаков, в том числе пылевые. Разновидностью дыма является смог, который появляется в результате выбросов промышленных предприятий, авто– и авиатранспорта и пр.

Аэрозоли возникают при распылении различных пестицидов, освежителей воздуха, парфюмерных жидкостей и т. д.

Аэрозоли также широко распространены в различных сферах производства: порошковая металлургия, технология лакокрасочного производства и т. д.

Промежуточное положение между истинными растворами (молекулярными, ионными, молекулярно-ионными), т. е. растворами, в которых размер растворённых частиц меньше 1 нм, и грубодисперсными системами занимают тонкодисперсные системы, или коллоидные растворы.

К природным коллоидным системам относятся: почва, глина, природные воды, многие минералы и драгоценные камни.

Живые организмы представляют собой совокупность множества коллоидных систем, которые можно разделить на золи и гели.

К золям относится большинство жидкостей организма: кровь, лимфа, плазма крови, пищеварительные соки, слюна и др. Коллоидными растворами является содержимое клеток (цитоплазма, клеточный сок вакуолей, ядерный сок). В качестве дисперсной фазы в них выступают молекулы белков, жиров, холестерина, гормонов.

В золях можно наблюдать явление коагуляции, т. е. процесс укрупнения частиц дисперсной фазы и выпадение их в осадок.


Более плотные коллоидные системы живых организмов относятся к гелям.

Гели — это коллоидные системы с соприкасающимися частицами.

Со временем структура гелей нарушается — из них самопроизвольно выделяется вода. Это явление называется синерезисом. На его основе можно судить о качестве и сроках годности пищевых, медицинских и косметических продуктов.

Биологический синерезис происходит при свёртывании крови, в результате чего растворимый белок фибриноген превращается в нерастворимый — фибрин, образующий тромб, который закупоривает кровеносный сосуд. В этом случае коллоидный раствор белка превращается в гель, который уплотняется в результате синерезиса.

Визуально коллоидные и истинные растворы различают с помощью эффекта Тиндаля. При пропускании луча света через коллоидный раствор в нём возникает светящаяся дорожка из-за рассеивания света частицами дисперсной фазы. Частицы истинного раствора настолько малы, что не рассеивают свет. Подобное эффекту Тиндаля явление можно наблюдать при рассеивании лучей солнечного света частицами аэрозольного коллоида — воздуха.

Далеко не все вещества растворимы друг в друге, т. е. образуют истинные растворы. Конечно, можно искусственно измельчить одно вещество и распределить его в объеме другого, но в любом случае такая система будет гетерогенной. Например, можно разбить жидкость на мельчайшие капельки и распылить их в газовую среду (допустим, с помощью аэрозольного баллончика). Раствором полученную систему назвать нельзя, даже мельчайшая капелька жидкости будет отделена от газа поверхностью раздела двух фаз: жидкой и газообразной.

Аналогичную систему представляет собой зубная паста: мелкие частицы твердого вещества распределены в жидкости. Подобные системы веществ получили название дисперсных систем.

Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое распределено в объеме другого, называют дисперсной фазой. Второе вещество носит название дисперсионной среды.

В зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды различают восемь типов дисперсных систем.

2. Классификация дисперсных систем

По размеру частиц дисперсной фазы различают грубодисперсные системы (взвеси) с размером частиц более 500 нм и тонкодисперсные (коллоидные растворы или коллоиды) с размерами частиц от 1 до 500 нм.

Разновидность дисперсных систем.

Дисперсионная среда Дисперсная фаза Название дисперсной системы Примеры дисперсных систем
Газ Жидкость Аэрозоль Туман,облака, карбюраторная смесь бензина с воздухом в двигателе автомобиля.
Твердое вещество Аэрозоль Дым, смог, пыль в воздухе
Жидкость Газ Пена Газированные напитки, взбитые сливки
Жидкость Эмульсии Молоко, майонез, жидкие среды организма (плазма крови, лимфа), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золь, суспензия Речной и морской ил, строительные растворы, пасты.
Твердое вещество Газ Твердая пена Керамика, пенопласты, полиуретан, поролон, пористый шоколад.
Жидкость Гель Желе, желатин, косметические и медицинские средства (мази, тушь, помада)
Твердое вещество Твердый золь Горные породы, цветные стекла, некоторые сплавы.

2.1 Грубодисперсные системы

Коэффициент растворимости карбоната кальция (мел) очень мал (6,2-10" 4 г/100 г Н2 О).

Попробуем приготовить из этого вещества и воды дисперсную систему. Как можно более тщательно разотрем мел в Ступке, перенесем в стакан с водой и перемешаем. Получим мутную жидкость - дисперсную систему, называемую суспензией. Однако пройдет немного времени, и мел осядет на дно стакана, жидкость станет прозрачной. Под действием силы тяжести частицы твердого вещества седиментируют. Это aw кое доказательство того, что наша система получилась Грубодисперсной. Получить дисперсную систему карбонат кальция-вода можно химическим способом: пропусканием углекислого газа через известковую воду (раствор гидроксид кальция). При этом раствор мутнеет. Полученная система также грубодисперсна, через непродолжительное время в результате осаждения карбоната кальция она расслоится.

Грубодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой называют суспензиями. Суспензиями являются многие краски, побелка, строительные растворы (цементный раствор, бетон). Особую группу составляют грубодисперсные системы, в которых концентрация дисперсной фазы относительно велика. Примерами таких систем могут служить пасты (в том числе зубная), кремы, мази.

Суспензии, в которых седиментация идет очень медленно из-за малой разности в плотностях дисперсионной среды и дисперсной фазы, называют взвесями. Вода из грязной лужи, сколько ее не отстаивай, всегда остается мутноватой, в ней во взвешенном состоянии находятся мельчайшие частицы пыли.

Грубодисперсную систему можно получить из двух несмешивающихся друг с другом жидкостей. Если несколько капель растительного масла энергично взболтать в пробирке с несколькими миллилитрами воды, образуется мутная дисперсная система - эмульсия. Со временем она расслоится, поскольку представляет собой грубодисперсную систему.

Примерами эмульсий могут служить некоторые смазоно-охлаждающие жидкости, пестицидные препараты, лекарственные и косметические средства. Например, в медицинской практике применяются жировые эмульсии для энергетического обеспечения голодающего или ослабленного организма путем внутривенного вливания. Типичные биологические эмульсии - это капельки жира в лимфе, кровь. Млечный сок каучуконосных деревьев (латекс) - тоже эмульсия. В химической технологии широко применяют эмульсионную полимеризацию, как основной метод получения каучуков, полистирола, поливинилацетата.

2.2 Коллоидные системы

Коллоиды занимают промежуточное положение между грубодисперсными системами и истинными растворами.

На основании таблицы вы можете убедиться, что дисперсные системы чрезвычайно многообразны. Можно сказать, что они составляют основу всего живого мира. Распространенность их в быту, в технике, в промышленности также очень велика.

Большое значение имеют коллоидные системы для биологии и медицины. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложнейших взаимоотношениях друг с другом и окружающей средой. Цитоплазма клеток обладает свойствами, характерными как для жидких, так и студнеобразных веществ. С химической точки зрения организм в целом - это сложная совокупность многих коллоидных систем, включающих в себя и жидкие коллоиды, и гели.

Если частицы дисперсной фазы достаточно малы, коллоидная система напоминает истинный раствор, отсюда и происходит название - коллоидный раствор. Такая систем образуется, например, при растворении небольшого количества яичного белка в воде.

Коллоидные растворы, как правило, опалесцируют, т.е. рассеивают падающий свет за счет частиц дисперсной фазы, размеры которых сравнимы с длиной волны излучения. При этом коллоидный раствор при освещении как бы светится сам. Характерным проявлением опалесценции является эффект Тиндаля. Он заключается в появлении в коллоидном растворе светящейся дорожки при пропускании через него луча света. Такой эффект можно наблюдать, выпустив на луч лазерной указки немного аэрозоля.

Существует несколько основных способов получения коллоидных растворов. Первый из них - дисперсионный, а проще говоря, дробление вещества на мелкие частицы в дисперсионной среде или вне ее. Такое дробление можно осуществлять механически с помощью специальных машин - коллоидных мельниц. Так получают, например, тушь, жидкие акварельные, водоэмульсионные и вододисперсионные краски. Дробление можно производить при помощи электрического тока (коллоидные растворы серебра, золота, платины) или ультразвука (коллоидные растворы гипса, графита, смол).

Второй способ получения коллоидов - химический, он основан на проведении различных реакций, приводящих к образованию нерастворимых в жидкости веществ.

При сливании очень разбавленных растворов нитрата серебра и хлорида натрия удается получить коллоидный раствор хлорида серебра:

С помощью реакции взаимодействия растворов тиосульфата натрия и кислоты можно получить коллоидный раствор серы:

Восстановлением соли золота формальдегидом можно получить коллоидный раствор этого металла:

Важнейшими типами коллоидных систем являются золи и гели.

Золи - это коллоидные системы, в которых дисперсионной средой является жидкость, а дисперсной фазой - твердое вещество. Отдельные частицы золя изолированы друг от друга дисперсионной средой. С течением времени они могут укрупняться, сталкиваясь друг с другом. Такое явление получило название коагуляция. В результате действия силы тяжести такие частицы выпадают в осадок, происходит их седиментация.

Кроме коагуляции, при длительном хранении гидрофильные золи могут превращаться в гели - особое студнеобразное коллоидное состояние. При этом отдельные частицы золя связываются друг с другом, образуя сплошную пространствен ную сетку. Внутрь ячеек сетки попадают частицы растворителя. Получается, что дисперсная фаза и дисперсионная среда меняются ролями! Твердая фаза становится непрерывной, а частички жидкости - изолированными. Дисперсная система теряет свою текучесть, приобретая новые механические свойства. При нагревании гель может вновь превратиться в золь.

Гели широко распространены в нашей повседневной жизни. Любому известны пищевые гели (зефир, мармелад, холодец), косметические (гель для душа, кремы), медицин ские (мази, пасты). Однако немногие знают, что хрящи, сухожилия, волосы представляют собой органические гели, а опал, жемчуг, сердолик, хальцедон - минеральные.

Для некоторых гелей характерно явление синерезиса (или расслоения) - самопроизвольного выделения жидкости. При этом пространственная сетка геля уплотняется, ее объем уменьшается, образуется так называемый твердый коллош). Схематично описанные процессы представлены на рисунке.

Благодаря биологическому синерезису мы наблюдаем такое явлении, как свертывание крови, суть которого состоит в превращении растворимого белка фибриногена в нерастворимый - фибрин.

Процессы, изображенные на рисунке, являются обратимыми. Из твердого коллоида желатина (продукта белкового происхождения) при набухании в теплой воде образуется студнеобразный гель - желе. Но в кулинарных рецептах всегда предупреждают: нельзя доводить желе до кипения, иначе гель превратится в золь, и дисперсная система вновь приобретет текучесть.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении. Почему так происходит? Первая причина заключается в том, что мельчайшие коллоидные частицы за счет теплового движения постоянно сталкиваются с молекулами дисперсионной среды, изменяя направление движения, т. е. оседания не наблюдается. Но почему при столкновении частиц дисперсной фазы не происходит их коагуляция, укрупнение, что неизбежно привело бы к расслоению коллоида? Слипанию препятствует электрический заряд на поверхности коллоидных частиц, все они оказываются одноименно заряженными, что приводит к их взаимному отталкиванию. Остается выяснить, как же образуется этот заряд? Для этого рассмотрим строение коллоидной частицы.

2.2.3 Мицеллы

Частицы дисперсной фазы золей называют мицеллами. Если исключить влияние растворителя, в котором образуется коллоидная система, то упрощенную схему строения мицеллы золя хлорида серебра (при избытке хлорид-анионов) можно представить следующим образом. Предположим, что золь хлорида серебра получен сливанием сильно разбавленных растворов хлорида калия и нитрата серебра, причем хлорид калия взят в избытке.

При взаимодействии катионов серебра с хлорид-анионами образуются частицы нерастворимого в воде хлорида серебра. Поскольку растворы сильно разбавлены, микрокристаллы получаются коллоидных размеров, очень мелкие. Такой микрокристалл образует ядро мицеллы.

Рост кристалла прекращается, когда в растворе практически до нуля падает концентрация ионов серебра. Но хлорид-анионы присутствуют в избытке. Часть из них адсорбируется на поверхности ядра, достраивая его кристаллическую решетку. Хлорид-анионы в данном случае называют потенциалопределяющими ионами. Именно они обусловливают наличие отрицательного заряда агрегата ядра с избытком ионов С1-. Если бы в растворе присутствовал избыток нитрата серебра, потенциалопределяющими ионами были бы катионы Ag + .

Естественно, после возникновения заряда образовавшаяся частица начинает притягивать из раствора ионы с противоположным знаком - катионы калия (противоионы), образуется так называемый двойной электрический слой. Некоторая часть противоионов очень прочно притягивается к агрегату, образуя адсорбционный слой. Часть мицеллы, включающую ядро, потенциал определяющие ионы и адсорбционный слой, называют гранулой. Ионы К + , которые не входят в адсорбционный слой, слабее связаны с гранулой и могут диссоциировать в раствор. Они составляют диффузный слой противоионов.

В целом мицелла представляет собой электронейтральную частицу, но за счет перехода части ионов диффузного слоя в раствор гранулы имеют на поверхности избыточный отрицательный заряд, который и препятствует их коагуляции в более крупные частицы.

Строение мицеллы можно изобразить с помощью формулы. Последовательные шаги в составлении формулы мицеллы таковы.

1)Ядро мицеллы состоит из т частиц AgCl, образующих микрокристалл: m[AgCl].

2)Потенциалопределяющие ионы адсорбируются на поверхности ядра; предположим, что для нашего примера их число равно п: m[AgCl] • nСl-.

3)Затем следует слой противоионов. Их общее число так же равно п, однако часть (допустим, х) из них образуют диффузный слой, остальные (п - х) вместе с ядром и потенциалопределяющими ионами составляют гранулу. Часть формулы, относящуюся к грануле мицеллы, заключают в фигурные скобки. Заряд гранулы в данной мицелле равен х~. Таким образом, формула мицеллы золя хлорида серебра в избытке хлорид-анионов такова:

Список используемой литературы

1. Калоус В. Биофизическая химия. /Калоус В., Павличек З. – М., 1985 г.

2. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб. для вузов/Ю.А. Ершов, В.А. Попков, А.С. Берлянд и др.; Под. Ред. Ю.А. Ершова. – 2-е изд., испр. и доп.- М.: Высш. шк., 2000м – 560 с.: ил.

Золи и суспензии, а также их производные – гели и пасты – являются разновидностью одного и того же типа дисперсных систем – Т/Ж, которые различаются размерами и концентрацией дисперсной фазы. Наряду с общими свойствами эти системы имеют специфические, присущие только им свойства.

Золи (от нем. sol – коллоидный раствор) – это высокодисперсные коллоидные системы; размер частиц дисперсной фазы в золях составляет 10 -9 -10 -7 м (1-100 нм). Золи с водной дисперсионной средой называют гидрозолями, с органической – органозолями. Гидрозолем, например, является водопроводная вода, содержащая примеси в коллоидном состоянии.

Вследствие малого размера частицы дисперсной фазы золя находятся в постоянном тепловом движении, что способствует седиментационной устойчивости таких систем – распределение частиц по объему системы остается постоянным во времени.

Несмотря на высокие значения Gпов, золи могут быть агрегативно устойчивыми и не коагулировать сколь угодно долго. В этом случае их устойчивость к коагуляции обеспечивается образованием на частицах сольватных, адсорбционных или двойных электрических слоев, способствующих снижению межфазового натяжения и созданию потенциального барьера.

При разрушении защитных поверхностных слоев и снятии потенциального барьера золи, как и все лиофобные дисперсные системы, становятся агрегативно неустойчивыми и коагулируют.

Суспензии (от лат. suspendo – подвешиваю) – это дисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой. Суспензии являются средне- и грубодисперсными системами. Этим они качественно отличаются от золей.

Суспензии являются более агрегативно устойчивыми системами по сравнению с золями, так как содержат крупные частицы (а > 10 -7 м), следовательно, их удельная поверхность и свободная поверхностная энергия невелики. Однако из-за большого размера частицы не могут участвовать в тепловом движении, что обусловливает седиментационную неустойчивость суспензий.

Агрегативная устойчивость суспензий обеспечивается сродством дисперсной фазы и дисперсионной среды и наличием стабилизаторов.

Если частицы дисперсной фазы хорошо смачиваются дисперсионной средой, то возле их поверхности образуется сольватная оболочка, которая препятствует слипанию частиц. В этом случае стабилизатор не требуется. Агрегативно устойчивыми являются суспензии полярных частиц в полярных жидкостях или неполярных – в неполярных. Например, суспензия кварца в воде.

Если частицы суспензии плохо смачиваются дисперсионной средой, то для повышения агрегативной устойчивости суспензии требуется стабилизатор. Механизм действия стабилизатора зависит от его природы.

Механизм стабилизации суспензий коллоидными ПАВ и ВМС аналогичен механизму стабилизации эмульсий – адсорбция на межфазной поверхности и образование адсорбционных пленок. Стабилизирующее действие коллоидных ПАВ проявляется тем сильнее, чем больше разница полярности дисперсной фазы и дисперсионной среды.

Например, для стабилизации суспензии сажи в воде можно использовать натрий олеиновокислый, молекула которого своей неполярной частью адсорбируется на поверхности частиц сажи, а полярной частью ориентируется в полярную фазу – воду. В результате поверхность сажи становится гидрофильной, то есть приобретает способность смачиваться водой и агрегативная устойчивость суспензии повышается.

Выбор ПАВ для стабилизации суспензий, так же как и для эмульсий, осуществляют исходя из значения ГЛБ. Для стабилизации суспензий с неполярной дисперсионной средой применяют ПАВ с низкими значениями ГЛБ (3 - 6), например, лецитин, ланолин и т.д. Если дисперсионной средой суспензии является полярная жидкость, то в качестве стабилизаторов используют ПАВ с ГЛБ = 8 - 13, например, соли высших карбоновых кислот.

При использовании ВМС в качестве стабилизатора существенный вклад в повышение агрегативной устойчивости вносит энтропийный фактор. При сближении частиц уменьшается число возможных конформаций макромолекул в защитных оболочках, что приводит к снижению энтропии системы, поэтому частицы стремятся оттолкнуться друг от друга.

В качестве стабилизаторов часто применяют белки, альгинаты, карбоксиметилцеллюлоза и др.

Высококонцентрированные золи называют гелями, а высококонцентрированные суспензии – пастами. Гели и пасты являются структурированными системами.Из-за наличия структуры они обладают рядом новых свойств, называемых структурно-механическими, – вязкостью, упругостью, пластичностью.

В отличие от суспензий пасты являются седиментационно-устойчивыми системами. Под агрегативной устойчивостью паст подразумевается их способность сохранять неизменной во времени пространственную структуру – толщину прослоек жидкости и прочность контакта в структурной сетке. Уменьшению толщины прослоек препятствует структурирование, которое усиливается при использовании стабилизаторов.

В природных условиях образование суспензий происходит при размывании почв и грунтов водой, загрязнении водоемов атмосферной пылью. Суспензии широко используют в строительной технологии, в производстве керамики, пластмасс, лакокрасочных материалов, бумаги и др. В виде суспензий применяют некоторые удобрения и пестициды, многие лекарственные препараты. Суспензиями являются многие пищевые продукты и полупродукты, например, помадные, шоколадные и ореховые массы, какао тертое, фруктово-ягодное пюре, некоторые молочные напитки и соевое молоко, горчица.

Вязкие тела текут при любом напряжении сдвига t ( R t ) :

F - сила вязкого сопротивления, В - площадь, на которую распространяется действие этой силы.

Течение вязких тел определяется законом Ньютона:

Р t = h ( d g / d P t ) , F = h В( d g / d P t ) (13.2)

где h - коэффициент вязкости, d g / d P t -изменение деформации сдвига во времени (скорость деформации).

Если обозначить скорость деформации через g . , то вязкость системы:

Вязкость свободнодисперсных систем растет по мере увеличения концентрации дисперсной фазы. Присутствие частиц дисперсной фазы приводит к искажению потока жидкости вблизи этих частиц, что влияет на вязкость. Если концентрация незначительна и столкновения исключаются, то характер движения жидкости около одной частицы не влияет на характер движения жидкости около другой частицы. В этих условиях для определения вязкости свободнодисперсных систем можно воспользоваться уравнением Эйнштейна:

h , h 0 - вязкость свободнодисперсной системы и дисперсионной среды, u об - объемная концентрация дисперсной фазы, к - коэффициент, зависящий от формы частиц (для сферической формы к = 2,5).

Формула Эйнштейна справедлива при отсутствии деформации частиц, если концентрация дисперсной фазы не превышает 6%.

При увеличении объемной концентрации до 30% можно пользоваться формулой:

При сопоставлении формул 13.4 и 13.5 видно, что по мере увеличения концентрации частиц линейная зависимость между вязкостью и

концентрацией нарушается. Тем не менее, вязкость подобных систем при данной концентрации остается постоянной. Подобные системы называются ньютоновскими.

Течение и вязкость неньютоновских жидкостей, которые называют еще аномальными жидкостями, зависят от внешнего воздействия (напряжения сдвига). Вязкость является величиной переменной для данной концентрации и уже не определяется соотношениями 13.2 и 13.3.

Рассмотрим особенности движения структурированных систем (рис.13.1).


Рис.13.1.Зависимость скорости течения (а) и коэффициента вязкости (б) от внешнего усилия Р.

Р r - предел прочности, Рх1 - предел упругости, Рх2 -условный предел прочности, Р m - напряжение полного разрушения структуры, h макс - вязкость неразрушенной структуры, h мин - наименьшая вязкость предельно разрушенной структуры.

Кривые h = f (Р) - полные реологические кривые течения структурированных дисперсных систем. Каждое значение вязкости на этих кривых соответствует равновесному состоянию систем в стационарном ламинарном потоке.

Четыре состояния структурированных систем:

1. 0 P Р x1x1 - предел упругости). В этом состоянии течение отсутствует, и внешнее воздействие не может нарушить прочность системы.

2. Р > Р x 1 - система начинает течь. Скорость перемещения незначительна, связи между частицами после их разрушения успевают восстановиться. Структура не разрушается. Подобное перемещение называют ползучестью. Вязкость системы в данной зоне наибольшая. Скорость движения в данной зоне:

к - коэффициент, характеризующий структурные особенности дисперсной системы.

Необратимое разрушение системы начинается на границе зон 2 и 3, а на границе участков 3 и 4 оно заканчивается. В этом состоянии дисперсной системы связи между частицами не восстанавливаются, вязкость снижается, скорость движения системы увеличивается. Для этого случая скорость системы:

На участке 4 структура разрушается полностью, минимальная вязкость - полное разрушение системы. На рисунке приведены реологические кривые для твердообразных тел, для жидкообразных систем - пунктирная линия 1а.

Изменение вязкости структурированных жидкостей широко используется на практике.

ВИДЫ ДИСПЕРСНЫХ СИСТЕМ. ЗОЛИ И СУСПЕНЗИИ

Золи и суспензии, а также их производные - гели и пасты - разновидности одного и того же типа дисперсных систем - Т/Ж, различаются они размером частиц дисперсной фазы.

Золи - высокодисперсные системы, их называют еще коллоидными растворами. В зависимости от дисперсионной среды делятся на гидрозоли (вода) и органозоли (органическая среда).

Помимо твердых частиц, дисперсная фаза золей может формироваться из мицелл - электрически нейтральных агрегатов ионов дисперсной среды.

Суспензии - средне- и грубодисперсные системы.

Золи - седиментационно-устойчивые системы, суспензии - седиментационно-неустойчивы.

Особенно резко различаются оптические свойства золей и суспензий. Золи способны рассеиваться по закону Рэлея, а действие света на суспензии происходит по законам геометрической оптики.

Общие свойства золей и суспензий определяются границей раздела фаз Т/Ж, на которой происходят адсорбционные процессы и образуется ДЭС. Больший размер частиц у суспензий приводит к тому, что электроосмос, потенциал седиментации и течения у них выражен слабо, а электрофорез - отсутствует.

ПАСТЫ, ГЕЛИ И ОСАДКИ

При увеличении концентрации частиц дисперсной фазы системы из свободнодисперсных превращаются в связанодисперсные. Связнодисперсные системы, в которые переходят суспензии, называются пастами. Золи переходят в гели. Пасты и гели образуют структуры, для них характерны структурно-механические свойства.

Пасты - концентрированные суспензии или осадок, который образуется при потере суспензией седиментационной устойчивости. Кроме того, пасты могут быть приготовлены искусственно путем растирания твердых тел в жидкой среде.

Осадки золей могут переходить обратно в коллоидный раствор - пептизация (процесс, обратный коагуляции - распад агрегатов до первичных частиц).

Пептизация может протекать под действием электролитов, при этом восстанавливается ДЭС, повышается дзета-потенциал, а силы электростатического отталкивания преобладают над силами межмолекулярного взаимодействия. Пептизация может также происходить под действием растворов ПАВ, молекулы которых адсорбируются на границе раздела фаз и образуют адсорбционные слоя, которые противодействуют сближению частиц.

Пептизация протекает с определенной скоростью и зависит от концентрации электролита-пептизатора (рис.13.2)

Рис.13.2.Изменение массы перешедшего в раствор осадка в зависимости от концентрации пептизатора.

В начале процесса при незначительной концентрации пептизатора перехода осадка в раствор не т (участок 1) - происходит адсорбция пептизатора на поверхности частиц. По мере увеличения концентрации пептизатора (участок 2) количество осадка, перешедшего в коллоидный раствор, возрастает. При дальнейшем увеличении концентрации пептизатора весь осадок переходит в коллоидный раствор (участок 3).

Золи относятся к высокодисперсным системам; их называют коллоидными растворами. Кроме того, в зависимости от дисперсионной среды различают гидрозоли (вода) и органозоли (органическая среда); расплавы, содержащие высокодисперсные частицы, относятся к пирозолям. С изучения свойств золей зародилась коллоидная химия.

Помимо частиц дисперсная фаза золей может формироваться из мицелл — электрически нейтральных агрегатов ионов дисперсионной среды, размеры которых соответствуют размерам частиц высокодисперсных систем, т.е. 1—100 нм (см. параграф 7.2); кроме того, мицеллы образуют растворы коллоидных ПАВ (см. параграф 21.2).

Суспензии являются средне- и грубодисперсными системами. В этом они качественно отличаются от золей. Сравнительную характеристику золей и суспензий как дисперсных систем типа Т/Ж можно представить следующим образом:

Золи Суспензии

Класс дисперсных Высоко- Средне- и грубо-
систем дисперсные дисперсные

Седиментационная Обладают Не обладают
устойчивость

Молекулярно- Проявляются Проявляются слабо
кинетические в полной мере
свойства

Электрокинетические То же Проявляются
явления частично

Рассеяние света Имеет место Отсутствует

Адсорбция и То же Имеет место
образование ДЭС

Связнодисперсные Гели Пасты
системы

Золи — это седиментационно-устойчивые системы. Жидкая дисперсионная среда золей позволяет молекулярно-кинетическим явлениям проявиться наиболее интенсивно (см. рис. 1.2, кривая 1). Суспензии, наоборот, седиментационно-неустойчивы; молекулярно-кинетические явления их выражены слабо (см. гл. 9). При одной и той же массовой концентрации vм удельная поверхность частиц золя значительно превышает удельную поверхность частиц суспензии (см. рис. 1.2, кривая 2), что обусловливает интенсивность всех поверхностных явлений.

Особенно резко различаются оптические свойства золей и суспензий. Золи способны рассеивать свет по закону Рэлея, а суспензии преимущественно поглощают свет (см. параграф 8.2).

Общие свойства золей и суспензий определяются границей раздела фаз Т—Ж, на которой происходят адсорбционные процессы и образуется двойной электрический слой. Больший размер частиц суспензий по сравнению с размером частиц золей приводит к тому, что электроосмос и потенциал течения для суспензий выражен слабо, а электрофорез практически невозможен (см. гл. 7 ).3оли могут быть лиофильными и лиофобными (см. параграф 10.4). K лиофобным агрегативно неустойчивым относятся гидрозоли платины, золота, серебра и сульфидов.

Гидрофильными агрегативно устойчивыми золями являются мицеллы коллоидных IIAB (см. гл. 21), красители, а применительно к пищевым массам - высокодисперсные частицы муки, белки, углеводы, пектин, мякоть томатного сока. К суспензиям относятся зародыши и мезга кукурузного крахмала, продукты изомеризации жирных кислот и пигменты неочищенного растительного масла.

В ржаной отбойной муке, например, содержится 4—6% растворимых коллоидов. Гидрофильность, т.е. сродство к воде золей различных видов муки, возрастает в ряду соевая > гороховая > ржаная > пшеничная > гречишная > картофельная. Суспензии часто получают в процессе приготовления пищи (например, протертые супы).

Суспензии используются для осуществления некоторых технологических процессов. Адсорбционное рафинирование (отбеливание) растительного масла основано на использовании суспензии, которая образуется из частичек бентонитовых глин, выполняющих роль адсорбента.

Пасты, гели и осадки как структурированные системы

При увеличении концентрации частиц дисперсной фазы системы из свободнодисперсных превращаются в связнодисперсные. Связнодисперсные системы, в которые переходят суспензии, называют пастами. Золи переходят в гели. Пасты и гели образуют структуры, и для них характерны структурно-механические свойства, которые были рассмотрены ранее (см. гл. 11).

Пасты представляют собой концентрированные суспензии или осадок, который образуется в результате потери суспензией седиментационной устойчивости. Кроме того, пасты могут быть приготовлены искусственно путем растирания твердых тел или порошков в жидкой среде.

Осадки золей в отличие от осадков суспензий могут переходить обратно в коллоидный раствор.

Этот процесс, обратный коагуляции, т.е. распад агрегатов до первичных частиц и переход части осадка во взвешенное состояние, называется пептизацией. Для высокодисперсных систем динамическое равновесие между коагуляцией и пептизацией можно представить следующим образом:

где Е — энергия связи между частицами; z — координационное число частицы в пространстве агрегата; V1 — объем, приходящийся на одну частицу; Vэ — эффективный объем, в котором происходит смещение частиц относительно положения равновесия в агрегатах; k — постоянная Больцмана.

Для лиофильных дисперсных систем, которые характеризуются низким межфазовым поверхностным натяжением и незначительной энергией связи Е, реализуется условие 0,5 zE 74%.

В разбавленных эмульсиях концентрация дисперсной фазы незначительна. Поэтому их свойства (вязкость, плотность и др.) мало отличаются от свойств дисперсионной среды.

Стремление поверхностной энергии к минимуму (см. рис. 2.4) вследствие подвижности жидкой границы в эмульсиях приводит к самопроизвольному снижению поверхности раздела фаз. По этой причине капли разбавленных и концентрированных эмульсий приобретают шарообразную форму.

Объемная концентрация vоб, равная 74%, является рубежом, характеризующим переход концентрированной эмульсии в высококонцентрированную. При vоб менее 74% частицы дисперсной фазы способны сохранять сферическую форму и плотную упаковку частиц одного и того же размера. Плотная упаковка означает расположение частиц дисперсной фазы таким образом, что объем дисперсионной среды, становится минимальным.

При концентрации дисперсной фазы выше 74% наблюдается деформация капель дисперсной фазы, их сферичность нарушается, а эмульсии приобретают новые свойства. Жидкие пленки превращаются в многогранники, сформированные из дисперсионной среды. Высококонцентрированные эмульсии могут содержать до 99% дисперсной фазы. Подобные эмульсии образуют структуру, способны сохранять свою форму, и не растекаются. Именно к эмульсиям такого типа относятся сливочное масло, маргарин и различные кремы.

Значительная часть эмульсий относится к средне- и грубодисперсным системам, размеры частиц дисперсной фазы которых превышают 1 мкм. Майонез, например, представляет собой концентрированную прямую эмульсию (vоб = 40¸ 70%) в воде типа М/В. Размеры жировых шариков колеблются в пределах 1—10 мкм.

В настоящее время все большее значение приобретают микроэмульсии; дисперсная фаза таких эмульсий состоит из набухших мицелл коллоидных ПАВ (см. параграфы 21.4 и 21.5). Поэтому микроэмульсии называют еще мицеллярными эмульсиями. Размер мицелл дисперсной фазы этих эмульсий составляет 10—100 нм, что соответствует высокодисперсным системам. Микроэмульсии обычно устойчивы. Концентрация vоб может достигать 50%, что соответствует концентрированным эмульсиям.

Устойчивость эмульсий

Устойчивость эмульсий, как и других дисперсных систем — в том числе и с жидкой дисперсионной средой, определяет время их жизни и является важнейшим фактором, обусловливающим применение эмульсий. Однотипность агрегатного состояния двух смежных фаз определяет особенности устойчивости эмульсий.

Эмульсии могут быть лиофильными и лиофобными. Лиофильные эмульсии термодинамически устойчивы и образуются самопроизвольно путем диспергирования массы жидкости до капель определенного размера. Лиофильных эмульсий немного.

Большинство эмульсий относится к лиофобным системам. Они термодинамически неустойчивы, не могут образовываться самопроизвольно, существовать длительное время и нуждаются в стабилизации. Разрушение и потеря агрегативной устойчивости эмульсий проходят в несколько стадий. Первая из них обусловлена контактом между собой по крайней мере двух капель. Вероятность подобного контакта для разбавленных эмульсий незначительна; по этой причине лиофобные разбавленные эмульсии обладают относительно большой агрегативной устойчивостью.

Процесс разрушения эмульсии после контакта капель схематически был показан ранее на рис. 10.3. После коагуляции капель 1 образуются агрегаты 2 (вторая стадия), которые в результате коалесценции могут сливаться в одну большую каплю 3. Коалесценцию можно рассматривать как третью стадию процесса разрушения эмульсий,

Концентрированные и высококонцентрированные эмульсии, относящиеся к лиофобным системам, агрегативно неустойчивы. Электростатические силы отталкивания, которые действуют между частицами в эмульсиях, незначительны. На границе раздела жидкость — жидкость поверхностный заряд распределяется диффузно в обеих жидких фазах. Это приводит к значительному снижению электрического φ-потенциала и слабому электростатическому отталкиванию (см. рис. 7.3).

После контакта твердых частиц дисперсной фазы суспензий и золей граница раздела фаз сохраняется, а после столкновения капель эмульсий в результате коалесценции граница раздела фаз между каплями исчезает. Это обстоятельство также определяет меньшую устойчивость эмульсий по сравнению с суспензиями и особенно c золями. Устойчивость эмульсий зависит от ряда причин: поверхностного межфазового натяжения на границе двух жидкостей σЖЖ, а также свойств и структуры граничных слоев, окружающих капли дисперсной фазы.

С учетом элементарного акта взаимодействия капель, условий самопроизвольного диспергирования жидкости, баланса сил притяжения и отталкивания (см. рис. 10.5) разработан ряд критериев, определяющих агрегативную устойчивость дисперсных систем, в том числе и эмульсий.

В случае, когда исчезает межфазовая граница и имеет место коалесценция, таким критерием агрегативной устойчивости может быть критическое значение межфазового поверхностного натяжения, которое, согласно Ребиндеру-Щукину, составляет

где γ — числовой коэффициент, значения которого равны примерно 10 –7 ; k — постоянная Больцмана; а — диаметр частиц.

Критическое значение межфазового поверхностного натяжения согласно Ли и Тадроса может быть рассчитано следующим образом:

σ к жж ≤ ΔF * /(2ка 2 ), (15.3)

где — среднее координационное число упаковки, определяющее число контактов частицы с соседними частицами: ΔF * — свободная энергия Гельмгольца, характеризующая процесс диспергирования (свободная энергия диспергирования).

Условия (15.2) и (15.3) позволяют определить критическое межфазовое поверхностное натяжение, ниже которого возможно самопроизвольное диспергирование (переход лиофобных систем в лиофильные). По расчетам авторов, такой переход, согласно условию (15.2), возможен, когда дисперсная фаза формируется из капель диаметром 0.01 мкм, при значении межфазового поверхностного натяжения, равном десятым и даже сотым долям мДж/м 2 . Если ΔF * = 10kT, размер капель 0,01 мкм, а координационное число z равно 6, то, согласно условию (15.3), критическое межфазовое поверхностное натяжение будет составлять десятые доли мДж/м 2 .

Для коагуляции, когда между контактирующими каплями сохраняется слой жидкости и имеет место paсклинивающее давление (см. рис. 10.5), в случае ближнего минимума и при минимальной толщине слоя жидкости В.Г.Бабаком получен следующий критерий агрегативной устойчивости (КАУ):

где ΔF(h) — свободная энергия процесса диспергирования, выраженная через энергию Гельмгольца в зависимости от расстояния h между каплями; r n— радиус действия сил притяжения.

В условии (15.4) в отличие от (15.2) и (15.3) не фигурирует межфазовое поверхностное натяжение.

Ранее было показано (см. параграф 10.6), что межфазовое поверхностное натяжение не может однозначно характеризовать агрегативную устойчивость эмульсий. Форма изотермы расклинивающего давления (см. рис. 10.5, б) и внешнее давление, осуществляющее прижим и деформацию капель, влияют на агрегативную устойчивость. Снижение межфазового поверхностного натяжения способствует агрегативной устойчивости в том случае, если на изотерме расклинивающего давления отсутствует потенциальный барьер. В противоположном случае, т.е. при наличии этого барьера, снижение межфазового поверхностного натяжения не приводит к росту агрегативной устойчивости.

В условие (10.35), определяющее устойчивость эмульсий, входит внешняя сила рк, которая вызывает деформацию капель, а работа деформации может в 1000 раз превышать равновесное расклинивающее давление, что и объясняет неоднозначное влияние межфазового поверхностного натяжения на агрегативную устойчивость эмульсий.

Лиофобные эмульсии нуждаются в повышении их агрегативной устойчивости, чего можно достигнуть введением веществ, называемых эмульгаторами и способных стабилизировать эмульсии.

Эмульгаторы порой определяют не только устойчивость, но и тип эмульсии. В зависимости от взаимодействия с жидкой фазой эмульгаторы могут быть гидрофобные и гидрофильные.

Наиболее распространенными гидрофильными эмульгаторами являются ПАВ. Такие ПАВ, как натриевые соли жирных кислот и аналогичную соли других щелочных металлов лучше растворяются в воде, чем в углеводородах. Они способны стабилизировать прямую эмульсию типа М/В (рис. 15.2, а). Полярные радикалы образующегося на границе раздела фаз адсорбционного слоя ПАВ находятся на наружной стороне капель масла, препятствуя тем самым их сближению. Эти же вещества в эмульсиях обратного типа В/М адсорбируются на внутренней поверхности капель воды (см. рис. 15,2, б), а образующийся адсорбционный слой является слабым препятствием для слипания капель. Поэтому стабилизация обратных эмульсий производится при помощи ПАВ, которые лучше растворяются в масле, чем в воде.

Ориентация адсорбционного слоя ПАВ происходит в соответствии с правилом уравнивания полярности Ребиндера (см. рис. 6.4): полярная группа молекул ПАВ обращена к полярной жидкости, а неполярный радикал — к неполярной. В связи с этим для прямой эмульсии (см. рис. 15.2, а) полярная часть молекул ПАВ будет обрамлять наружную поверхность капли, а в случае обратной эмульсии (см. рис. 15.2, б) — ее внутреннюю поверхность.

Эффективность эмульгатора можно характеризовать соотношением между гидрофильной и гидрофобной частями молекул ПАВ. Гидрофильные свойства определяются взаимодействием полярных групп молекул ПАВ с водой. Гидрофобный радикал молекул ПАВ обусловливает лиофильное взаимодействие между неполярной цепью молекул ПАВ и маслом. Лиофильное взаимодействие радикала ПАВ и масла будет гидрофобным по отношению к воде. Иными словами, в этих условиях радикал ПАВ хорошо взаимодействует с маслом и плохо — с водой.

Поверхностная активность определяется соотношением между гидрофильной и гидрофобной частями молекул ПАВ, Для короткоцепочечных ПАВ (рис. 15.3, а) преобладает гидрофильное взаимодействие, в результате которого молекулы втягиваются в воду. Противоположный эффект обнаруживается в случае длинноцепочечных молекул ПАВ. Гидрофобное взаимодействие по отношению к воде и лиофильное — к маслу обусловливают нахождение этих молекул в масле (см. рис. 15.3, б). Уравновешивание гидрофильного и лиофильного взаимодействий, так называемый гидрофильно-липофильный баланс (ГЛБ), т.е. определенное оптимальное соотношение действия воды и масла на молекулы ПАВ, определяет условия образования адсорбционного слоя на границе раздела двух жидкостей (см. рис. 15.3, в).

Гидрофильно-липофильный баланс является эмпирической безразмерной величиной

где b — безразмерный параметр, зависящий от природы ПАВ; ψ — свободная энергия взаимодействия в расчете на одну –СН2– группу; v — число групп –СH2– в углеводородном радикале (групповое число); а — сродство полярной группы молекулы ПАВ к воде.

Величина (b + ψv) характеризует сродство (свободную энергию взаимодействия) неполярных групп молекул ПАВ к углеводородной жидкости.

Число ГЛБ — есть отношение работы адсорбции молекул ПАВ на границе М-В из фазы масло [числитель формулы (15.5)] к работе адсорбции из водной фазы (знаменатель этой формулы). По значению ГЛБ определяют групповое число (число групп –СН2–) в углеводородном радикале молекулы ПАВ, обусловливающее адсорбцию ПАВ на границе М—В (рис. 15.З, в). Максимальная эмульгирующая способность зависит от свойств полярной гидрофильной части молекулы ПАВ и для мыла (стеаратов, олеатов и др.) она реализуется, когда групповое число составляет 12—18.

Адсорбционные слои ПАВ на границе раздела жидких фаз являются одним из факторов устойчивости эмульсий. Между углеводородными определенно ориентированными радикалами молекул ПАВ в адсорбционном слое возникают гидрофобные взаимодействия (см. параграф 5.5). Эти взаимодействия способствуют устойчивости эмульсий. Кроме того, адсорбционные слои ПАВ могут изменять межфазовое поверхностное натяжение, образовывать структуры и формировать структурно-механический барьер (см. параграф 10.8). Все эти факторы в совокупности могут препятствовать сближению капель и способствовать сохранению агрегативной устойчивости эмульсий.

Таким образом, действие адсорбционных слоев ПАВ, экранирующих границу раздела фаз эмульсий, неоднозначно и зависит от свойств ПАВ и жидкостей, образующих эмульсию.

Роль эмульгаторов могут выполнять измельченные порошки, размер частиц которых меньше капелек эмульсии. Действие твердых эмульгаторов основано на избирательном смачивании частиц порошков водой и маслом. Гидрофильные порошки (глина, бентонит, каолин, некоторые оксиды, карбонаты и сульфаты) лучше смачиваются водой и закрепляются со стороны водной фазы. Защитный слой таких частиц у прямой эмульсии образуется со стороны дисперсионной среды (рис. 15.4, а), а у обратной — со стороны дисперсной фазы (см. рис. 15.4, б). Положение гидрофобных частиц, которые не смачиваются водой, а смачиваются маслом, обратное тому, которое показано на рис. 15.4, — они обрамляют поверхность масла. В прямых эмульсиях слой частиц находится в дисперсной фазе, а в обратных — в дисперсионной среде. Гидрофобными порошкообразными эмульгаторами являются сажа, сульфиды тяжелых металлов (PbS, MoS2 и др.), твердые, богатые углеродом части битумов и сырой нефти.

Действие порошков эмульгаторов обеспечивается особым положением частиц на границе раздела двух жидких фаз. Это положение в отношении гидрофильной сферической частицы, погруженной в воду, показано на рис. 15.4, в. Для гидрофильной поверхности частицы краевой угол по отношению к воде θв меньше краевого угла по отношению к маслу θм, т.е. θв

Читайте также: