Современные космические обсерватории доклад

Обновлено: 04.07.2024

Что такое обсерваторий?
Обсерватория - современный астрономический комплекс, на котором расположены телескопы для наблюдения за небом и небесными телами. Наземные обсерватории оборудованы вращающимся или убирающимся куполом; космические обсерватории - зонтами и защитными щитами.


Так же астрономическая обсерватория — учреждение, предназначенное для проведения систематических наблюдений небесных тел ; возводится обыкновенно на высокой местности, с которой открывался бы большой кругозор во все стороны. Каждая обсерватория оборудована телескопами , как оптическими, так и работающими в других областях спектра ( радиоастрономия ).
История создания

Самые древние обсерватории находятся в Ассирии, Вавилоне, Китае, Египте, Персии, Индии, Мексике, Перу и в других государствах. Древние жрецы, по сути, и были первыми астрономами, потому что они вели наблюдения за звездным небом. Стоунхэндж – обсерватория, созданная ещё в каменном веке.


О бсерватории меняли свой образ вместе с развитием цивилизации. В древние времена, когда люди наблюдали за небосводом без оптических приборов, важно было, чтобы из такого места свободно просматривался горизонт во всех направлениях.

Для этих целей использовались открытые участки местности, естественные (холмы) или искусственные возвышения (насыпи, зиккураты, пирамиды), вокруг которых по линии горизонта имелись или создавались репера-ориентиры (каменные порталы, башни). С помощью этих ориентиров на восходе, закате Солнца или в полдень наблюдатель мог определять момент наступления того или иного астрономического события.

Позднее, с появлением новых измерительных приборов, обсерватории превратились в купольные сооружения, позволяющие наблюдателям сохранять измерительные приборы в непогоду, а оконные проемы использовать как проекционные отверстия для солнечного света.

Позже обсерватории можно было использовать как место, где можно наблюдать за объектами на звездном небе, потребовалось сделать крутящийся купол с проемом для наблюдений.

Самыми первыми обсерваториями были Парижская (1667 год) и Гринвичская (1675 год, до сих пор считающаяся одной из самых крупных обсерваторий мира). Наряду с угломерными инструментами, в этих обсерваториях использовались большие телескопы-рефракторы.

В век научно-технической революции государства мира начали соревнование в сфере постройки обсерваторий. К концу XVIII века государственные обсерватории функционировали по всему миру, и их число достигло 100, а к концу XIX века таких обсерваторий было уже около 400.

Основная часть
Современные наземные обсерватории

Наземные обсерватории - это сооружение, используемое для наблюдения и слежения за различными объектами и явлениями на Земле.

Давайте рассмотрим топ-самых современных и крупнейших обсерваторий.
Китайская астрономическая обсерватория или Небесный глаз

Крупнейшая на сегодняшний момент в мире астрономическая обсерватория располагается в отдалении на юго-западе Китая, что значительно осложнило ее строительство. Строительство началось в 2011 году. Стоимость строительства самого крупного радиотелескопа на нашей планете составила 180 млн долларов.

Инженерам и строителям пришлось годами жить в одном из горных ущелий вдали от цивилизации, где в первое время даже не было электричества. Именно это заброшенное место выбрали из 400 вариантов: природная долина в горах на высоте примерно 1000 м над уровнем моря идеально подходила по размеру и являлась естественной защитой от радиочастотных помех.

При этом, не стоит забывать о том, что работа с FAST не лишена проблем — так, основная проблема заключается в хранении невероятно большого количества данных, которые в ближайшие несколько лет соберет этот радиотелескоп.

Китайский радиотелескоп способен обнаружить даже самые слабые радиоволны, исходящие от небесных объектов, таких как пульсары и целые галактики. Также специалисты не исключают, что он может быть использован для обнаружения далеких миров, на которых может существовать жизнь.



5

Обсерватории Роке-де-лос-Мучачос или Большой Канарский телескоп


Расположена на пике потухшего вулкана Мучачос на высоте около 2400 метров выше уровня моря, на Канарском острове Пальма. Наряду с обсерваториями Гаваев и Чили, является одним из лучших мест на Земле с точки зрения астроклимата. Она расположена выше атмосферного слоя, для которого характерно интенсивное формирование облаков, что позволяет, практически всегда, вести наблюдения на чистом небосводе.

В 2007 году введен в строй Большой Канарский телескоп — оптический телескоп-рефлектор с самым крупным зеркалом в мире. Его первичное шестиугольное зеркало, с эквивалентным диаметром 10,4 метра, составлено из 36 шестиугольных сегментов, изготовленных из ситаллов Zerodur, производства компании Schott AG. Оснащён активной и адаптивной оптикой. Он видит объекты в миллиард раз более слабые, чем те, что видит невооружённый человеческий глаз.
Паранальская обсерватория

Паранальскую обсерваторию открыли в 1999 году в Чили. Она входит в комплекс Европейской Южной обсерватории — одной из старейших организаций по астрономическим исследованиям.

Обсерватория находится в Атакамской пустыне на высоте 2 635 м над уровнем моря, что эквивалентно высоте восьми Эйфелевых башен. Она оснащена несколькими телескопами, в число которых входит и один из самых мощных оптических инструментов наблюдения за космосом. Он состоит из четырех телескопов с зеркалами диаметром 8,2 м и четырех подвижных вспомогательных телескопов диаметром 1,8 м. Все вместе они создают интерферометр, разделяющий пучки электромагнитного светового излучения. С помощью телескопа за один час наблюдений можно получить изображения небесных объектов в 30 звездных
6


величин, что соответствует видимости объектов в 4 млрд раз тусклее, чем может увидеть человеческий глаз.
Этот телескоп уже внес огромный вклад в изучение космического пространства. С помощью него удалось получить первые изображения экзопланет, отследить движение звезд вокруг черной дыры и в 2005 году увидеть послесвечения самого дальнего из известных гамма-всплесков.
На территории обсерватории также есть резиденция для астрономов, работающих на станции. Внутри расположены огромный сад с бассейном, спортзал и ресторан.

Южный полярный телескоп – Антарктида

Южный полярный телескоп — 10 метровый радиотелескоп в обсерватории в Антарктиде на станции Амундсен-Скотт на географическом южном полюсе Земли .

Самый важный критерий расположения обсерваторий миллиметрового диапазона — отсутствие водяного пара , который такое излучение поглощает. Обсерватория SPT находится на большой высоте и в холодном регионе в Антарктиде. Водяной пар в холодном климате просто замерзает, и Антарктида, таким образом, является самым сухим местом на Земле. Кроме того, удалённый от цивилизации телескоп не испытывает сторонних шумов техногенного характера, а во время протяжённой полярной ночи исключается шум от солнечного излучения. Низкая окружающая температура снижает влияние теплового шума приёмников.

Среди минусов стоит отметить невозможность изучать северное полушарие, неустойчивость ледового покрытия под телескопом и трудный доступ к обсерватории.

Первый значительный обзор неба телескоп выполнял с целями обнаружения и исследования скопления галактик . Методика поиска основывалась на эффекте Сюняева — Зельдовича — искажения микроволнового фонового излучения взаимодействием его с межгалактической средой. В результате обзора было обнаружено порядка сотни скоплений галактик в чрезвычайно широком

диапазоне красных смещений. Были оценены массы скоплений галактик и получены ограничения для тёмной энергии .

Также удалось обнаружить популяцию далёких пылевых галактик с гравитационным линзированием.


Заключение
Вывод
Обсерватории имеют большую ценность, без них невозможно изучение космоса и космических тел. Благодаря им мы имеем ценную информацию за пределами нашей планеты. Наука развивается, узнаётся много нового и т.п. Я считаю, что обсерватории вносят огромный вклад в развитие астрономии и других наук.
Источники информации

Нажмите, чтобы узнать подробности

Цель работы: знакомство с современными космическими обсерваториями и изучение принципа их действия.

1. Узнать о методах изучения космоса

3. Проанализировать понятие гравитационных волн и использование принципа их действия для создания нового тира телескопов.

Развитие науки и техники в XX-XXI веке в значительной мере направили ученых на создание более современных и мощных средств изучения космоса. Огромный объём информации о космосе целиком остаётся за пределами земной атмосферы. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучикосмического происхождения недоступны для наблюдений с поверхности Земли. Для того чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Таковыми приборами стали космические обсерватории.

Глава 1. Изучение космоса

Вся история изучения Вселенной есть, в сущности, поиски и находки средств, улучшающих человеческое зрение. До начала XVII в. невооруженный глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет. По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.

Вселенная настолько огромна, что астрономы до сих пор не смогли установить, насколько она велика! Однако благодаря последним достижениям науки и техники мы узнали много нового о космосе и нашем месте в нем. В последние 50 лет люди получили возможность покидать Землю и изучать звезды и планеты не только наблюдая их в телескопы, но и получая информацию прямо из космоса. Запускаемые спутники оснащены сложнейшим оборудованием, с помощью которого были сделаны удивительные открытия, в существование которых астрономы не верили, например, черные дыры и новые планеты.

Со времени запуска в открытый космос первого искусственного спутника в октябре 1957 года за пределы нашей планеты было отправлено множество спутников и роботов-зондов. Благодаря им ученые “посетили” почти все основные планеты Солнечной системы, а также их спутники, астероиды, кометы. Подобные запуски осуществляются постоянно, и в наши дни зонды нового поколения продолжают свой полет к другим планетам, добывая и передавая на Землю всю информацию.

Также были запущены и космические обсерватории. Более подробно о них изложено в следующей главе.

Глава 2. Современные космические обсерватории

Для того чтобы более досконально изучать Вселенную , необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была уделом мечтателей. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.

Первые космические обсерватории существовали на орбите недолго, и программы наблюдений на них ограничивались несколькими пунктами. Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами для гарантированной работы в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.

Астрономы собирают заявки на проведение наблюдений, отбирают из них наиболее важные, готовят программу наблюдений, следят за получением и обработкой результатов. Данные, полученные на космических телескопах, в течение некоторого времени доступны лишь авторам программы наблюдений. Потом они поступают в компьютерные сети и агентства новостей, и любой астроном может воспользоваться ими. Также в сети содержится информация о видах телескопах – обсерваторий, их роде деятельности и принципе работы.

Список космических телескопов.

Этот список космических телескопов (астрономических обсерваторий в космосе), сгруппированный по основным диапазонам частот : Гамма-излучение, Рентгеновское излучение, Ультрафиолетовое излучение, Видимое излучение, Инфракрасное излучение, Микроволновое излучение и Радиоизлучение. Телескопы, работающие в различных частотных диапазонах включены во всех соответствующих разделах.

Космические гамма – телескопы

Гамма-телескопы собирают и измеряют высокоэнергическое гамма-излучение от астрофизических источников. Оно поглощается атмосферой, поэтому, чтобы вести наблюдения требуются высотные аэростаты или космические полёты. Гамма-лучи излучаются сверхновыми, нейтронными звёздами, пульсарами и чёрными дырами. Гамма-всплески, с очень высокими энергиями, были также обнаружены, но до сих пор не изучены.

Крупнейшей в своей области обсерваторией, запущенной в космос и работающей по сей день, является обсерватория GLAST.

GLAST (англ. Gamma-ray Large Area Space Telescope), впоследствии названный англ. Fermi Gamma-ray Space Telescope (рус. Космический гамма-телескоп Ферми) в честь физика Энрико Ферми (с 26 августа 2008 года), — космическая обсерватория на низкой земной орбите предназначенная для наблюдения больших областей космоса в диапазоне гамма-излучения. С его помощью астрономы исследуют астрофизические и космологические процессы, происходящие в активных ядрах галактик, пульсарах и других высокоэнергетических источниках; изучают гамма-всплески, ведут поиски тёмной материи.

Научные результаты.

Первым значительным открытием обсерватории была регистрация гамма-пульсара, расположенного в остатке сверхновой CTA 1[4]. Он находится в созвездии Цефей на расстоянии около 4600 световых лет от Земли и совершает полный оборот вокруг своей оси за 316,86 миллисекунд.

15 сентября 2008 года телескоп Ферми зарегистрировал рекордную вспышку гамма-излучения, получившую наименование GRB 080916C[5]. Последующие наблюдения астрономов позволили вычислить расстояние до объекта, которое равняется 12 миллиардам световых лет, и мощность вспышки. Считается, что подобные вспышки возникают при гравитационном коллапсе чрезвычайно массивной звезды. Вычисления показали, что скорость выброса звёздного вещества составляло 99,9999 процента от скорости света.

Гамма-рентгеновские пузыри Ферми

Одним из самых удивительных открытий, сделанных космическим телескопом, стало обнаружение гигантских образований размером до 50 тысяч световых лет, расположенных над и под центром нашей Галактики — Млечного Пути. Точная природа этих структур пока не известна, однако учёные полагают, что они возникли благодаря активности сверхмассивной чёрной дыры, находящейся в центре нашей Галактики. Предположительно, возраст пузырей составляет миллионы лет.

4. Гамма-вспышки новых звёзд

Начиная с 2010 года, телескоп зарегистрировал несколько мощных гамма-вспышек, источником которых являются новые звезды. Первым подобным объектом стала V407 Лебедя (V407 Cygni). Учёные считают, что такие гамма-вспышки возникают в тесно связанных двойных системах, когда вещество аккрецируется с одной звезды на другую.

Космические рентгеновские телескопы

Рентгеновские телескопы воспринимают поток фотонов высоких энергий, именуемый рентгеновским излучением. Оно сильно поглощается атмосферой, а это означает, может наблюдаться только высоко в атмосфере или в космосе. Несколько типов астрофизических объектов испускают рентгеновские лучи: Скопление галактик, чёрные дыры, Активные ядра галактик, остатки сверхновых, звёзды, звёзды в паре с белым карликом (катастрофические переменные звёзды), нейтронной звездой или чёрной дырой (рентгеновские двойные). Некоторые объекты Солнечной системы испускают рентгеновские лучи, в том числе и Луна, хотя большая часть рентгеновского излучения Луны возникает от отражённого солнечного рентгеновского излучения.

В пример можно поставить японскую орбитальную рентгеновскую обсерваторию ASCA.

ASCA — Усовершенствованный спутник для космологии и астрофизики; название до запуска ASTRO-D, четвёртая орбитальная рентгеновская обсерватория Японии, и вторая, в которую значительный вклад внесли США. Обсерватория создана проектной группой под руководством Минору Ода в Институте космических наук и астронавтики совместно с НАСА. Обсерватория была запущена 20 февраля 1993 года японской ракетой-носителем M-3S-II. Через 8 лет работы после геомагнитного шторма контроль над спутником был утерян 14 июля 2000 года, после чего научные наблюдения более не проводились. Спутник вошёл в плотные слои атмосферы и разрушился 2 марта 2001 года.

Основные результаты.

1. Обнаружение широких эмиссионных линий в спектрах аккрецирующих чёрных дыр — указание на влияние на их профиль эффектов общей теории относительности

2. Измерение профилей температур в скоплениях галактик

3. Измерение обилия тяжёлых элементов в спектрах звёзд с активными коронами

4. Обнаружение нетеплового излучения остатка вспышки сверхновой SN 1006

5. Открытие флуоресцентных линий излучения нейтрального железа в области Галактического центра — дополнительного свидетельства прошлой активности сверхмассивной чёрной дыры в центре нашей Галактики

6. Измерение обилия тяжёлых элементов в галактиках и скоплениях галактик

Космические ультрафиолетовые телескопы

Ультрафиолетовые телескопы изучают небо в ультрафиолетовом диапазоне длин волн, то есть примерно между 10 и 320 нм. Свет на этих длинах волн поглощается атмосферой Земли, поэтому наблюдения на этих длинах волн могут быть выполнены из верхних слоев атмосферы или из космоса.

Объекты излучающие ультрафиолетовое излучения включают Солнце, другие звёзды и галактики.

Хорошим представителем в этой области является телескоп GALEX.

1. Космическая обсерватория изучила сотни тысяч галактик. По результатам этих наблюдений было составлено несколько обзоров неба.

2. В 2007 году членом исследовательской команды телескопа Майком Сайбертом вокруг звезды Мира был обнаружен хвост из пыли и газа длиной около 2 градусов (13 световых лет). Это стало возможным благодаря способности детекторов телескопа GALEX фокусироваться на одном типе излучения

Космические оптические телескопы

Самая старая форма астрономии, оптическая или видимого света астрономия простирается примерно от 400 до 700 нм. Позиционирование оптического телескопа в космосе означает, что телескоп не видит атмосферных помех, обеспечивая получение более высокого разрешения. Оптические телескопы используются для наблюдения звезд, галактик, планетарных туманностей и протопланетных дисков, среди многих других вещей.

Конечно же, несомненным лидером среди оптических телескопов является космический телескоп Хаббл.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле

Наиболее значимые наблюдения

1. При помощи измерения расстояний до цефеид в Скоплении Девы было уточнено значение постоянной Хаббла. До наблюдений орбитального телескопа погрешность определения постоянной оценивалась в 50 %, наблюдения позволили снизить погрешность до 10 %.

3. Впервые получены карты поверхности Плутона и Эриды.

4. Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.

5. Получены дополнительные данные о планетах вне солнечной системы, в том числе спектрометрические.

6. Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.

7. Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик; на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.

8. По результатам наблюдений квазаров получена современная космологическая модель, представляющая собой Вселенную, расширяющуюся с ускорением, заполненную тёмной энергией, и уточнён возраст Вселенной — 13,7 млрд лет.

9. Обнаружено наличие эквивалентов гамма-всплесков в оптическом диапазоне.

11. В 2004 году был сфотографирован участок неба (Hubble Ultra Deep Field) с эффективной выдержкой около 106 секунд (11,3 суток), что позволило продолжить изучение отдалённых галактик вплоть до эпохи образования первых звёзд. Впервые были получены изображения протогалактик, первых сгустков материи, которые сформировались менее чем через миллиард лет после Большого взрыва.

12. В 2012 года НАСА опубликовало изображение Hubble Extreme Deep Field (XDF), представляющее собой комбинацию центральной области HUDF и новых данных с выдержкой 2 миллиона секунд.

13. В 2013 году, после изучения сделанных телескопом в 2004—2009 годах снимков, был открыт спутник Нептуна S/2004 N 1.

Космические инфракрасные телескопы

Инфракрасный свет имеет меньшую энергию, чем видимый свет, следовательно, испускают его более холодные объекты. Таким образом, можно рассматривать в инфракрасном свете: холодные звезды (в том числе коричневые карлики), туманности, и очень далекие галактики.

Телескоп предназначен для изучения инфракрасной части излучения от объектов в Солнечной системе, в Млечном пути, а также от внегалактических объектов, находящихся в миллиардах световых лет от Земли (например, новорождённых галактик). Также предполагались исследования по следующим темам:

формирование и развитие галактик в ранней вселенной;

образование звёзд и их взаимодействие с межзвёздной средой;

химический состав атмосфер и поверхности тел Солнечной системы, включая планеты, кометы и спутники планет.

В данной работе была представлена информация о способах изучения космоса, включая новые методы его исследования – современные космические обсерватории.

Фото: Pexels

Современные технологии позволяют ученым изучать даже самые отдаленные уголки космоса прямо с Земли. Сделали подборку современных обсерваторий, откуда астронавты смотрят на экзопланеты, черные дыры и погасшие звезды

С 1990 года ученым удалось подтвердить существование более 4 000 планет за пределами нашей Солнечной системы. Чтобы изучать космическое пространство, исследователи совместно с предпринимателями, научными университетами и филантропами по всему миру строят мощные обсерватории. В этом материале мы собрали современные обсерватории, рассказали, где находится самый большой телескоп и зачем китайские исследователи переселили целую деревню.

Обсерватория Кека

Фото:W. M. Keck Observatory

Обсерватория Кека является частью W. M. Keck Foundation, основанной в 1954 году предпринимателем и филантропом Уильямом Кеком, который поддерживал научные, инженерные и медицинские исследования. Обсерватория находится на вершине Мауна-Кеа (остров Гавайи) на высоте 4 145 м над уровнем моря. Она оснащена двумя телескопами высотой в восемь этажей, которые обнаруживают цели с точностью до нанометра. Телескопы могут отслеживать объекты в течение нескольких часов. Каждый из них весит 300 т, а зеркала состоят из 36 шестиугольных сегментов.

До 2007 года и появления в Испании Большого канарского телескопа телескопы Кека считались крупнейшими в мире. Они находят планеты, работая по принципу эффекта Доплера — измеряя изменения звездного света. Благодаря этим телескопам ученые обсерватории открыли наибольшее количество экзопланет, в том числе самую молодую LkCa 15 b.

Астрономы обсерватории Кека первыми в истории получили изображение планетной системы на орбите вокруг звезды, которая не является Солнцем. В 2017 году NASA заключила пятилетнее соглашение (действует с 2018 по 2023 год) с владельцами обсерватории на совместное исследование космического пространства. До этого ученые Кека помогли NASA осуществить миссию Kepler/K2, предоставив фотографии высокого разрешения для проверки и описания существования сотен орбит экзопланет. А с помощью телескопов обсерватории удалось обнаружить первые признаки водяного пара на одном из 79 спутников Юпитера. В 2019 года это подтвердили ученые NASA.

Цель работы : знакомство с современными космическими обсерваториями и изучение принципа их действия.

1. Узнать о методах изучения космоса

3. Проанализировать понятие гравитационных волн и использование принципа их действия для создания нового тира телескопов.

Развитие науки и техники в XX-XXI веке в значительной мере направили ученых на создание более современных и мощных средств изучения космоса. Огромный объём информации о космосе целиком остаётся за пределами земной атмосферы. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучикосмического происхождения недоступны для наблюдений с поверхности Земли. Для того чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Таковыми приборами стали космические обсерватории.

Вся история изучения Вселенной есть, в сущности, поиски и находки средств, улучшающих человеческое зрение. До начала XVII в. невооруженный глаз был единственным оптическим инструментом астрономов. Вся астрономическая техника древних сводилась к созданию различных угломерных инструментов, как можно более точных и прочных. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет. По существу, вся история мировой астрономии и космологии делится на две не равные по времени части – до и после изобретения телескопа. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.

Читайте также: