Теория струн в космологии доклад

Обновлено: 16.05.2024

Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Эти бесконечные струны совершают колебания, которые похожи на движения струн.

Согласно науке, если постоянно увеличивать любой предмет под микроскопом, сначала можно увидеть молекулы, которые состоят из атомов, они состоят из электронов и ядер, ядра состоят из протонов и нейтронов, внутри нейтрона мы увидим кварки.

Считается, что после этого больше ничего нет. Однако согласно теории струн, внутри этих кварков существуют тончайшие вибрирующие струны.

Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна.

Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" (гипотетический фундамент, который объясняет абсолютно все физические явления).

Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём.

Теория суперструн

Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации:

  • учитывает фермионы (частица с полуцелым значением спина),
  • учитывает бозоны (частица с целым значением спина),
  • включает суперсимметрию (связь между фермионами и бозонами).

Теория струн — это общее название всей области. Главное теоретическое отличие между теорией струн и теорией суперструн заключается в существовании суперсимметрии.

Варианты теории струн

Вместо одной теории, которая объясняет всё во Вселенной, на данный момент существуют целых пять теорий струн. Различия между этими теориями очень сложны математически.

  1. Теория струн тип I: включает открытые и замкнутые струны; содержит форму симметрии, которая математически является группой симметрии O (32).
  2. Теория струн тип IIA: открытые струны этого типа прикреплены к структурам (D-браны) с нечётным числом измерений; замкнутые струны (где модели колебаний симметричны) перемещаются независимо вправо и влево по замкнутой струне.
  3. Теория струн тип IIB: открытые струны прикреплены к структурам (D-бранам) с чётным числом измерений; у замкнутых струн модели колебаний асимметричны (зависит от того, перемещаются ли они влево или вправо по струне).
  4. Теория струн тип HO (англ: "Эйч О", полное название "Гетеротическая теория струн O (32)"): форма гетеротической теории струн; содержит только замкнутые струны, у которых правосторонние колебания напоминают струны типа II, а левосторонние напоминают бозонные струны.
  5. Теория струн тип HE (англ. "Эйч И", полное название "Теория струн Гетеротик E8 x E8"): ещё одна форма гетеротической теории струн, также содержит только замкнутые струны, чьи правосторонние колебания напоминают струны типа II, а левосторонние напоминают бозонные струны. Группа симметрии отличается от предыдущей теории (типа HO). Этот тип также имеет важные математические различия в отношении группы симметрии.

Дополнительные измерения

Теории струн требуются дополнительные измерения: говорится о добавлении по меньшей мере 6 измерений к 4 известным (всего 10 измерений). В ней также предусмотрены способы связать большие дополнительные измерения с малыми.

Некоторые доклады по теории струн сообщают о 26-мерном пространстве, в теории суперструн говорится о 11-мерном пространстве (более гипотетическая теория суперструн/сверхструн под названием M-теория).

Мы знаем три измерения, что нас окружают — те, которые определяют длину, ширину и глубину всех объектов (оси x, y и z соответственно). Четвёртое измерение — это время, оно определяет свойства всей известной материи в любой заданной точке.

Кто открыл теорию струн?

Основателем теории струн, ключевым теоретиком, стоящим за самыми ранними моделями, считается итальянский физик-теоретик Габриеле Венециано (родился в 1942 г.).

Также в середине 1970-х годов одними из первых и наиболее важных теоретиков были:

  • Пьер Рамон,
  • Джон Шварц,
  • Андре Невё,
  • Джоэль Шерк.

Как возникла теория струн?

Эта теория началась с наблюдения резонанса элементарных частиц (возбуждённое состояние адрона, например, протон или нейтрон), которые образовывали регулярные паттерны. Они напоминали обертоны от натянутой струны (обертоны — частичные тоны, входящие в спектр музыкального звука).

В 1968 году, исходя из этого наблюдения, итальянский физик Габриеле Венециано сделал предположение о том, что на самом деле эти адроны (сильно взаимодействующие элементарные частицы) являются энергетическими колебаниями микроскопически малых струн. Таким образом, он предположил, что самой элементарной единицей является не точка, а струна.

В начале 1980-х годов физики-теоретики Майкл Грин (англичанин) и Джон Генри Шварц (американец) соединили теорию струн и суперсимметрию, так появилась теория суперструн.

Самая главная проблема в физике, о которой я уже рассказывал на своём канале (ссылка на неё будет внизу), это отсутствие Теории Всего - универсального закона мироздания, описывающего всё на свете. Всё дело в том, что никакой теории не удалось объединить два мира - квантовую механику и релятивистскую физику. Не удавалось до сегодняшнего дня.

Законы квантового мира и космических тел кардинально отличаются друг от друга. В первом мире господствуют законы суперпозиции (фотон одновременно проявляет свойства и волны, и частицы) и квантовой запутанности (две частицы способны менять свои свойства одновременно). Во второй звёзды, планеты, даже целые галактики притягиваются друг к другу под действием гравитации , а на каждое тело влияет эффект замедления времени - если космический корабль будет двигаться с околосветовой скоростью, то его пассажиры почти не заметят течения времени и даже не постареют - тогда как для нас время будет идти с привычной скоростью.

Понимаете? Два мира с абсолютно разными законами. Прибавьте к этому наш, обычный мир с классической механикой и получите три совершено разных физики, несвязанных между собой. Вот уже 70 лет учёные всего мира бьются над этой проблемой и, похоже, они в шаге от её решения.

Новым кандидатом на Теорию Всего стала теория струн. Ей уже много лет, и даже был период, когда её выкинули на свалку истории. Но последние 20 лет исследований сделали теорию струн главенствующей в физике.

В чём смысл теории струн?

1. Абсолютно все частицы на мельчайшем уровне состоят из струн - "ниточек", способных колебаться. Струны подобны волнам, только очень маленьким. Каждому виду частицы соответствует определённая частота колебания струны. Одно колебание - получился кварк, другое - бозон, третье - электрон.

2. Струны не имеет массы - они состоят из энергии и способны обмениваться ей с другими струнами.

3. Струны способны перемещаться - и перемещаются они в 10 измерении. Мы воспринимаем лишь 4 из них - длину, ширину, высоту и время. Остальные же свёрнуты в "клубок" и являются настолько маленькими, что лишь струны способны путешествовать между ними. Представить остальные измерения можно, об этом мы поговорим чуть ниже.

Казалось бы: и что с того? Ну есть струны, а дальше что?

И действительно, в 1970-х годах теория струн была отодвинута на второй план, ведь она застыла в этих рассуждениях. Более того, для более точного описания поведения частиц учёные начали добавлять разные условия: в одной теории есть тахионы (вымышленные частицы с отрицательной массой), а в другой нет, а в третьей появляются закрытые струны - то есть сворачивающиеся в круг или в другую форму.

Итого появилось 5 новых теорий струн, каждая из которых могла описывать наш мир и в каждой была своя система уравнений. 5 систем уравнений - где это видано, когда нужна одна? Да, одна теория могла переходить в другую, если поменять условия, но это точно не то, что нужно. Именно поэтому она была заброшена.

Но в 1995 году произошёл взрыв в научном мире. Эдвард Уиттен, американский физик, объединил все 5 теорий струн в одну, М-теорию. (M - mother - материнская). Ему не нужно было менять условия для перехода из одной теории в другую, в его системах уравнений при любых подстановках всё прекрасно работало.

Что нужно знать об М-теории? Это не какой-то новый закон, это всё та же теория струн. Но с двумя новыми условиями:

1. Из струн состоят не только фермионы - то есть кварки, электроны, протоны, нейтроны, фотоны и другие частицы, из которых состоит материя, но и бозоны - переносчики энергии между фермионами. Тем самым из струн можно получить ВООБЩЕ любую частицу, какую бы ты не пожелал. Это называется суперсимметрией .

2. Струны перемещаются не в 10, а в 11 измерениях. Каждая из пяти теорий струн - это граничное условие в 10 измерении, а перемещаться между ними можно в одиннадцатом.

Наверняка у вас появился вопрос: а как представить себе 11 измерений? Напоминаю, что большинство из них компактифицированы (свёрнуты), и поэтому мы лишь можем догадываться, что они из себя представляют. Частичный ответ на этот вопрос даст вот это видео:

Итак, есть три пространственных измерения (длина, ширина и высота), три временных (казалось бы, как это - двумерное время? А вот так вот, просто мы не можем его вообразить) и три для путешествия между Вселенными, у которых разные физические законы (логика та же, что и для временных). Наконец, в десятом измерении путешествуют струны, а в одиннадцатом они способны перемещаться мгновенно, не тратя энергии.

Сложно? Сложно. Но повторюсь: это лишь способ представить себе. Возможно, всё на самом деле не так, ведь мы неспособны осознавать больше 4 измерений, способны передвигаться лишь в трёхмерном, а видим вообще двумерную картинку. Поэтому эти высшие измерения - лишь математическое описание.

Теория струн и М-теория подарили миру то, что не мог сделать ни один закон - описать движение, поведение и взаимодействие абсолютно любых частиц в нашем мире. Более того, даже тёмная материя и тёмная энергия, самые загадочные вещества во Вселенной, описываются теорией струн. Это ли не успех?

Учёные не стоят на месте и некоторые из них уже составили F-теорию (F-father - отцовская по аналогии с материнской), в которой струны путешествуют уже в 12-мерном пространстве. Там системы уравнений ещё проще, чем в M-теории.

Но у теории струн есть одно но - она не привносит ничего нового в науку и является что ни на есть теорией без доказательств. Да, все её принципы идеально описывают всё происходящее вокруг. НО у неё нет экспериментальных доказательств! Струна имеет размер 10^-35 метров, что в миллиарды миллиардов раз меньше того, что мы можем увидеть. В Большом Адронном Коллайдере мы также не смогли засечь присутствия струн - тогда существуют ли они? Мы смогли идеально описать существующие данные, но на их основе не можем сделать новое открытие в науке.

Если мы найдём подтверждение Теории струн, то заполним самый главный пробел в науке. Возможно, мы даже сможем применить её на практике - получать любые частицы, какие пожелаем или покорять 11-мерное пространство!

Введение
В1900г., стараясь согласовать теорию с экспериментальными данными, Планк написал свою знаменитую формулу излучения черного тела.

Не часто в физике бывает так, чтобы экспериментальная кривая имела прямое отношение к основам теории, обычно они связываются цепочкой более или менее замысловатых вычислений. Однако излучение черного тела оказалось счастливым исключением из этого правила. Аппроксимируя экспериментальные кривые, Планк предложил формулу, которая, как мы все хорошо знаем, непосредственно приводит к понятию кванта.

Теория струн — направление математической физики, изучающее динамику не точечных частиц, как большинство разделов физики, а одномерных протяжённых объектов, так называемых струн. В рамках этой теории постулируется, что все фундаментальные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических струн, длина которых составляет порядка 10^-35 м (планковская длина).


Современная физика покоится на двух столпах:

Первый из них - это общая теория относительности Альберта Эйнштейна. Она объясняет, как устроены звезды, галактики и Вселенная.

Второй столп - Квантовая механика.

Эта теория объясняет, как устроен микромир: молекулы, атомы, электроны, кварки (простейшие неделимые частицы). Обе теории подтверждены опытами.

Но общая теория относительности и квантовая механика, не могут быть справедливы одновременно. Согласно теории Эйнштейна, пространство является плоским (R2 -два измерения).


Такая структура пространства сохраняется даже в самом малом масштабе. Однако, согласно квантовой механике, на микроскопическом уровне постоянно происходит хаотичное движение частиц, которое искривляет пространство (представьте себе поверхность воды, которая начинает бурлить). Причем чем меньше масштаб, тем интенсивнее движения (квантовые флуктуации). То есть квантовая механика противоречит теории относительности. Эту проблему решили во второй половине XX века физики-теоретики. Они разработали единую теорию, с помощью которой можно было бы объяснить все физические процессы.
Теория XXI века
В 1968 году молодой итальянский физик-теоретик Габриэле Венециано пытался описать, как взаимодействуют между собой частицы атомного ядра: протоны и нейтроны. У ученого появилась блестящая догадка. Он понял, что все многочисленные свойства частиц в атоме может описать одна математическая формула (бета-функция Эйлера). Она была придумана двести лет назад швейцарским математиком Леонардом Эйлером и описывала интегралы в математическом анализе.


Венециано использовал ее в своих расчетах, но не понимал, почему она работает в этой области физики. Физический смысл формулы смогли раскрыть в 1970 году американские ученые Йоиширо Намбу, Леонард Сасскинд, а также их датский коллега Хольгер Нильсен.

Они предположили, что элементарные частицы - маленькие колеблющиеся одномерные струны, микроскопические нити энергии. Если эти струны являются такими крохотными, рассуждали исследователи, то они по-прежнему будут выглядеть как точечные частицы и, следовательно, не будут влиять на результаты экспериментов. Так и появилась теория струн.

Струны - это самые маленькие объекты во Вселенной. Их длина равна 10 -35 м. Согласно теории струн, это минимальная длина, которую может иметь объект во Вселенной.

Струны настолько малы, что даже если их можно было бы увидеть с помощью самого мощного ускорителя частиц, то они выглядели бы точечными объектами. Если кварк можно представить себе как крохотный шарик, то струна напоминает крохотную тонкую ниточку. Поделив точечные кварки на струны, физики устранили противоречие между квантовой механикой и теорией относительности.

По свойствам струна напоминает струну скрипки. Она может сворачиваться, изгибаться, вибрировать.


Струны взаимодействуют между собой, образуя петли. Из этих петель возникают более крупные частицы (кварки, электроны). Масса этих частиц зависит от энергии, выделяемой петлей, когда та вибрирует.


БАК (англ. Large Hadron Collider, сокращённо LHC) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров более чем из 100 стран, в том числе из России — 12 институтов и 2 федеральных ядерных центра (ВНИИТФ, ВНИИЯФ).


Вселенная расширяется. Однако ученые не знают, будет ли она расширяться всегда или в какой-то момент она начнет опять сжиматься, что впоследствии вновь приведет к мощному космическому взрыву. Если бы мы смогли просмотреть космическую историю в обратном порядке, то увидели бы, как все галактики проваливались в черную дыру и сжимались в единственную бесконечно малую точку. Физики называют эту точку сингулярностью. В тот момент, когда вся Вселенная сжалась в сингулярность, наша космическая история закончилась бы.


Взгляд в будущее
У теории струн существуют две трудноразрешимые проблемы. Первая состоит в том, что, согласно этой теории, мы живем в мире десяти измерений. Мы ощущаем всего четыре: три пространственных измерения (длина, ширина и высота) и одно временное. Ученые считают, что другие шесть измерений пребывают в скрученном состоянии. Например, представим себе канат, соединяющий два столба. Если смотреть на него издалека, мы увидим лишь тонкую линию. На канате живет муравей. Так как мы стоим на большом расстоянии, нам кажется, что муравей бегает только влево-вправо вдоль каната.

Канат для нас выглядит одномерным объектом. Возьмем бинокль и вновь посмотрим на канат. Теперь мы видим, что у муравья есть два направления для прогулок: вдоль по канату и вокруг его оси (по часовой и против часовой стрелки). Значит, поверхность каната имеет два измерения. Подобным образом ученые объясняют, как скручены шесть невидимых нам измерений.

Вторая проблема техническая. У теории струн нет законченного варианта. Она до сих пор не приведена в строгий математический вид. Для этого физикам недостает математических формул.

Первая экспериментальная проверка теории струн
Учёные из Имперского колледжа Лондона разработали теоретическую основу для первого эксперимента, который мог бы подтвердить справедливость теории струн. Предполагается, что теория струн - единственный способ формулирования так называемой единой теории, описывающей все известные фундаментальные взаимодействия в природе. Несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн.

Эксперимент британских учёных предполагает измерение степени запутанности четырёх кубитов. Дело в том, что последние научные работы обнаружили некоторую взаимосвязь между запутанностью кубитов в квантовой теории и чёрными дырами в теории струн. Если говорить конкретнее, то есть прямое соответствие между классификацией трёхкубитных взаимодействий и классификацией внешних чёрных дыр в теории супергравитации.

Конечно, предполагаемый эксперимент не станет переворотным в науке и не сможет на 100% доказать верность теории струн, но он в случае успешного завершения хотя бы покажет, что эта теория не противоречит существующим научным доктринам.

По крайней мере, мы будем более уверены, что фундаментальные физические константы имеют определённые значения не по каким-то физическим причинам, а потому, что эти значения необходимы для существования жизни на Земле, в том числе разумных наблюдателей, измеряющих эти значения. Именно так определил идею ландшафта теории струн известный физик-теоретик Леонард Сасскинд.

Искусно сочетая в себе идеи квантовой механики и общей теории относительности (ОТО), струнная теория, как полагают физики, должна построить будущую теорию гравитации. Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает.

Это весьма привлекательная, красивая идея, которая остаётся безрезультатной уже на протяжении шестидесяти лет, без окончательной теории и без предположений, которые можно было бы экспериментально проверить в реальной Вселенной.

5. Теория струн и скрытые измерения Вселенной Шинтан Яу, Стив Надис Питер, 2015г


Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Каждый колебательный паттерн соответствует разным частицам. Электрон - это не что иное, как струна, вибрирующая по одному шаблону, а протон - это струна, вибрирующая по другому шаблону. Это просто математическая концепция, нет никаких экспериментальных доказательств теории струн.

В природе существуют четыре фундаментальные силы: гравитация, электромагнетизм и слабые и сильные ядерные силы. Одна из главных целей физиков - разработать теорию, которая может описать все эти силы.

За последние 6 десятилетий, пытаясь объединить все силы, физики-теоретики выдвинули много разных интересных идей и новых теорий. Одна из самых многообещающих из этих теорий - теория струн.

Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность (если она доказана).

Основная идея теории струн

Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола. Из чего сделано яблоко? Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него.

Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы. Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы.

Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц (скажем, нейтрон) и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками.

Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще.

Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту.

Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам.

Следовательно, кварк - это не что иное, как струна, вибрирующая по одной схеме, а электрон - это не что иное, как струна, вибрирующая по другой схеме. Так что, если вы соберете все эти частицы обратно вместе, яблоко будет не чем иным, как связкой вибраций в струнах.

Если теория струн верна (она все еще не доказана), все вещи во вселенной - не что иное, как танцующая вибрирующая космическая симфония струн.

5 основных элементов теории струн

1. Дополнительное измерение

На данный момент теория струн является простой идеей. Нет прямых экспериментальных доказательств того, что это правильное описание природы.

Теория струн требует от нас принять существование дополнительного измерения во вселенной. В настоящее время мы живем в трех пространственных измерениях, но теория струн требует более шести высоких измерений в дополнение к четырем общим измерениям (3D + время), чтобы иметь смысл.

2. Суперсимметрия

Во Вселенной существует два основных класса элементарных частиц: бозоны и фермионы. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот.

Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения.

Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн.

Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн.

3. Объединение сил

Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц.

Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн.

4. Открытые и закрытые струны


5 фундаментальных взаимодействий струны типа I

Струны в теории струн имеют две формы: открытые и закрытые струны. Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну.

Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов.

Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике.

Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными.

5. М-Теория


Связь между M-теорией, теориями суперструн и 11D супергравитацией | Wikimedia

Со временем ученые придумали пять различных версий теории суперструн: Тип I, Тип IIA, Тип IIIB и две версии теории гетеротических струн.

Однако в 1995 году американский физик-теоретик Эдвард Виттен объединил все пять теорий в одну 11-мерную теорию, называемую М-теорией. Это может обеспечить основу для построения единой теории всех фундаментальных сил во Вселенной.

Кто открыл теорию струн?

Теория струн взята из теории S-матриц, исследовательской программы, начатой ​​Вернером Гейзенбергом в 1943 году. Целью этой программы было заменить локальную квантовую теорию поля как основной принцип физики элементарных частиц.

Ускорители частиц 1950-х и 60-х годов в изобилии производили адроны. Физики изобрели множество различных моделей для описания структуры спинов и масс этих сильно взаимодействующих частиц (состоящих из кварков).

Итальянский физик-теоретик Габриэле Венециано сыграл главную роль в разработке этих ранних моделей. Он сформулировал основы теории струн в 1968 году, когда обнаружил, что крошечные струны могут описывать взаимодействия адронов.

Он также опубликовал статью в 1991 году, в которой описывается, как инфляционная космологическая модель может быть получена из теории струн.

Сегодня, благодаря совместным усилиям многих исследователей, теория струн превратилась в широкую и разнообразную тему, связанную с чистой математикой, космологией, физикой конденсированного состояния и квантовой гравитацией.

Является ли теория струн теорией всего?

Ну, быстрый ответ - нет.

Теория Всего - это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной. Найти такую ​​теорию - главная мечта физиков-теоретиков.

Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения.

Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной - через 10–43 секунды после Большого взрыва.


Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными. Например, теория струн допускает около 10500 вселенных или обширную мультивселенную. Это одна из причин, она столкнулась с многочисленными неудачами в прошлом.

Почему теория струн важна?

Хотя теория струн до сих пор не дала каких-либо проверяемых экспериментальных предсказаний, математика в теории струн сработала. И именно поэтому это чрезвычайно полезно.

За последние несколько десятилетий теория струн предложила несколько убедительных и достоверных решений.

  • вдохновил всю область исследований суперсимметрии,
  • помог нам понять энтропию черной дыры,
  • вдохновили новые подходы к традиционным вычислениям в квантовой теории поля.

Исследователи также установили связь между рамками квантовой теории поля и теории струн, которая называется AdS / CFT-соответствием.

Так что, может быть, история теории струн - это не теория всего, но, конечно, это не отдельная совокупность исследований, проводимых в каком-то неясном уголке науки. Вместо этого он может указать нам правильное направление и помочь нам открыть новые аспекты квантового мира и немного прекрасной математики.

Мы еще не знаем, какова истинная природа реальности, но мы будем продолжать копать, пока не узнаем.

Читайте также: