Взаимодействие устройств компьютера доклад

Обновлено: 05.07.2024

Презентация на тему: " Схема компьютера Взаимодействие устройств в компьютере." — Транскрипт:

1 Схема компьютера Взаимодействие устройств в компьютере

2 Общая структурная схема компьютера

3 Компьютер – система взаимосвязанных компонентов Каждое внешнее устройство взаимодействует с процессором ПК через КОНТРОЛЛЕР специальный блок – КОНТРОЛЛЕР, который преобразует информацию, поступающую от процессора в соответствующие сигналы, управляющие работой устройства. Существуют контроллеры монитора, клавиатуры, принтера, дисковода…

4 Данные, управляющие сигналы, адреса должны передаваться от одного устройства к другому. Следовательно, в, которое компьютере должно быть некое устройство организует передачу информации между всеми его составными частями. Эти функции выполняет системная шина.

5 Системная шина Системная шина – информационная магистраль, которая связывает друг с другом все устройства компьютера (группа токопроводящих кабелей или линий на системной плате)

9 Последовательность команд для выполнения некоторого задания в компьютере определяют как программу. Процессор обеспечивает выполнение команд программы, повторяя следующие действия: –с–считать команду из памяти, –р–расшифровать команду, –о–обеспечить ее выполнение, –с–считать следующую команду, и так до тех пор, пока не закончатся команды программы. Таким образом, компьютер работает в соответствии с принципом программного управления, то есть обеспечивает автоматическое выполнение программы, хранящейся в памяти компьютера.

10 Порты Связь компьютера с различными внешними устройствами осуществляется через порты – специальные разъемы, расположенные на тыльной стороне системного блока.

11 Принцип открытой архитектуры В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера: блок питания, системные часы, аккумулятор, сигнальные индикаторы. Любой современный системный блок содержит разъемы для подключения дополнительных устройств (слоты). Наличие слотов расширения позволяет модифицировать компьютер, подключая к нему новые устройства. Главный принцип построения современного персонального компьютера Принцип открытой архитектуры правила построения компьютера, в соответствии с которыми каждый новый узел (блок) совместим со старым и легко устанавливается на компьютере.

Все рассмотренные выше устройства, из которых может состоять компьютерная система, определенным образом взаимодействуют между собой.


Рис. 2.1. Схема взаимодействия устройств в компьютере.

Координатором всех действий является процессор, который выполняет программы и иногда в процессе должен принимать информацию от различных устройств. Чтобы устройства могли вовремя сообщать процессору о необходимости обработки поступившей информации, используется система прерываний.

Получив сигнал об активном прерывании, процессор приостанавливает текущий процесс, например выполнение программы. Это делается, чтобы обработать поступившую информацию. После этого и, возможно, соответствующих действий, процессор возвращается к прерванному ранее процессу.

Систему прерываний обычно поясняют, используя бытовую метафору. Замените мысленно процессор, выполняющий программу, на обедающего человека. Прием пищи – это процесс. Вдруг зазвонил телефон – это сигнал на прерывание: обед приостанавливается, обрабатывается информация, поступившая от собеседника. Когда информация обработана – разговор закончен, человек возвращается к обеду. Можно при этом создать список возможных прерываний обедающего человека: телефонный звонок, стук в дверь, захныкавший ребенок в соседней комнате и т. д.

Таким же образом процессор, выполняющий программу, может в случае необходимости приостанавливать текущий процесс, чтобы обработать поступившую информацию (например, о нажатой клавише) и, возможно, совершить соответствующее действие в ответ (сформировать сигнал для вывода на экран соответствующей буквы).

Существует определенный порядок обработки процессором прерываний (в зависимости от их приоритета, выраженного определенным номером). Чем меньше номер прерывания, тем выше его приоритет. Сигналы прерываний поступают от устройств не прямо на процессор, а на специальный контроллер прерываний, который знает, прерывание с каким номером соответствует какому устройству, и, получив сигнал от устройства, устанавливает сигнал прерывания с соответствующим номером в активное состояние.

Всего существует 16 прерываний, которые нумеруются числами от 0 до 15. Этого, как выясняется, очень мало.

ПРИМЕЧАНИЕ.

В некоторых случаях может быть задействован расширенный контроллер прерываний, и тогда их становится 24.

Почему же прерываний недостаточно, если плат расширения обычно подключено не более трех-четырех?

Рассмотрим кратко, каким образом используются прерывания и какие из них можно выделить для плат расширения.

? Прерывание 0 – наиболее приоритетное, жестко закреплено за системным таймером. Оно не может быть использовано каким-либо другим устройством.

? Прерывание 1 – жестко закреплено за контроллером клавиатуры. Таким образом, сигналы от клавиатуры по умолчанию являются наиболее приоритетными пользовательскими сигналами. Первое прерывание не может быть назначено какому-либо другому устройству.

? Прерывание 2 – имеет техническое значение. С его помощью изначальное количество прерываний путем некоторых системных манипуляций в свое время было увеличено с 8 до 16. Таким образом, это прерывание также не может быть использовано каким-либо устройством.

? Прерывание 3 – обычно используется вторым последовательным портом компьютера. Если это так, то оно не может быть назначено другим устройствам. Однако если данный порт не нужен, то его можно отключить, и тем самым прерывание 3 освободится для использования другими устройствами.

? Прерывание 4 – аналогично использованию прерывания № 3 только для первого последовательного порта.

? Прерывание 5 – изначально является свободным и может назначаться различным устройствам по усмотрению пользователя (или операционной системы, если в ней предусмотрена автоматическая настройка).

ВНИМАНИЕ!

Если необходимо использовать звук в играх (особенно старых) или же в системе установлена звуковая карта, совместимая с Sound Blaster Pro и подключаемая к шине ISA, то пятое прерывание должно быть закреплено за звуковой картой.

? Прерывание 6 – жестко закреплено за контроллером привода гибких дисков. Оно не может использоваться какими-либо другими устройствами (за исключением случая, когда привод гибких дисков в системе отсутствует и BIOS может сообщить операционной системе об этом).

? Прерывание 7 – обычно используется параллельным портом компьютера. Однако если данный порт не нужен, то его можно отключить, а прерывание 7 назначить другим устройствам.

? Прерывание 8 – жестко закреплено за часами реального времени и не может быть использовано другими устройствами.

? Прерывание 9 – изначально является свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы. Однако довольно часто данное прерывание использует система расширенного управления питанием или контроллер USB-порта, так что претендентов на него вполне достаточно.

? Прерывание 10 – является изначально свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы.

? Прерывание 11 – также является изначально свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы. Однако обычно оно закрепляется за видеоадаптером, если, конечно, для него вообще выделено отдельное прерывание.

? Прерывание 12 – жестко закреплено за мышью, подключаемой к порту PS/2. Поскольку большинство современных компьютеров оснащены именно такой мышью, прерывание 12 оказывается занятым. Если PS/2-мышь в системе отсутствует, то прерывание можно освободить и назначить другим устройствам.

? Прерывание 13 – жестко закреплено за встроенным или внешним математическим сопроцессором. Даже если такой отсутствует (например, используется система на базе процессора 80 386SX при отсутствующем сопроцессоре 80 387), прерывание 13 остается занятым, и другие устройства не могут его использовать.

? Прерывание 14 – жестко закреплено за первым каналом контроллера IDE. Обычно IDE-контроллер в системе используется, поэтому о назначении прерывания 14 платам расширения можно забыть.

ПРИМЕЧАНИЕ.

Теоретически в редчайших случаях, когда первый канал встроенного IDE-контроллера оказывается ненужным, его можно отключить, и, если позволяет программа настройки параметров BIOS, освободить прерывание № 14 для назначения другим устройствам.

? Прерывание 15 – возможности его использования аналогичны прерыванию 14, только в отношении второго канала контроллера IDE.

Таким образом, для использования платами расширения остается совсем немного прерываний – номера 5, 9, 10 и, возможно, 11.

В некоторых случаях для корректного взаимодействия с системой платы расширения используют также каналы прямого доступа к памяти (DMA – Direct Memory Access). Хотя существует всего восемь таких каналов (они нумеруются числами от 0 до 7), из них недоступными для плат расширения являются только канал 4, который используется самим контроллером прямого доступа к памяти для корректной работы, и 2, жестко закрепленный за контроллером привода гибких дисков.

Если параллельный порт компьютера работает в режиме ECP, то для него обычно выделяется DMA-канал 3 (с другим каналом он, скорее всего, просто не будет работать).

Понятие о взаимодействии устройств при помощи системы прерываний и каналов прямого доступа к памяти может помочь быстро решить проблему на уровне операционной системы или BIOS в случае возникновения конфликта устройств по ресурсам.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Целиться на взаимодействие

Целиться на взаимодействие Если в течение последних нескольких лет мы все делали правильно, то работали на основе веб-стандартов (семантическая HTML-разметка и CSS для форматирования, шрифтов, цветов и так далее), оставляя большинство интерактивных эффектов – анимацию,

Преобразовывая взаимодействие

Преобразовывая взаимодействие Результат получился довольно впечатляющим, учитывая совсем небольшое количество написанного CSS-кода. Б?льшая часть эффекта достигается непосредственно за счет браузеров, которые поддерживают CSS-свойства, – вместо того, чтобы привлекать

Взаимодействие XT с Java

Взаимодействие XT с Java Процессор XT также может работать с Java. API XT спроектирован для работы с классами, определенными в Project X TR2 фирмы Sun, которые поддерживают обработку XML. Вам будет необходим файл xml.jar фирмы Sun, который можно получить, загрузив Project X TR2. Чтобы получить xml.jar,

Взаимодействие

Взаимодействие Уведомите свою группу и начальство о неприятностях. Изложите свой план по выходу из кризиса. Обратитесь к ним за информацией и советом. Избегайте сюрпризов. Ничто не сердит людей и не делает их менее рациональными так, как сюрпризы. Сюрпризы повышают

11.3 ВЗАИМОДЕЙСТВИЕ В СЕТИ

11.3 ВЗАИМОДЕЙСТВИЕ В СЕТИ Программы, поддерживающие межмашинную связь, такие, как электронная почта, программы дистанционной пересылки файлов и удаленной регистрации, издавна используются в качестве специальных средств организации подключений и информационного

3.3. Взаимодействие процессов

3.3. Взаимодействие процессов Из всех средств межпроцессного взаимодействия, которыми так богаты UNIX-подобные ОС, в этой главе мы рассмотрим только конвейеры и

Взаимодействие транзакций

Взаимодействие транзакций Интересен процесс определения, является ли текущая версия мусором или, возможно, она еще нужна какой-то транзакции.Для описания этого процесса придется ввести несколько важных понятий. Прежде всего, надо отметить, что все определения строятся

18.2.3. Взаимодействие с РОР-сервером

Взаимодействие ограничений

Взаимодействие ограничений Комбинируя формальное ссылочное ограничение с другими ограничениями целостности (см. главу 16), можно реализовать большинство (если не все) бизнес-правил с высокой степенью точности. Например, ограничение столбца NOT NULL будет корректировать

Взаимодействие с ActiveSync

Взаимодействие с ActiveSync Разработчики теперь могут запускать и останавливать процесс синхронизации ActiveSync, используя методы ActiveSyncStart и

3.9. Калибровка устройств компьютера

3.9. Калибровка устройств компьютера Профили устройств Что делать, если один и тот же файл на разных мониторах выглядит по-разному? И откуда берутся различия в картинке, если один и тот же снимок распечатать на разных принтерах? В таких случаях устройства чаще всего

Взаимодействие с не объектным ПО

Взаимодействие с не объектным ПО До сих пор, элементы ПО выражались полностью в ОО-нотации. Но программы появились задолго до распространения ОО-технологии. Часто возникает необходимость соединить объектное ПО с элементами, написанными, например, на языках С, Fortran или

Взаимодействие с мышью

Взаимодействие с мышью Для взаимодействия с мышью служит объект Mouse. Единственный экземпляр этого объекта под именем Mouse создается самим Flash.Прежде всего, этот объект предоставляет методы hide и show. Первый метод скрывает курсор мыши, а второй — вновь выводит его на экран. Ни

С давних времен люди пытались облегчить свой труд, создавая различные машины и механизмы, усиливающие физические возможности человека.

Первая Электронно-Вычислительная Машина (ЭВМ) - "ENIAC" (Electronic Numerical Integrator and Computer), была создана США в1946г. Её характеристики: 18900 электронных ламп, 5 тыс. операций сложения в секунду, разрядность 30бит, ОП - 600бит

Первая ЭВМ в СССР - МЭСМ (Малая Электронная Счетная Машина)была создана С.А.Лебедевпоя в1951г. : 6000 электронных ламп, 5 тыс. операций сложения в секунду, разрядность 16 бит, ОП - 1800бит

Первый персональный компьютер (ПК) в 1976г выпустила фирма Apple; в СССР персональные компьютеры появились в 1985г.

Различают два основных класса компьютеров:1) цифровые компьютеры (компьютеры), обрабатывающие данные в виде числовых двоичных кодов; 2) аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины, которые являются аналогами вычисляемых величин.

По своему назначению компьютер – универсальное техническое устройство для работы с информацией. По принципам устройства компьютер – модель человека, работающего с информацией.

Компьютер - это программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. (т.е. компьютер - это комплекс программно-управляемых электронный устройств)

Архитектура ЭВМ – описание устройств и принципов работы компьютеры, достаточное для пользователя и программиста (т.е без подробностей технического характера, а именно электронных схем, конструктивных деталей и пр)

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера.

Архитектура включает: 1) Описание пользовательских возможностей программирования; 2) Описание системы команд и системы адресации; 3) Организацию памяти и т.д.

Схему устройства компьютера предложил Джон фон Нейман в 1946г, её принципы работы во многом сохранились в современных компьютерах.

Принципы Джон фон Неймана: 1) принцип программного управления (программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности) ; 2) принцип однородности памяти (программы и данные хранятся в одной и той же памяти); 3) принцип адресности (ОП состоит из пронумерованных ячеек и процессору в любой момент времени доступна любая ячейка)

Персональный компьютер (ПК) – универсальная ЭВМ, предназначенная для индивидуального пользования. Обычно ПК проектируется на основе принципа открытой архитектуры: 1) описание принципа действия ПК и его конфигурации, что позволяет собирать ПК из отдельных узлов и деталей; 2) наличие в ПК внутренних расширительных гнезд, в которые пользователь может вставлять различные устройства, удовлетворяющие заданному стандарт

1 Структурная схема персонального компьютера (ПК).

Основу ПК составляет системный блок, в котором размещены:

· блок оперативного запоминающего устройства (ОЗУ);

· постоянного запоминающего устройства (ПЗУ); долговременной памяти на жёстком магнитном диске (Винчестер);

· устройства для запуска компакт-дисков (CD) и дискет (НГМД).

Там же находятся платы: сетевая, видеопамяти, обработки звука, модем (модулятор-демодулятор), интерфейсные платы, обслуживающие устройства ввода-вывода: клавиатуры, дисплея, "мыши", принтера и др.


Рисунок 1. Структура персонального компьютера.

Все функциональные узлы ПК связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.

Микропроцессор служит для обработки информации: он выбирает команды из внутренней памяти (ОЗУ или ПЗУ), расшифровывает и затем исполняет их, производя арифметические и логические операции. Получает данные из устройства ввода и посылает результаты на устройства вывода. Он вырабатывает также сигналы управления и синхронизации для согласованной работы его внутренних узлов, контролирует работу системной магистрали и всех периферийных устройств. Упрощённая схема микропроцессора представлена на нижней схеме (выделена штриховой линией с надписью ЦП). В его состав входят: арифметико-логическое устройство (АЛУ), выполняющее арифметические и логические операции над двоичными числами; блок регистров общего назначения (РОН), используемых для временного хранения обрабатываемой информации (R0 - R5), указателя стека (R6) и счётчика команд (R7); устройство управления (УУ), определяющее порядок работы всех узлов микропроцессора. Одной из важнейших характеристик микропроцессора является его разрядность, определяемая числом разрядов АЛУ и РОН. Современные микропроцессоры имеют 16- , 32- и 64-разрядную длину двоичного числа, а также до 200 и более различных внутренних команд.

2 Основные устройства компьютера

В основу устройства компьютера положен принцип открытой архитектуры, т.е. возможность подключения к системе дополнительных независимо разработанных устройств различных прикладных применений. Все устройства подключаются к системе и взаимодействуют друг с другом через общую шину.

Внешний взгляд на компьютер позволяет назвать такие компоненты, входящие в его состав как:

1. Системный блок

2. Монитор (вместе с видеокартой монитор образует видеосистему)

4. Периферийные устройства

Конструктивно системный блок может быть выполнен в горизонтальном (Desk Top) и вертикальном (Mini Tower) исполнении.

Системный блок содержит такие основный устройства ПК как системная плата с процессором и ОП, накопители на магнитных дисках, CD-ROM, блок питания.

Рисунок 2. Современная материнская плата

Материнская (системная) плата – основной аппаратный компонент, где находятся разъемы для установки микропроцессора, оперативной памяти, кварцевый резонатор, базовая система ввода-вывода BIOS, вспомогательные микросхемы, интерфейс ввода-вывода (последовательный порт, параллельный порт, интерфейс клавиатуры, дисковый интерфейс и т.д.) и шина.

Часть технического обеспечения, конструктивно отделенных от основного блока компьютера называют периферийными (устройства ввода-вывода)

Для подключения устройств ввода-вывода на системном блоке имеются разъемы различных портов:

СОМ - Последовательные порты. Передают последовательно электрические импульсы, несущие информации. К ним обычно подключают мышь и модем.

LPT - Параллельный порт. Передает одновременно 8 электрических импульсов. Реализует более высокую скорость информации, используют для подключения принтера.

USB - Последовательная универсальная шина (Universal Serial Bus) – обеспечивает высокоскоростное подключение нескольких периферийных устройств (сканер, цифровая камера и т.д)

Монитор - это устройство, через которое мы воспринимаем всю визуальную информацию от компьютера. Данные, отображаемые на экране монитора, хранятся в определенном блоке памяти компьютера (видеопамять). Управляет работой монитора устройство, размещенное в системном блоке и называемое видеокартой или видеоадаптером. Видеокарта вместе с монитором и образуют видеосистему. Процессор помещает в видеопамять данные, а видеокарта монитора примерно 60 раз в секунду просматривает данные и рисует соответствующее их содержанию изображение на экране.

Современные мониторы бывают постороенными на основе электронно-лучевой трубки (CRT) или жидко-кристаллическими (LCD). В CRT-мониторах изображение получается в результате свечения специального вещества - люминофора под воздействием потока электронов. LCD-мониторы сделаны из вещества, находящегося в жидком состоянии, но имеющего при этом некоторые свойства кристаллов. Молекулы жидких кристаллов меняют свойство проходящего сквозь них светового луча, таким образом на мониторе создается изображение. В настоящее время по показателю цена-качество CRT-мониторы превосходят LCD, т.е. при равном качестве LCD-мониторы дороже. Но зато в LCD-мониторах совершенно отсутствует вредное электро-магнитное излучение, а также уровень потребления энергии примерно на 70% ниже, чем у CRT.

Клавиатура компьютера работает под управлением программ, которые определяют, какую информацию получает компьютер в результате нажатия клавиш. Механизм обработки сигналов, поступающих от клавиатуры, примерно следующий. Каждая клавиша на клавиатуре имеет свой номер, называемый кодом.

После нажатия клавиши клавиатура посылает процессору сигнал прерывания и заставляет процессор приостановить свою работу и переключиться на программу обработки прерывания клавиатуры. При этом клавиатура в своей собственной специальной памяти запоминает, какая клавиша была нажата (обычно в памяти клавиатуры может храниться до 20 кодов нажатых клавиш, если процессор не успевает ответить на прерывание). После передачи кода нажатой клавиши процессору эта информация из памяти клавиатуры исчезает.

Кроме нажатия клавиатура отмечает также и отпускание каждой клавиши, посылая процессору свой сигнал прерывания с соответствующим кодом. Таким образом, компьютер "знает", держат клавишу или она уже отпущена. Это свойство используется при переходах на другой регистр, например при написании заглавных букв. Кроме того, если клавиша нажата дольше определенного времени, т.н. "порог повтора" - обычно около половины секунды, то клавиатура генерирует повторные коды нажатия этой клавиши.

Принтер - это отдельное устройство. Он подключается к компьютеру с помощью разъема. Самые первые принтеры для компьютеров печатали очень медленно и могли напечатать только текст, похожий на тот, что получается на пишущей машинке. Потом появились принтеры, способные по точкам печатать картинки.

Сегодня самые популярные принтеры – лазерные. На них получаются странички, не уступающие по качеству книжным.

Сканеры - устройства для оцифровки и ввода в компьютер изображений с бумажных копий - это старейших вид компьютерной периферии. Современные сканеры позволяют оцифровывать изображения даже объемных предметов и диапозитовов (слайдов).

Манипулятор "мышь" - как правило, самый дешевый из компонентов компьютера, поэтому и отношение к нему соответствующее: очень часто почти безразличное ("лишь бы была"). В то же время, очевидно, что мышь - крайне важное устройство в составе ПК, поскольку вместе с клавиатурой постоянно используется для ввода информации и управления ею внутри компьютера. По принципу действия мыши делятся на отико-механические и оптические. Пока большинство мышей оптико-механические - они дешевы, но требуют периодической чистки. Оптические мыши отличаются высокой надежностью и точностью позиционирования на экране, но они дороги. Еще мыши различаются и по своим управляющим возможностям. Раньше по этому признаку мыши разделялись в основном на "двухкнопочные" и "трехкнопочные". Теперь же трехкнопочные мыши встречаются редко (в большинстве случаев для нормального управления вполне достаточно и двух кнопок)

Цифровые камеры – формируют любые изображения сразу в компьютерном формате;

Микрофон – ввод звуковой информации. Звуковая карта преобразует звук из аналоговой формы в цифровую.

Веб-камера- нужна для ввода динамического изображения в компьютер и звука, чтобы, например, общаться нам с вами, создавать телеконференции

USB-накопители на флэш-памяти, на мой взгляд, стали самым универсальным средством переноса информации. Это миниатюрное устройство размером и весом меньше зажигалки. Оно имеет высокую механическую прочность, не боится электромагнитных излучений, жары и холода, пыли и грязи.

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств

В основу устройства компьютера положен принцип открытой архитектуры, т.е. возможность подключения к системе дополнительных независимо разработанных устройств различных прикладных применений. Все устройства подключаются к системе и взаимодействуют друг с другом через общую шину.

Внешний взгляд на компьютер позволяет назвать такие компоненты, входящие в его состав как:

5. Системный блок

6. Монитор (вместе с видеокартой монитор образует видеосистему)

8. Периферийные устройства

Схема устройства компьютеров, построенных по магистральному принципу

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство (АЛУ) и устройство управления (УУ).

По своему назначению компьютер – универсальное техническое устройство для работы с информацией. По принципам устройства компьютер – модель человека, работающего с информацией.

Компьютер - это программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Классическая схема компьютера, отвечающая программному принципу управления, логично вытекает из последовательного характера преобразований, выполняемых человеком по некоторому алгоритму (программе). Обобщенная структурная схема ЭВМ первых поколений представлена на рис.13.2.

В любом компьютере имеются устройства ввода информации (УВв), с помощью которых пользователи вводят программы решаемых задач и данные. Введенная информация сначала полностью или частично запоминается в оперативном запоминающем устройстве (ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ), предназначенное для длительного хранения информации, где преобразуется в специальный информационный объект - файл.



Рис. 13.2.Структурная схема первых компьютеров

При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления.

Устройство управления (УУ) предназначается для автоматического выполнения программ путем принудительной координации всех остальных устройств. Цепи сигналов управления показаны на рис.13.2 штриховыми линиями. Вызываемые из ОЗУ команды дешифрируются устройством управления: определяют код операции, которую необходимо выполнить следующей, и адреса операндов, принимающих участие в данной операции.

Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Он каждый раз перестраивается на выполнение очередной операции. Результаты выполнения отдельных операций сохраняются для последующего использования на одном из регистров АЛУ или записываются в память. Отдельные признаки результатов r ( и др.) устройство управления использует для изменения порядка выполнения команд программы. Результаты, полученные после выполнения всей программы вычислений, передаются на устройство вывода информации (УВыв). В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.

Классическая структура компьютера представляла собой "удивительно изящное инженерное решение", хорошо отвечающее тогдашнему уровню развития промышленных технологий. Она стала фактическим стандартом (de facto), которому стали следовать производители вычислительной техники.

В персональных компьютерах, относящихся к компьютерам четвертого поколения, произошло дальнейшее изменение структуры (рис.13.3). Соединение всех устройств в единую машину обеспечивается с помощью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Единая система аппаратурных соединений значительно упростила структуру, сделав ее децентрализованной. Все передачи данных по шине осуществляются под управлением сервисных программ.



Рис. 13.3.Структура ПК

Ядро ПК образуют процессор, основная память (ОП), состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ), и видеопамять. ПЗУ предназначается для записи и постоянного хранения наиболее часто используемых программ управления.

Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и др. обеспечивается через соответствующие адаптеры - согласователи скоростей работы сопрягаемых устройств, или контроллеры - специальные устройства управления периферийной аппаратурой. Контроллеры в ПК играют роль каналов ввода-вывода. В качестве особых устройств следует выделить таймер - устройство измерения времени, и контроллер прямого доступа к памяти (КПД) - устройство, обеспечивающее доступ к ОП, минуя процессор.

Организацию согласованной работы шин и устройств выполняют микросхемы системной логики, называемые чипсетом (Chipset). Большинство наборов микросхем системной логики имеют ярко выраженную иерархическую структуру построения, отвечающую уровням высокоскоростных и ввода-вывода данных. Уровень высокоскоростных устройств образуют процессоры, видеопамять, оперативная память; уровень низко-скоростных устройств образуют любые внешние устройства.

Классическая схема компьютера, отвечающая программному принципу управления, логично вытекает из последовательного характера преобразований, выполняемых человеком по некоторому алгоритму (программе). Обобщенная структурная схема ЭВМ первых поколений представлена на рис.13.2.



В любом компьютере имеются устройства ввода информации (УВв), с помощью которых пользователи вводят программы решаемых задач и данные. Введенная информация сначала полностью или частично запоминается в оперативном запоминающем устройстве (ОЗУ), а затем переносится во внешнее запоминающее устройство (ВЗУ), предназначенное для длительного хранения информации, где преобразуется в специальный информационный объект - файл.



Рис. 13.2.Структурная схема первых компьютеров

При использовании файла в вычислительном процессе его содержимое переносится в ОЗУ. Затем программная информация команда за командой считывается в устройство управления.

Устройство управления (УУ) предназначается для автоматического выполнения программ путем принудительной координации всех остальных устройств. Цепи сигналов управления показаны на рис.13.2 штриховыми линиями. Вызываемые из ОЗУ команды дешифрируются устройством управления: определяют код операции, которую необходимо выполнить следующей, и адреса операндов, принимающих участие в данной операции.

Арифметико-логическое устройство (АЛУ) выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат, в состав которого входят сумматоры, счетчики, регистры, логические преобразователи и др. Он каждый раз перестраивается на выполнение очередной операции. Результаты выполнения отдельных операций сохраняются для последующего использования на одном из регистров АЛУ или записываются в память. Отдельные признаки результатов r ( и др.) устройство управления использует для изменения порядка выполнения команд программы. Результаты, полученные после выполнения всей программы вычислений, передаются на устройство вывода информации (УВыв). В качестве УВыв могут использоваться экран дисплея, принтер, графопостроитель и др.

Классическая структура компьютера представляла собой "удивительно изящное инженерное решение", хорошо отвечающее тогдашнему уровню развития промышленных технологий. Она стала фактическим стандартом (de facto), которому стали следовать производители вычислительной техники.

В персональных компьютерах, относящихся к компьютерам четвертого поколения, произошло дальнейшее изменение структуры (рис.13.3). Соединение всех устройств в единую машину обеспечивается с помощью общей шины, представляющей собой линии передачи данных, адресов, сигналов управления и питания. Единая система аппаратурных соединений значительно упростила структуру, сделав ее децентрализованной. Все передачи данных по шине осуществляются под управлением сервисных программ.



Рис. 13.3.Структура ПК

Ядро ПК образуют процессор, основная память (ОП), состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ), и видеопамять. ПЗУ предназначается для записи и постоянного хранения наиболее часто используемых программ управления.

Подключение всех внешних устройств (ВнУ), дисплея, клавиатуры, внешних ЗУ и др. обеспечивается через соответствующие адаптеры - согласователи скоростей работы сопрягаемых устройств, или контроллеры - специальные устройства управления периферийной аппаратурой. Контроллеры в ПК играют роль каналов ввода-вывода. В качестве особых устройств следует выделить таймер - устройство измерения времени, и контроллер прямого доступа к памяти (КПД) - устройство, обеспечивающее доступ к ОП, минуя процессор.

Организацию согласованной работы шин и устройств выполняют микросхемы системной логики, называемые чипсетом (Chipset). Большинство наборов микросхем системной логики имеют ярко выраженную иерархическую структуру построения, отвечающую уровням высокоскоростных и ввода-вывода данных. Уровень высокоскоростных устройств образуют процессоры, видеопамять, оперативная память; уровень низко-скоростных устройств образуют любые внешние устройства.

Читайте также: