Титан и никель доклад

Обновлено: 05.07.2024

Титан (лат. Titanium) - химический элемент IV группы периодической системы Менделеева, 4 периода, имеет номер 22. Атом Титана содержит 22 электрона на 7 оболочках вокруг ядра с зарядом +22. Атомная масса приблизительно равна 48.

Титан - легкий серебристо-белый металл, по внешнему виду похож на сталь. Обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза - железа. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668°С) и кипит при 3300 °С. Его плотность сравнительно мала (4500 кг/м3). Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше прочности алюминия.

Титан в виде двуокиси был открыт английским любителем-минералогом У. Грегором в 1791 в магнитных железистых песках местечка Менакан (Англия). Грегор растворил пробу найденного черного песка, смешанного с тонким грязно-белым песком, в соляной кислоте; при этом из песка выделилось 46% железа. Оставшуюся часть пробы Грегор растворил в серной кислоте, причем почти все вещество перешло в раствор, за исключением 3,5% кремнезема. После упаривания сернокислотного раствора остался белый порошок в количестве 46% пробы. Продолжая исследования порошка, Грегор пришел к выводу, что он представляет собой соединение железа с каким-то неизвестным металлом.

В 1795 немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный окисел этого же металла, названного им "титаном". Выделить титан в чистом виде долго не удавалось, лишь в 1910 американский учёный М.А. Хантер получил металлический титан нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей.

Свойства титана во многом зависят от степени его чистоты, поэтому разработка способов массового производства особо чистого титана является одной из важнейших проблем промышленности. Дело в том, что союз титана с кислородом (а именно в виде такого соединения элемент обычно и встречается в природе) является одним из самых прочных в химии. Ни электрический ток, ни высокие температуры не в силах вырвать титан из объятий кислорода.

Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °C.

Титан - один из распространённых элементов, среднее содержание его в земной коре составляет 0,57% по массе. Титан постоянно присутствует в тканях растений, накапливается у позвоночных животных, преимущественно в роговых образованиях, селезёнке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление титана с продуктами питания и водой составляет 0,85 мг, выводится с мочой и калом (0,33 и 0,52 мг соответственно). Этот металл относительно малотоксичен.

Интересно, что тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. А при достаточной концентрации кислорода в окружающей среде и повреждении окисной плёнки путём удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Никель и его сплавы: характеристика, свойства, применение

Никель — высокопрочный пластичный металл серебристо-белого цвета. Был открыт в 1751 году шведским химиком Акселем Кронстедтом. В периодической системе Д. И. Менделеева имеет номер 28 и символ Ni, атомная масса равна 58,71.

Никель — твердый и вязкий металл с ферромагнитными свойствами. Он хорошо поддается сварке, ковке, штамповке и прокатке. Отличается устойчивостью в химически активных средах, в том числе в щелочах. В атмосферных условиях покрывается защитной оксидной пленкой и не окисляется даже при температуре 800 ⁰С.

Физические свойства никеля:

  • Температура плавления — 1455 ⁰С.
  • Скрытая теплота плавления — 73 кал/г.
  • Температура кипения — 2913 ⁰С.
  • Скрытая теплота испарения — 1450 кал/г.
  • Плотность — 8800 кг/м3.
  • Предел прочности при растяжении отожженного никеля — 4000−5000 МПа.
  • Предел прочности при растяжении деформированного никеля — 7500−9000 МПа.
  • Предел текучести отожженного никеля — кГ/мм2.
  • Предел текучести деформированного никеля — 70 кГ/мм2.
  • Теплопроводность — 90,9 Вт/(м*К).
  • Удельное электросопротивление — 0,0684 мкОм*м.
  • Модуль упругости — 196−210 ГПа.
  • Модуль нормальной упругости — 20000 кГ/мм2.
  • Модуль сдвига — 7300 кГ/мм2.
  • Твердость литого никеля — 60−70 кГ/мм2.
  • Твердость отожженного никеля 70−90 кГ/мм2.
  • Твердость деформированного никеля — 200 кГ/мм2.

Благодаря своим свойствам никель в чистом виде и особенно в сплавах широко применяется в различных областях промышленности. Металл образует твердые растворы со многими элементами.

Марки и химический состав никеля

Согласно ГОСТ 849-2008, выпускается 7 марок никеля — Н0, Н1Ау, Н1у, Н1, Н2, Н3 и Н4. В их составе содержится от 97,6 до 99,99 % никеля в сумме с небольшим процентом кобальта (Co) — от 0,005 до 0,7 %. Остальную массу занимают примеси:

  • Углерод (C) — есть во всех марках никеля.
  • Магний (Mg).
  • Алюминий (Al).
  • Кремний (Si).
  • Фосфор (P).
  • Сера (S) — есть во всех марках.
  • Марганец (Mn).
  • Железо (Fe).
  • Медь (Cu) — есть во всех марках.
  • Цинк (Zn).
  • Мышьяк (As)
  • Кадмий Cd).
  • Олово (Sn).
  • Сурьма (Sb).
  • Свинец (Pb).
  • Висмут (Bi).

Химический состав никеля

Подробный химический состав никеля разных марок представлен в таблице ниже.

Марка Химический состав, %
Ni и co, не менее В том числе Co, не более Примеси, не более
C Mg Al Si P S Mn Fe Cu Zn As Cd Sn Sb Pb Bi
H0 99,99 0,005 0,005 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,0005 0,0005 0,0003 0,0003 0,0003 0,0003 0,0001
H1Ay 99,95 0,1 0,001 0,001 0,002 0,001 0,001 0,01 0,1 0,001 0,001 0,0006 0,0005 0,0005 0,0005 0,0001
H1y 99,95 0,1 0,01 0,001 0,002 0,001 0,001 0,01 0,015 0,001 0,001 0,0005 0,0005 0,0005 0,0005 0,0003
H1 99,93 0,1 0,01 0,001 0,002 0,001 0,001 0,02 0,02 0,001 0,001 0,001 0,001 0,0001 0,001 0,0006
H2 99,8 0,15 0,02 0,002 0,003 0,04 0,04 0,005 0,1
H3 98,6 0,7 0,1 0,03 0,6
H4 97,6 0,7 0,15 0,04 1,0

Влияние примесей на свойства металла

Сера является одной из наиболее вредных примесей. Она придает никелю краcноломкость, из-за которой ухудшаются свойства металла при обработке давлением. Чтобы нейтрализовать действие серы, добавляют марганец и/или магний.

Углерод в количестве до 0,1 % никак не влияет на свойства металла, однако при большем содержании этого элемента он выпадает из твердого раствора при отжиге и снижает пластичность холодного никеля.

При содержании висмута и свинца в количестве от 0,002 % становится невозможной горячая обработка металла: так как эти элементы почти не растворяютися в твердом состоянии, из-за них разрушается слиток. Поэтому во всех марках никеля количество свинца и висмута ограничено 0,001 и 0,0006 % соответственно.

Алюминий увеличивает электросопротивление никеля. Данный элемент содержится в самой чистой марке — Н0. Кроме того, широко применяются сплавы никеля и алюминия: у них высокая жаропрочность и устойчивость к коррозии.

Железо не оказывает ощутимого влияния на свойства никеля. Кремний раскисляет основной металл, благодаря чему благоприятно влияет на его литейные свойства, химическую стойкость и прочность.

Кобальт повышает жаростойкость, жаропрочность и прочность никеля, а марганец оказывает положительные влияние на технологические и механические свойства металла, улучшает его электросопротивление.

Применение никеля в чистом виде

Для защиты металлов от коррозии

Для этого используются покрытия, которые наносятся гальванопластикой или плакированием. Первый способ применяют для алюминия, чугуна, магния и цинка, второй — для нелегированных сталей и железа.

Для производства металлических изделий, которые имеют постоянные формы и высокую коррозионную устойчивость

Никель в чистом виде стоит дороже, чем железо и сталь, поэтому используется в тех случаях, когда невозможно обойтись другим металлом с никелевым покрытием. Из никеля производят тигли и котлы, цистерны для перевозки и плавления щелочей, хранения реагентов, пищевых продуктов и др. В никелевых трубах изготавливают конденсаты. Инструменты их этого металла устойчивы при взаимодействии с агрессивными элементами, поэтому они практически незаменимы в химических лабораториях и медицинских центрах. Различные приборы из никеля применяются для телевидения, радиолокации и атомной техники.

Применение никеля

В качестве катализаторов и фильтров в химической промышленности

Никель обладает такими же каталитическими свойствами, что и палладий, но стоит значительно меньше, поэтому широко используется в виде порошка в реакциях гидрирования спиртов, непредельных и ароматических углеводородов, циклических альдегидов.

Порошок чистого никеля также подходит для создания пористых фильтров, которые используются для фильтрования различных продуктов: топлива, газов и др.

Для механических прерывателей нейтронного пучка.

Свойства никеля позволяют получать нейтронные импульсы с большой энергией, в результате чего пластины из этого металла применяются в ядерной физике.

Также никель используют при изготовлении электродов в щелочных аккумуляторах.

Никелевые сплавы

В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.

Все сплавы никеля разделяются на четыре большие группы:

  • Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, ней­зильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
  • Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
  • Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, пре­цизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
  • Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.

Сплав с кремнием

Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 - 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.

Сплавы никеля и марганца

Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.

Алюмель

Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.

Хромели

Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.

Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.

В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.

Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.

Медно-никелевые сплавы

Это сплавы на медной основе, при этом никель является в них основным легирующим элементом. Смешение никеля и меди гарантирует высокую прочность, электросопротивление и устойчивость к коррозии.

В качестве элементов медно-никелевых сплавов могут также выступать алюминий, железо, марганец, цинк, титан, свинец, кремний. Согласно ГОСТ 492-73, допускается не более 2 % примесей, для некоторых сплавов — не более 0,15 %. Наиболее распространенные медно-никелевые сплавы — это копель, константан, мельхиор, нейзильбер, куниаль, манганин, монель.

Копель

Копель (МНМц43-0,5) содержит 0,1−1 % марганца, 42,5−44 % никеля, до 0,6 % примесей, остальная масса приходится на медь. Сплав имеет большую термоэлектродвижущую силу, выпускается в виде проволоки, которая применяется для компенсационных проводов, а также для изготовления термопар.

Константан

Константан (МНМц40-1,5) — термостабильный сплав с высоким удельным электросопротивлением. Он состоит из 1-2 % марганца, 39-41 % никеля, примерно 59 % меди и не более 0,9 % примесей. Константан выпускается в виде проволоки, полос и лент. Используется для изготовления приборов высокого класса точности, реостатов и электронагревательных элементов, компенсационных проводов и термопар.

Мельхиор

Нейзильбер

Куниаль

Куниаль — дисперсионно-твердеющий сплав меди, никеля и алюминия. Куниаль А (МНА13-3) содержит 2,3-3 % алюминия, 12-15 % никеля, около 80 % меди и не более 1,9% примесей. Куниаль Б (МНА6-1,5) — 1,2-1,8 % алюминия, 5,5-6,5 % никеля, около 90 % меди и не более 1,1 % примесей.

Куниаль А выпускается в виде прутков, применяется в машиностроении для изделий повышенной прочности. Из куниаля Б изготавливают полосы, которые используются в электротехнике для пружин и других изделий.

Манганин

Манганин (МНМц3-12) — термостабильный сплав, содержащий 11,5-13,5 % марганца, 2,5-3,5 % никеля, около 85 % меди и не более 0,9 % примесей. Он выпускается в виде листов и проволоки, находит применение в измерительной технике: из манганина делают шунты, катушки, добавочные сопротивления, магазины сопротивлений и др.

Монель

Никель титан, также известный как Нитинол, это металл сплав из никель и титан, где два элемента присутствуют примерно в равных атомных процентах. Различные сплавы названы в соответствии с массовым процентным содержанием никеля, например Нитинол 55 и Нитинол 60. Он демонстрирует память формы эффект и сверхэластичность при разных температурах.

Содержание

История

Слово Нитинол происходит от его состава и места обнаружения: (Nickel Tiтаний-Nаваль Означение Laboratory). Уильям Дж. Бюлер [1] вместе с Фредерик Ван, [2] открыл его свойства во время исследований на Военно-морская артиллерийская лаборатория в 1959 г. [3] [4] Бюлер пытался создать лучшую носовую часть ракеты, которая могла бы устоять усталость, высокая температура и сила влияние. Обнаружив, что 1: 1 сплав никеля и титана могли сделать эту работу, в 1961 году он представил образец на совещании руководства лаборатории. Образец, сложенный как аккордеон, был передан и согнут участниками. Один из них приложил к образцу тепло от своей зажигалки, и, к всеобщему удивлению, полоска в форме гармошки сжалась и приняла прежнюю форму. [5]

Хотя потенциальные возможности применения нитинола были реализованы сразу же, практические усилия по коммерциализации сплава были предприняты лишь десятилетие спустя. Эта задержка была в значительной степени из-за необычайной сложности плавления, обработки и механической обработки сплава. Даже эти усилия столкнулись с финансовыми проблемами, которые не удалось легко преодолеть до 1980-х годов, когда эти практические трудности наконец начали разрешаться.

Открытие эффекта памяти формы в целом относится к 1932 году, когда шведский химик Арне Оландер [6] впервые обнаружил это свойство в сплавах золота с кадмием. Такой же эффект наблюдался в Cu-Zn (латунь) в начале 1950-х гг. [7]

Механизм


Необычные свойства нитинола являются производными от обратимого твердотельного фазового превращения, известного как мартенситное превращениемежду двумя различными кристаллическими фазами мартенсита, требующими механического напряжения 10 000–20 000 фунтов на кв. дюйм (69–138 МПа).

При высоких температурах нитинол принимает взаимопроникающую простую кубическую структуру, называемую аустенит (также известная как родительская фаза). При низких температурах нитинол самопроизвольно превращается в более сложный моноклинная кристаллическая структура известный как мартенсит (дочерняя фаза). [8] Существует четыре температуры перехода, связанные с превращениями аустенит-мартенсит и мартенсит-аустенит. Начиная с полного аустенита, мартенсит начинает формироваться по мере охлаждения сплава до так называемого температура начала мартенсита, или Ms, а температура, при которой завершается превращение, называется температурой температура мартенситной отделки, или Mж. Когда сплав полностью мартенситный и подвергается нагреву, аустенит начинает формироваться на начальная температура аустенита, Аs, и заканчивается в температура отделки аустенита, Аж. [9]

Цикл охлаждения / нагрева показывает термическое гистерезис. Ширина гистерезиса зависит от точного состава нитинола и обработки. Его типичное значение представляет собой диапазон температур примерно 20-50 К (20-50 ° C; 36-90 ° F), но его можно уменьшить или увеличить за счет легирования. [10] и обработка. [11]


За счет предотвращения превращения деформированного мартенсита в аустенит можно создать большое давление - от 35 000 фунтов на квадратный дюйм до, во многих случаях, более 100 000 фунтов на квадратный дюйм (689 МПа). Одна из причин, по которой нитинол так усердно пытается вернуться к своей первоначальной форме, заключается в том, что это не просто обычный металлический сплав, а то, что известно как интерметаллид. В обычном сплаве составляющие расположены в кристаллической решетке случайным образом; в упорядоченном интерметаллическом соединении атомы (в данном случае никеля и титана) занимают очень определенные места в решетке. [13] Тот факт, что нитинол является интерметаллидом, во многом определяет сложность изготовления устройств из сплава. [ Почему? ]


Одним из часто встречающихся эффектов нитинола является так называемый R-фаза. R-фаза - это еще одна мартенситная фаза, которая конкурирует с упомянутой выше мартенситной фазой. Поскольку он не обеспечивает больших эффектов памяти мартенситной фазы, он обычно не используется на практике.

Производственный процесс

Нитинол получить чрезвычайно сложно из-за чрезвычайно жесткого контроля состава и огромной реакционной способности титана. Каждый атом титана, который соединяется с кислородом или углеродом, является атомом, отнятым у решетки NiTi, таким образом изменяя состав и делая температуру превращения намного ниже. Сегодня используются два основных метода плавки:

Вакуумно-дуговый переплав (VAR) Это делается путем удара электрической дуги между сырьем и медной запорной планкой с водяным охлаждением. Плавка происходит в высоком вакууме, а сама форма - это медь с водяным охлаждением. Вакуумная индукционная плавка (VIM) Для этого используются переменные магнитные поля для нагрева сырья в тигле (обычно углеродного). Это тоже делается в высоком вакууме.

Хотя оба метода имеют преимущества, было продемонстрировано, что современный промышленный расплав VIM имеет меньшие включения, чем современный промышленный VAR, что приводит к более высокому сопротивлению усталости. [17] В других исследованиях сообщается, что VAR, использующий сырье чрезвычайно высокой чистоты, может привести к уменьшению количества включений и, таким образом, к улучшению усталостных характеристик. [18] Другие методы также используются в небольших масштабах, включая плазменную дуговую плавку, индукционную плавку черепа и плавление электронным пучком. Физическое осаждение из паровой фазы также используется в лабораторных масштабах.

Горячая работа нитинола относительно легко, но холодная обработка это сложно, потому что огромная эластичность сплава увеличивает контакт штампа или валка, что приводит к огромному сопротивлению трению и износу инструмента. По тем же причинам обработка чрезвычайно трудна - что еще хуже, теплопроводность нитинола низкая, поэтому тепло отводить трудно. Шлифовка (абразивная резка), Электроэрозионная обработка (EDM) и лазерная резка все относительно легко.

Термообработка нитинола - дело деликатное и ответственное дело. Это трудоемкий процесс для точной настройки температуры превращения. Время и температура старения контролируют осаждение различных фаз, богатых никелем, и, таким образом, контролируют количество никеля в решетке NiTi; истощая матрицу никеля, старение увеличивает температуру превращения. Комбинация термической обработки и холодной обработки имеет важное значение для контроля свойств нитиноловых продуктов. [19]

Вызовы

Усталостные отказы нитиноловых устройств являются постоянным предметом обсуждения. Поскольку это предпочтительный материал для приложений, требующих огромной гибкости и подвижности (например, периферийных стентов, сердечных клапанов, интеллектуальных термомеханических приводов и электромеханических микроактюаторов), он неизбежно подвергается гораздо большим усталостным напряжениям по сравнению с другими металлами. Хотя усталостные характеристики нитинола с контролируемой деформацией превосходят все другие известные металлы, усталостные разрушения наблюдались в самых сложных областях применения. Сейчас прилагаются огромные усилия, чтобы лучше понять и определить пределы стойкости нитинола.

Нитинол наполовину состоит из никеля, и поэтому в медицинской промышленности было много опасений по поводу выделения никеля, известного аллергена и возможного канцерогена. [19] (Никель также присутствует в значительных количествах в нержавеющая сталь и кобальт-хромовые сплавы.) При правильной обработке (через электрополировка и / или пассивация), нитинол образует очень устойчивый защитный TiO2 слой, который действует как очень эффективный и самовосстанавливающийся барьер против ионного обмена. Неоднократно было показано, что нитинол выделяет никель медленнее, чем, например, нержавеющая сталь. При этом очень ранние медицинские устройства изготавливались без электрополировки, и наблюдалась коррозия. Сегодняшний нитинол сосудистый саморасширяющиеся металлические стентынапример, не обнаруживают признаков коррозии или выделения никеля, а результаты у пациентов с аллергией на никель и без нее неразличимы.

Постоянные и продолжительные дискуссии по поводу включений в нитинол, как TiC, так и Ti.2NiOИкс. Как и во всех других металлах и сплавах, в нитиноле можно найти включения. Размер, распределение и тип включений можно до некоторой степени контролировать. Теоретически, меньшие размеры, округлость и меньшее количество включений должны привести к повышению усталостной прочности. В литературе некоторые ранние работы сообщают, что не смогли показать измеримых различий, [20] [21] в то время как новые исследования демонстрируют зависимость сопротивления усталости от типичного размера включений в сплаве. [17] [18] [22] [23] [24]

Нитинол трудно сваривать как с самим собой, так и с другими материалами. Лазерная сварка нитинола сама по себе - относительно рутинный процесс. Совсем недавно прочные соединения между проволоками из никелевого титана и проволок из нержавеющей стали были выполнены с использованием никелевого наполнителя. [25] Лазер [26] и вольфрамовый инертный газ (TIG) [27] сварные швы были сделаны между трубками из никелида титана и трубами из нержавеющей стали. Продолжаются дополнительные исследования других процессов и других металлов, с которыми можно сваривать нитинол.

Недавние достижения показали, что переработка нитинола может расширить термомеханические возможности, позволяя встроить несколько запоминающих устройств формы в монолитную структуру. [37] [38] Исследования в области технологии множественной памяти продолжаются и обещают в ближайшем будущем предоставить устройства с улучшенной памятью формы. [39] , [40] и применение новых материалов и структур материалов, таких как гибридные материалы с памятью формы (SMM) и композиты с памятью формы (SMC). [41]

Приложения



Существует четыре наиболее часто используемых типа применения нитинола:

Сегодня нитинол находит применение в перечисленных отраслях промышленности:

Тепловые и электрические приводы

  • Нитинол можно использовать вместо обычных приводы (соленоиды, серводвигателии т. д.), например, в Стикито, простой гексаподробот.
  • Пружины из нитинола используются в термоклапанах для флюидика, где материал одновременно действует как датчик температуры и привод.
  • Он используется как автофокус актуатор в экшн-камерах и как Оптический стабилизатор изображения в мобильных телефонах. [43]
  • Он используется в пневматических клапанах для комфортной посадки и стал промышленным стандартом.
  • Chevrolet Corvette 2014 года включает нитиноловые приводы, которые заменили более тяжелые моторизованные приводы для открытия и закрытия вентиляционного люка, через который воздух выходит из багажника, что упрощает его закрытие. [44]

Биосовместимые и биомедицинские приложения

  • Нитинол очень биосовместимый и обладает свойствами, подходящими для использования в ортопедических имплантатах. Из-за уникальных свойств нитинола он пользуется большим спросом в менее инвазивных медицинских устройствах. Нитиноловая трубка обычно используется в катетерах, стентах и ​​сверхэластичных иглах.
  • В колоректальной хирургии [45] материал используется в устройствах для переподключения кишечника после удаления патологии.
  • Нитинол используется в устройствах, разработанных Франц Фройденталь лечить открытый артериальный проток, блокируя кровеносный сосуд, который обходит легкие и не смог закрыть после рождения у младенца. [46]
  • В стоматологии материал используется в ортодонтия для скоб и проводов, соединяющих зубы. Как только провод SMA помещается в рот, его температура повышается до температуры окружающей среды. Это заставляет нитинол сокращаться до своей первоначальной формы, прилагая постоянную силу для перемещения зубов. Эти провода SMA не нужно повторно затягивать так же часто, как другие провода, потому что они могут сжиматься при перемещении зубьев, в отличие от обычных проволок из нержавеющей стали. Дополнительно нитинол можно использовать в эндодонтия, где файлы из нитинола используются для очистки и формирования корневых каналов во время корневой канал процедура. Из-за высокой устойчивости к усталости и гибкости нитинола он значительно снижает вероятность поломки эндодонтического файла внутри зуба во время лечения корневых каналов, повышая таким образом безопасность пациента.
  • Еще одно важное применение нитинола в медицине - стенты: сжатый стент может быть вставлен в артерию или вену, где температура тела нагревает стент, и стент возвращается к своей исходной расширенной форме после удаления ограничивающей оболочки; затем стент поддерживает артерию или вену для улучшения кровотока. Он также используется как замена швы [нужна цитата] - нитиноловую проволоку можно сплести через две структуры, а затем дать ей возможность трансформироваться в ее предварительно сформированную форму, которая должна удерживать структуры на месте. [нужна цитата]
  • Точно так же разборные структуры, состоящие из плетеных, микроскопически тонких нитиноловых нитей, могут использоваться при нейрососудистых вмешательствах, таких как тромболизис при инсульте, эмболизация и внутричерепная ангиопластика. [47]
  • Более свежий [когда?] применение нитиноловой проволоки в женской контрацепции, особенно в внутриматочные спирали.

Системы демпфирования в строительстве

  • Суперэластичный нитинол находит множество применений в гражданских конструкциях, таких как мосты и здания. Одним из таких приложений является интеллектуальный армированный бетон (IRC), который включает в себя проволоку Ni-Ti, встроенную в бетон. Эти провода могут обнаруживать трещины и сжиматься, чтобы залечить трещины крупного размера. [48]
  • Другое применение - активная настройка собственной частоты конструкции с использованием нитиноловой проволоки для гашения вибраций.

Другие приложения и прототипы

Рекомендации

дальнейшее чтение

A process of making parts and forms of Type 60 Nitinol having a shape memory effect, comprising: selecting a Type 60 Nitinol. Inventor G, Julien, CEO of Nitinol Technologies, Inc. (Washington State)

Брусок кристаллического титана

Титан – лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

СТРУКТУРА

Кристаллическая структура кристалла

Кристаллическая структура кристалла

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.
Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении – по мартенситному механизму с образованием игольчатой структуры.
Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

СВОЙСТВА

Кристаллы титана

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.
Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2 ), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2 ). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

ЗАПАСЫ И ДОБЫЧА

Кристаллы титана

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

ПРОИСХОЖДЕНИЕ

Титановая руда

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.
Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.
Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

ПРИМЕНЕНИЕ

Изделия из титана

Изделия из титана

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Читайте также: