Ядро операционной системы доклад

Обновлено: 05.05.2024

Windows – одна из наиболее многогранных и гибких ОС, она работает на совершенно разных архитектурах и доступна в разных вариантах. На сегодня она поддерживает архитектуры x86, x64, ARM и ARM64. Windows в своё время поддерживала Itanium, PowerPC, DEC Alpha и MIPS. Кроме того, Windows поддерживает целый набор SKU, работающих в различных условиях; от дата-центров, ноутбуков, Xbox и телефонов до встраиваемых версий для интернета вещей, например, в банкоматах.

Самый удивительный аспект состоит в том, что ядро Windows практически не меняется в зависимости от всех этих архитектур и SKU. Ядро динамически масштабируется в зависимости от архитектуры и процессора, на котором оно работает, так, чтобы пользоваться всеми возможностями оборудования. Конечно, в ядре присутствует определённое количество кода, связанного с конкретной архитектурой, однако его там минимальное количество, что позволяет Windows запускаться на разнообразных архитектурах.

В этой статье я расскажу об эволюции ключевых частей ядра Windows, которые позволяют ему прозрачно масштабироваться от чипа NVidia Tegra низкого потребления, работающего на Surface RT 2012 года, до гигантских монстров, работающих в дата-центрах Azure.

Менеджер задач Windows, работающий на пререлизной машине класса Windows DataCenter, с 896 ядрами, поддерживающими 1792 логических процессора и 2 Тб памяти

Эволюция единого ядра

Перед тем, как обсудить детали ядра Windows, сделаем небольшое отступление в сторону рефакторинга. Рефакторинг играет ключевую роль в увеличении случаев повторного использования компонентов ОС на различных SKU и платформах (к примеру, клиент, сервер и телефон). Базовая идея рефакторинга – позволить повторно использовать одни и тем же DLL на разных SKU, поддерживая небольшие модификации, сделанные специально под нужный SKU, не переименовывая DLL и не ломая работу приложений.

Базовая технология рефакторинга Windows – мало документированная технология под названием "наборы API". Наборы API – это механизм, позволяющий ОС разъединять DLL и место их применения. К примеру, набор API позволяет приложениям для win32 продолжать пользоваться kernel32.dll, притом, что реализация всех API прописана в другой DLL. Эти DLL с реализацией также могут отличаться у разных SKU. Посмотреть наборы API в деле можно, запустив обход зависимостей на традиционной Windows DLL, например, kernel32.dll.

Закончив это отступление по поводу строения Windows, позволяющего системе максимизировать повторное и совместное использование кода, перейдём к техническим глубинам запуска ядра по планировщику, являющегося ключом к масштабированию ОС.

Компоненты ядра

Windows NT – это, по сути, микроядро, в том смысле, что у него есть своё core Kernel (KE) с ограниченным набором функций, использующее исполняемый уровень (Executive layer, Ex) для выполнения всех политик высокого уровня. EX всё ещё является режимом ядра, так что это не совсем микроядро. Ядро отвечает за диспетчеризацию потоков, синхронизацию между процессорами, обработку исключений аппаратного уровня и реализацию низкоуровневых функций, зависящих от железа. Слой EX содержит различные подсистемы, обеспечивающие набор функциональности, который обычно считается ядром – IO, Object Manager, Memory Manager, Process Subsystem, и т.д.

Чтобы лучше представить себе размер компонентов, вот примерное разбиение по количеству строк кода в нескольких ключевых каталогах дерева исходников ядра (включая комментарии). В таблицу не вошло ещё много всего, относящегося к ядру.

Подсистемы ядра Строк кода
Memory Manager 501, 000
Registry 211,000
Power 238,000
Executive 157,000
Security 135,000
Kernel 339,000
Process sub-system 116,000

Более подробная информация об архитектуре Windows содержится в серии книг “Windows Internals”.

Планировщик

Подготовив таким образом почву, давайте немного поговорим о планировщике, его эволюции и том, как ядро Windows умеет масштабироваться на такое количество различных архитектур с таким большим количеством процессоров.

Поток – это базовая единица, исполняющая программный код, и именно её работу планирует планировщик Windows. Решая, какой из потоков запустить, планировщик использует их приоритеты, и в теории, поток с наивысшим приоритетом должен запускаться на системе, даже если это означает, что потокам с более низким приоритетам времени не останется.

У планировщика Windows изначально была одна очередь готовности, из которой он выбирал следующий, наивысший по приоритету поток для запуска. Однако с началом поддержки всё большего количества процессоров, единственная очередь превратилась в узкое место, и примерно в районе выхода Windows Server 2003 планировщик поменял работу и организовал по одной очереди готовности на процессор. При переходе на поддержку нескольких запросов на один процессор единую глобальную блокировку, защищающую все очереди, делать не стали, и разрешили планировщику принимать решения на основе локальных оптимумов. Это означает, что в любой момент в системе работает один поток с наивысшим приоритетом, но не обязательно означает, что N самых приоритетных потоков в списке (где N – число процессоров) работают в системе. Такой подход оправдывал себя, пока Windows не начала переходить на CPU с низким энергопотреблением, например, на ноутбуки и планшеты. Когда на таких системах поток с наивысшим приоритетам не работал (например, поток переднего плана интерфейса пользователя), это приводило к заметным глюкам интерфейса. Поэтому в Windows 8.1 планировщик перевели на гибридную модель, с очередями для каждого процессора для потоков, связанных с этим процессором, и разделяемой очередью готовых процессов для всех процессоров. Это не сказалось на быстродействии заметным образом благодаря другим изменениям в архитектуре планировщика, например, рефакторингу блокировки базы данных диспетчера.

В Windows 7 ввели такую вещь, как динамический планировщик со справедливыми долями (Dynamic Fair Share Scheduler, DFSS); это в первую очередь касалось терминальных серверов. Эта особенность пыталась решить проблему, связанную с тем, что одна терминальная сессия с высокой загрузкой CPU могла повлиять на потоки в других терминальных сессиях. Поскольку планировщик не учитывал сессии и просто использовал приоритет для распределения потоков, пользователи в разных сессиях могли повлиять на работу пользователей в других сессиях, задушивая их потоки. Также это давало несправедливое преимущество сессиям (и пользователям) с большим количеством потоков, поскольку у сессии с большим количеством потоков было больше возможностей получить процессорное время. Была сделана попытка добавить в планировщик правило, по которому каждую сессию рассматривали на равных с другими по количеству процессорного времени. Подобная функциональность есть и в ОС Linux с их абсолютно честным планировщиком (Completely Fair Scheduler). В Windows 8 эту концепцию обобщили в виде группы планировщика и добавили в планировщик, в результате чего каждая сессия попадала в независимую группу. Кроме приоритетов для потоков, планировщик использует группы планировщика как индекс второго уровня, принимая решение по поводу того, какой поток запускать следующим. В терминальном сервере все группы планировщика имеют одинаковый вес, поэтому все сессии получают одинаковое количество процессорного времени вне зависимости от количества или приоритетов потоков внутри групп планировщика. Кроме того, такие группы также используют для более точного контроля над процессами. В Windows 8 рабочие объекты (Job) были дополнены так, чтобы поддерживать управление процессорным временем. При помощи специального API можно решать, какую часть процессорного времени может использовать процесс, должно это быть мягкое или жёсткое ограничение, и получать уведомления, когда процесс достигает этих ограничений. Это похоже на управление ресурсами в cgroups на Linux.

Но на машинах, где число ядер CPU превышает 64, Windows начала демонстрировать новые узкие места, не дававшие таким требовательным приложениям, как SQL-сервер, масштабироваться линейно с ростом количества ядер процессора. Поэтому, даже при добавлении новых ядер и памяти, замеры скорости не показывали её существенного увеличения. Одной из главных проблем, связанных с этим, был спор по поводу блокировки базы диспетчера. Блокировка базы диспетчера защищала доступ к объектам, работу которых необходимо было запланировать. Среди этих объектов – потоки, таймеры, порты ввода/вывода, другие объекты ядра, подверженные ожиданию (события, семафоры, мьютексы). Под давлением необходимости разрешения таких проблем, в Windows 7 была проделана работа по устранению блокировки базы диспетчера и замене её на более точные подстройки, например, пообъектную блокировку. Это позволило таким замерам производительности, как SQL TPC-C, продемонстрировать рост скорости на 290% по сравнению с предыдущей схемой на некоторых конфигурациях. Это был один из крупнейших взлётов производительности в истории Windows, случившихся благодаря изменению единственной особенности.

Windows 10 принесло другую инновацию, внедрив наборы процессоров (CPU Sets). CPU Sets позволяют процессу разделять систему так, что процесс может распределиться на несколько групп процессоров, не позволяя другим процессам пользоваться ими. Ядро Windows даже не даёт прерываниям устройств пользоваться процессорами, входящими в ваш набор. Это гарантирует, что даже устройства не смогут исполнять свой код на процессорах, выданных группе вашего приложения. Это похоже на низкотехнологичную виртуальную машину. Понятно, что это мощная возможность, поэтому в неё встроено множество мер безопасности, чтобы разработчик приложения не допустил больших ошибок, работая с API. Функциональность наборов CPU используется в игровом режиме (Game Mode).

Работа от чужого имени [Work on Behalf]: в Windows довольно много работы на переднем плане осуществляется другими сервисами, работающими в фоне. К примеру, при поиске в Outlook сам поиск проводится фоновым сервисом Indexer. Если мы просто запустим все сервисы на малом ядре, пострадает качество и скорость работы приложений на переднем плане. Чтобы при таких сценариях работы она не замедлялась на архитектурах big.LITTLE, Windows отслеживает вызовы приложения, поступающие к другим процессам, чтобы выполнять работу от их имени. В таком случае мы выдаём приоритет переднего плана потоку, относящемуся к сервису, и заставляем его выполняться на большом ядре.

На этом позвольте закончить первую статью о ядре Windows, дающую обзор работы планировщика. Статьи со сходными техническими подробностями о внутренней работе ОС последуют позже.

Ядро — центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память и внешнее аппаратное обеспечение. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

1.1 Типы архитектур ядер операционных систем

Монолитное ядро.

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

  1. Достоинства : Скорость работы, упрощённая разработка модулей.
  2. Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.

Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули , выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithic kernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.

Альтернативой монолитным ядрам считаются архитектуры, основанные на микроядрах.

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем.

Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущий микроядрам и гибридным ядрам. Практически, динамичная загрузка модулей, это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости.

Модульные ядра удобнее для разработки, чем традиционные монолитные ядра, не поддерживающие динамическую загрузку модулей, так как от разработчика не требуется многократная полная перекомпиляция ядра при работе над какой-либо его подсистемой или драйвером. Выявление, локализация, отладка и устранение ошибок при тестировании также облегчаются.

Модульные ядра предоставляют особый программный интерфейс (API) для связывания модулей с ядром, для обеспечения динамической подгрузки и выгрузки модулей. В свою очередь, не любая программа может быть сделана модулем ядра: на модули ядра накладываются определённые ограничения в части используемых функций (например, они не могут пользоваться функциями стандартной библиотеки С/С++ и должны использовать специальные аналоги, являющиеся функциями API ядра). Кроме того, модули ядра обязаны экспортировать определённые функции, нужные ядру для правильного подключения и распознавания модуля, для его корректной инициализации при загрузке и корректного завершения при выгрузке, для регистрации модуля в таблице модулей ядра и для обращения из ядра к сервисам, предоставляемым модулем.

  1. Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.
  2. Недостатки : Передача данных между процессами требует накладных расходов.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Примеры: Symbian OS; Windows CE; OpenVMS; Mach, используемый в GNU/Hurd и Mac OS X; QNX; AIX; Minix; ChorusOS; AmigaOS; MorphOS.

Примечание. Де́мон (англ. daemon ) — в системах класса UNIX — программа, работающая в фоновом режиме без прямого общения с пользователем.

В системах Solaris 10 и OpenSolaris для управления демонами используется Service Management Facility.

Термин был придуман программистами проекта MAC Массачусетского технологического института, он отсылает к персонажу мысленного эксперимента, демону Максвелла, занимающегося сортировкой молекул в фоновом режиме. Системы UNIX унаследовали данную терминологию.

Иногда слово daemon интерпретируют как акроним англ. D isk a nd e xecution mon itor . Операционные системы семейства BSD используют изображение демона в качестве логотипа .

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

К ним относятся:

  1. управление адресным пространством оперативной памяти.
  2. управление адресным пространством виртуальной памяти.
  3. управление процессами и потоками (нитями).
  4. средства межпроцессной коммуникации.

Все остальные сервисы ОС, в классических монолитных ядрах предоставляемые непосредственно ядром, в микроядерных архитектурах реализуются в адресном пространстве пользователя (Ring3) и называются сервисами. Примерами таких сервисов, выносимых в пространство пользователя в микроядерных архитектурах, являются сетевые сервисы, файловая система, драйверы.

Такая конструкция позволяет улучшить общее быстродействие системы (небольшое микроядро может уместиться в кэше процессора). Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

И чтобы добавить в ОС с микроядром драйвер того или иного устройства, не надо перекомпилировать всё ядро, а надо лишь отдельно откомпилировать этот драйвер и запустить его в пользовательском пространстве.

Классическим примером микроядерной системы является Symbian OS. Это пример распространенной и отработанной микроядерной (a начиная c версии Symbian OS v8.1, и наноядерной) операционной системы.

B отличие от Windows NT создателям Symbian OS удалось совместить эффективность и концептуальную стройность, несмотря на то что современные версии этой системы предоставляют обширные возможности, в том числе средства для работы c потоковыми данными, стеками протоколов, критичными к латентности ядра, графикой и видео высокого разрешения).

Разработчики Symbian вынесли практически все прикладные (т.e. выходящие за пределы компетенции ядра) задачи в модули-серверы, функционирующие в пользовательском адресном пространстве.

В ОС Windows NT версий 3.х микроядерная архитектура с сервисным процессом использовалась для подсистемы графики и пользовательского интерфейса. В частности, драйвер графической аппаратуры загружался в контекст сервисного процесса, а не ядра. Начиная с версии 4, от этого отказались, сервисный процесс сохранился только для управления консольными окнами командной строки, а собственно графическая подсистема вместе с драйвером аппаратуры (в том числе трехмерной графики) переместилась в специально обособленный регион ядра ОС.

ОС Windows CE (и созданные на ее основе сборки, такие, как Windows Mobile), будучи практически полностью совместимой (как подмножество) с Windows NT по вызовам и методам программирования приложений, тем не менее полностью отличается от Windows NT по внутренней архитектуре и является микроядерной ОС с выносом всех драйверов устройств, сетевых стеков и графической подсистемы в сервисные процессы.

Экзоядро.

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры).

Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Примечание. Интерфейс прикладного программирования (иногда интерфейс программирования приложений ) (англ. Application Programming Interface , API — набор готовых классов, функций, структур и констант, предоставляемых приложением (библиотекой, сервисом) для использования во внешних программных продуктах. Используется программистами для написания всевозможных приложений.

Наноядро.

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридное ядро.

1.2 Комбинация разных подходов

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер.

Гост

ГОСТ

Ядро операционной системы сущность понятия

Ядром операционных систем называется тот их элемент, который всё время находится в оперативной памяти устройства и который выполняет функции управления всей операционной системой, включая драйверы устройств, программы, управляющие ресурсами памяти и тому подобное.

То есть все процессы и операции управляются именно ядром операционной системы. Вместе с тем, ядро это лишь незначительная составляющая кодировки всей операционной системы, но это составляющая работает практически всё время и является наиболее загруженным компонентом операционной системы. Именно поэтому ядро помещается в базовой части памяти, а другие элементы операционной системы пересылаются во внешнюю зону памяти и затем обратно при возникновении такой необходимости.

Основной задачей, выполняемой ядром, считается выполнение программ обработки прерываний. В крупных операционных системах, состоящих из большого числа абонентов, центральный процессор обрабатывает, фактически, непрерывную цепочку требований прерывания программы. И немедленное реагирование на требования прерываний очень важно, так как это обеспечивает полноценную загрузку системных ресурсов и означает оптимальное время реагирования на запросы пользователей, которые работают в режиме диалога.

Во время выполнения программы обслуживания какого-либо прерывания, ядро временно блокирует остальные требования прерываний и возобновляет их только по завершению программы обслуживания действующего прерывания. Если поток требований прерывания очень плотный, то возможно возникновение ситуации, когда ядро заблокирует какие-то прерывания на существенный временной интервал. Это означает отсутствие эффективного реагирования на требования прерываний программы. Чтобы исключить вероятность возникновения такой ситуации, ядро проектируется так, что оно выполняет только минимальную начальную обработку прерывания, а далее отсылает его для дальнейшего обслуживания в соответствующий системный процесс. После этого ядро разрешает поступление следующих запросов на прерывание программы.

Готовые работы на аналогичную тему

Главные задачи, решаемые ядром

Ядро операционной системы включает в свой состав следующие программы, решающие соответствующие задачи:

  1. Программа обработки прерываний.
  2. Программа для формирования и ликвидации различных процессов.
  3. Программа переключения состояний процессов.
  4. Программа, выполняющая диспетчеризацию процессов.
  5. Программа для приостановки и последующей активации процесса.
  6. Программа синхронизации выполняемых процессов и организации обменов данными между ними.
  7. Программа по выполнению ввода и вывода данных.
  8. Программа управления функциями распределения ресурсов памяти.
  9. Программа поддержки файловых систем.
  10. Программа обеспечения вызова и возврата при работе с процедурами.
  11. Программа поддержки операций по учёту работ ЭВМ.

Виды структуры ядра операционной системы

Возможны следующие типы структуры (архитектуры) ядра операционной системы:

  • Монолитная структура ядра.
  • Модульная структура ядра.
  • Микроструктура ядра.
  • Экзо структура ядра.
  • Нано структура ядра.
  • Гибридная структура ядра.
  • Комбинированная структура ядра.

Монолитное ядро формируется их обширного комплекта абстракций оборудования. Все элементы монолитного ядра работают в едином адресном формате. При такой организации операционной системы все составляющие части её ядра выступают как элементы основной программы, применяют одни и те же системы организации данных и работают друг с другом, используя непосредственный вызов процедуры. Это самый старый метод формирования операционной системы. В качестве примера можно привести UNIX. Достоинством является большая скорость выполнения операций и простота конструирования модулей. Недостатком можно считать работу ядра в едином адресном пространстве, так как неисправность в любом элементе способна блокировать работу всей системы.

Модульное ядро является современной и модифицированной версией структуры монолитного ядра операционной системы. Она отличается от классического монолитного ядра тем, что не требует общей реструктуризации ядра при различных вариациях аппаратной оснастки компьютеров. У модульных ядер есть возможность подгружать различные модули (элементы) ядра, которые поддерживают нужное аппаратное оборудование (как пример, загрузка драйвера), причём подзагрузка модуля возможна как в динамическом режиме, то есть без перезагрузки операционной системы, так и в статике, когда выполняется переконфигурирование системы и её перезагрузка.

Микроядро решает лишь самые простые задачи по управлению процессами и имеет небольшой комплект абстракций оборудования. Основная часть функций выполняется специальными процессами пользователя, которые называются сервисами. Главным признаком микроядра можно считать распределение практически всех драйверов и элементов в процессах сервиса. Часто нет возможности загрузки расширительных модулей в такое микроядро. Достоинством является нечувствительность к аппаратным сбоям, компонентных ошибках системы. Недостатком можно считать тот факт, что пересылка данных между процессами ведёт к накладным расходам.

Экзоядро –это ядро операционной системы, которое предоставляет только возможность взаимного обмена между процессами и надёжного распределения и высвобождения ресурсов.

Наноядро имеет такую структуру, при которой очень простое ядро решает лишь проблему обработки аппаратного прерывания программы, которое генерируют различные блоки компьютера. Когда обработка прерывания, например, при нажатии символа на клавиатуре, завершается, наноядро пересылает результаты программе, которая выше по рангу. При этом пересылка тоже выполняется посредством прерываний.

Гибридное ядро представляет собой модификацию микроядра, которая позволяет ускорить работу системы.

И, наконец, возможен вариант комбинированного применения вышеперечисленных вариантов построения структуры ядра операционной системы.


Ядро операционной системы (Kernel) - часть операционной системы: постоянно находящаяся в оперативной памяти, управляющая всей операционной системой, содержащая: драйверы устройств, подпрограммы управления памятью, планировщик заданий, реализующая системные вызовы и т.п.

Все операции, связанные с процессами, выполняются под управлением той части операционной системы, которая называется ядром. Ядро представляет собой лишь небольшую часть кода операционной системы в целом, однако оно относится к числу наиболее интенсивно используемых компонент системы. По этой причине ядро обычно резидентно размещается в основной памяти, в то время как другие части операционной системы перемещаются во внешнюю память и обратно по мере необходимости. Одной из самых важных функций, реализованных в ядре, является обработка прерываний. В больших многоабонентских системах в процессор поступает постоянный поток прерываний. Быстрая реакция на эти прерывания играет весьма важную роль с точки зрения полноты использования ресурсов системы и обеспечения приемлемых значений времени ответа для пользователей, работающих в диалоговом режиме.

Когда ядро обрабатывает текущее прерывание, оно запрещает другие прерывания и разрешает их снова только после завершения обработки текущего прерывания. При постоянном потоке прерываний может сложиться такая ситуация, что ядро будет блокировать прерывания в течение значительной части времени, т. е. не будет иметь возможности эффективно реагировать на прерывания. Поэтому ядро обычно разрабатывается таким образом, чтобы оно осуществляло лишь минимально возможную предварительную обработку каждого прерывания, а затем передавало это прерывание на дальнейшую обработку соответствующему системному процессу, после начала работы которого ядро могло бы разрешить последующие прерывания.

Содержание

Основные функции ядра

Основные функция ядра:Ядро операционной системы, как правило, содержит программы для реализации следующих функций:

  • обработка прерываний;
  • создание и уничтожение процессов;
  • переключение процессов из состояния в состояние;
  • диспетчирование ;
  • приостановка и активизация процессов ;
  • синхронизация процессов ;
  • организация взаимодействия между процессами;
  • манипулирование блоками управления процессами;
  • поддержка операций ввода-вывода;
  • поддержка распределения и перераспределения памяти;
  • поддержка работы файловой системы ;
  • поддержка механизма вызова-возврата при обращении к проце¬дурам;
  • поддержка определенных функций по ведению учета работы
  • машины.

Типы архитектур ядер операционных систем

Монолитное ядро

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

Достоинства: Скорость работы, упрощённая разработка модулей. Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы. Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Модульное ядро

Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущий микроядрам и гибридным ядрам. Практически, динамичная загрузка модулей, это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости.

Микроядро

Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Недостатки: Передача данных между процессами требует накладных расходов. Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Экзоядро

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры). Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридное ядро

Комбинация разных подходов

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйверы устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер. Примеры: Windows NT, DragonFlyBSD.

Ядро (kernel) это центральная и главная часть операционной системы которая обеспечивает архитектуру связи с приложениями, организует и регулирует доступ к ресурсам компьютера. Дополнительно, но не как правило предоставляет доступ к сетевым протоколам и к файловой системе. На картинке ниже я покажу как схематично работает ядро операционной системы и другие структуры внутри ОС

архитектура и типы ядер операционной системы

Классическая архитектура ядра очень сильно зависит от того какой тип ядра представлен в операционной системе. Типов ядер операционной системы бывает очень много и все различаются лишь по размеру и доступным функциям кроме базовых.

Монолитное ядро


Недостаток:

Обладает достаточно значимым минусом что при отказе работы одного элемента перестает работать всё ядро операционной системы и следовательно ОС.

Преимущества:

Из положительного момента — быстрая разработка и внедрение новых модулей а также скорость работы такого ядра. всё таки унификация всех элементов берет своё

Примеры ОС построенных на таких ядрах :LINUX, Unix, ms-dos

Модульное ядро

Модульное уже более современная реализация типа работы ядра операционной системы . Модульное ядро в отличие от монолитного, бывает двух видов статичное и динамическое. Статичное работает как и монолитное, все изменения только после перезапуска, а динамическая заключается в следующем — при разработке
ядра операционной системы не нужно перезагружать всю систему, а только ту часть которая подверглась каким либо изменениям. Для пользователя это выражается в том что после установки, например драйвера для новой видеокарты не нужно перезагружать систему, после установки перезагрузится только тот модуль что работает с этим новым драйвером, как говориться на лету.

Микроядро


Микроядро работает по принципу всё что сложнее элементарных функций — выноситься за пределы его работы. Наибольшая часть работы выполняется с помощью сервисов или по другому пользовательских процессов.

драйверы и модули, всё находиться в серверных процессах. Чтобы было понятно взгляните на картинку

Самые главные преимущества то что при любой сбой системы или например обновление ядра, не может нанести ущерба и это можно делать раздельно. Также намного проще позволяет добавлять новые элементы не прерывая работы системы.

Недостатки: увеличенное потребление ресурсов.

Из самых популярных операционных систем которое используют это
ядро операционной системы это MAC OS X.

Экзоядро


Экзоядро представляет всего лишь самые базовые функция взаимодействия между процессами, выгрузка и загрузка памяти и других ресурсов. То есть устроенно это ядро таким образом — ядро операционной системы не взаимодействует с программным обеспечением напрямую, а только через специальные библиотеки которые предоставляют API. Является оптимальным решениям для некоторого вида приложений которые должны очень быстро работать.

Ядро операционной системы WINDOWS

Вы спросите а к какому типу архитектуры тогда относиться операционная система windows?

относиться она к гибридному типу включая в себя как и микроядро так и монолитное
ядро операционной системы

Ядро́ (англ. kernel ) — центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память, внешнее аппаратное обеспечение, внешнее устройство ввода и вывода информации. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

Содержание

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

  • Достоинства: Скорость работы, упрощённая разработка модулей.
  • Недостатки: Поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы.

Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Некоторые старые монолитные ядра, в особенности систем класса UNIX/Linux, требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы подгружать модули, выполняющие часть функций ядра. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы, называемой монолитным ядром (monolithic kernel), которое представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме.

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем.

  • Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.
  • Недостатки: Передача данных между процессами требует накладных расходов.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами, безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры).

Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983 году.

Существуют варианты ОС GNU, в которых вместо монолитного ядра применяется ядро Mach (такое же, как в Hurd), а поверх него крутятся в пользовательском пространстве те же самые процессы, которые при использовании Linux были бы частью ядра. Другим примером смешанного подхода может служить возможность запуска операционной системы с монолитным ядром под управлением микроядра. Так устроены 4.4BSD и MkLinux, основанные на микроядре Mach. Микроядро обеспечивает управление виртуальной памятью и работу низкоуровневых драйверов. Все остальные функции, в том числе взаимодействие с прикладными программами, осуществляются монолитным ядром. Данный подход сформировался в результате попыток использовать преимущества микроядерной архитектуры, сохраняя по возможности хорошо отлаженный код монолитного ядра.

Смешанное ядро, в принципе, должно объединять преимущества монолитного ядра и микроядра: казалось бы, микроядро и монолитное ядро — крайности, а смешанное — золотая середина. В них возможно добавлять драйвера устройств двумя способами: и внутрь ядра, и в пользовательское пространство. Но на практике концепция смешанного ядра часто подчёркивает не только достоинства, но и недостатки обоих типов ядер.


Ядро системы каждый день помогает работе компьютера, но многие даже не знают, что это такое. Мы расскажем про все функции ядра и простыми словами объясним, для чего оно нужно.

Итак, что такое ядро операционной системы и за что оно отвечает в работе вашего компьютера? Разберемся подробнее.

  • Ядро — это согласующее звено между графическим интерфейсом, программным и аппаратным обеспечением. Ядро постоянно используется в работе компьютера и является центральным модулем операционной системы.
  • Ядро имеет разные слои. Нижний уровень формирует интерфейс к системному оборудованию, например, сетевым контроллерам или контроллерам PCI Express.
  • Следующий уровень отвечает за управление памятью и выделяет ее каждому процессу. Ваше программное обеспечение обычно включает в себя несколько таких процессов.

Windows использует ядро NT, которое контролирует несколько подсистем. Apple использует ядро XNU. Linux-системы, такие как Ubuntu и Android, используют ядро Linux.

Ядро является не ядром процессора, а ядром операционной системы.

Читайте также: