Роль фотосинтеза в природе доклад

Обновлено: 04.07.2024

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Каково значение фотосинтеза в природе

Биология

Фотосинтез является уникальным процессом превращения неорганических веществ в органические с помощью энергии солнечного света. Это свойственно только растениям. Значение фотосинтеза в природе сложно переоценить, ведь именно он поддерживает жизнедеятельность всех организмов на планете. Чтобы понять суть процесса, стоит рассмотреть его подробнее.

Определение понятия

Фотосинтез представляет собой цепь уникальных сложных химико-физических реакций. Чтобы понять, каково значение фотосинтеза в природе, необходимо разобраться с его сутью. Все зеленые растения и некоторые виды бактерий обладают способностью поглощать лучи солнца и конвертировать их в электромагнитную энергию.

Значение фотосинтеза в природе

В тканях растения под воздействием солнечного света запускается ряд последовательных окислительно-восстановительных реакций. Водород и вода в них являются своеобразными восстановителями. Эти вещества отдают свои электроны окислителям — ацетату и двуокиси углерода. Конечными продуктами протекающих в листочках реакций являются восстановленные углеводные соединения и кислород, выделяемый в окружающую среду.

Кратко об истории открытия

В течение нескольких тысячелетий люди считали, что растение питается благодаря своей корневой системе. В XVI столетии натуралист из Нидерландов Ян ван Гельмонт решил провести интересный эксперимент с выращиванием саженца ивы в горшке. Взвесив почву до момента посадки деревца и после достижения им определенных размеров, он сделал вывод, что основным источником питательных веществ для растений является вода.

Эта гипотеза просуществовала практически 2 столетия. Ее несостоятельность была доказана в 1771 году английским химиком Джозефом Пристли. Поставленные им опыты наглядно доказали, что растения могут очистить воздух, который прежде был непригоден для дыхания. После дальнейших исследований ученые установили, что растительные организмы не только превращают двуокись углерода в кислород, но и используют углекислый газ вместе с водой и минеральными солями для питания.

Значение фотосинтеза

Роль кислорода

Благодаря работе Джозефа Пристли, люди поняли, почему воздух на планете можно использовать для дыхания. Миллиарды лет назад на Земле жизни не существовало, так как в те древнейшие времена в атмосфере не содержался свободный кислород. Однако ситуация изменилась после появления первых растений в ходе эволюции. Нет сомнений, что именно благодаря им на планете появился кислород.

Фотосинтез дал толчок для развития жизни и навсегда изменил облик Земли. Лишь в конце XVIII столетия человечество осознало, сколь велико значение фотосинтеза. По сути, жизнь людей зависит от состояния растительного мира. Зная это, необходимо сделать все возможное, чтобы растения продолжали процветать и обеспечивать все остальные живые существа кислородом.

Значение процесса в природе

Сегодня ученые хорошо знают, какие именно процессы протекают в зеленых листьях растений, и в чем состоит значение фотосинтеза. Именно благодаря этим реакциям регулируется соотношение кислорода и двуокиси углерода в атмосфере.

Растения как основа питания

Продукты фотосинтеза обеспечивают растения питанием. При этом они сами являются пищей для гетеротрофных живых существ. Однако важность фотосинтеза заключается не только в способности зеленых листьев поглощать двуокись углерода.

Значение фотосинтеза кратко

Растительные организмы способны конвертировать серные и азотистые соединения в другие вещества, которые входят в состав их тел.

В почве находятся ионы нитратов. Благодаря корневой системе они потребляются растениями. Затем их клеточные структуры конвертируют эти вещества в аминокислоты. Именно из этих элементов слагаются все протеины. Также растительные организмы в ходе реакций фотосинтеза способны создавать и компоненты жирных кислот. Они крайне важны для жизнедеятельности человека.

Получение урожая

Сельскохозяйственные предприятия сегодня активно используют знания о росте и развитии растительных организмов. Не секрет, что фотосинтез является основой процесса формирования хорошего урожая. При этом на его интенсивность влияет водный режим, а также качество минерального питания растительных организмов. Таким образом, для получения высокого урожая сельскохозяйственных культур, следует обеспечить выращиваемые растения всеми необходимыми для их жизни веществами.

Сбор урожая

Ученые доказали, что урожайность зависит от двух важных составляющих:

  • общей площади зеленых листочков растений;
  • длительности и интенсивности протекающих в них реакций.

Однако увеличение плотности посевов дает негативный результат. В такой ситуации большое количество листьев затеняются, ухудшается качество вентиляции растений. В результате урожайность падает.

Для биосферы планеты

Ученые приблизительно подсчитали, что обитающие в Мировом океане растения каждый год потребляют 20−140 миллиардов тонн двуокиси углерода, а затем превращают этот газ в органические вещества. Для выполнения этой работы они используют не более 0,2% энергии лучей солнца. Наземные растительные организмы также вносят вклад в поддержание соотношения углекислого газа и кислорода в атмосфере. В среднем ими ежегодно потребляется около 20 миллиардов тонн двуокиси углерода.

Фотосинтез для биосферы планеты

Эти цифры красноречиво говорят о биологическом смысле фотосинтеза. Благодаря зеленым растениям живые существа биосферы получают необходимый для их жизни кислород. Некоторые исследователи считают, что с увеличением концентрации двуокиси углерода в атмосфере, интенсивность фотосинтеза возрастает. Однако на сегодняшний день эта гипотеза не доказана. Кроме этого, человечество активно использует продукты фотосинтеза, которые были созданы миллионы лет назад. Речь идет о различных видах полезных ископаемых:

  • природном газе;
  • нефти;
  • торфе;
  • каменном угле и т. д.

Людям необходимо обратить самое пристальное внимание на экологическую обстановку на планете. Человечество все активнее вмешивается в жизнь планеты, и хрупкий баланс может быть нарушен в любой момент. Учащимся младших и старших классов стоит напоминать, какое важное значение имеет для жизни человечества природа.

Солнечный свет является важным источником энергии на земном шаре. Значение фотосинтеза в природе велико, без него организмы не выживут в окружающей среде. Это особенный этап формирования органических веществ из неорганических. Поступившая из космоса энергия запасается в растениях, обеспечивает жизнедеятельность всего живого.

Роль фотосинтеза в природе

Общая характеристика

Указанное определение является единственным на планете процессом, связанным с превращением излучения солнечного тепла в энергию. Живые организмы выдыхают кислород в окружающее пространство для следующего использования.

Значение кислорода для жизни

Сотни лет человек был уверен, что растения получают питательные элементы через корневую систему, почву.

В 16 веке ботаником Я. Гельмонтом из Голландии проводился опыт с выращиванием цветка в емкости. После взвешивания почвогрунта до высаживания в горшок и после подрастания стебля ученым сделан вывод, что все представители мира флоры получают обеспечение питательными элементами из жидкости. Этой теории следовали исследователи на протяжении пары веков.

Значение фотосинтеза в природе

Знаменитый русский ученый Тимирязев называл роль зеленых трав, насаждений и прочей растительности на планете внеземной. По его мнению, главной природной лабораторией является лист, потому что органические элементы произошли от этой части растения. Вне хлорофиллосодержащих элементов ничего не получится.

Опыты Д. Пристли подтвердили, что цветы, трава, кустарники очищают воздух, который ранее был непригоден для поглощения. Процессы невыполнимы без участия тепла и света. Крона растений не только трансформирует газообразные взвеси в кислород, но и вместе с водой является пищей для флоры.

Атмосфера планеты раньше не имела большой концентрации кислорода, но все изменилось с возникновением растительности. Воздух является следствием фотосинтеза, происходящего в зеленых листьях. Глобальный этап изменил облик планеты и побудил к развитию жизни. Существование людей на планете во многом зависит от состояния флоры.

Понятия, роль и этапы

В переводе с греческого языка фотосинтез расшифровывается как соединение. Это значимый процесс перехода энергии света или ультрафиолетового излучения в органическую область. В круговороте веществ образуется и выделяется кислород через клетки растений и бактерий. В синтезе участвуют различные образования (хлорофиллы, бактериохлорофиллы, бактериородопсин).

Фотоафтотрофы в ботанике характеризуют превращение и использования тепловой космической энергии в реакциях, включая трансформирование углекислого газа (УГ) в органические вещества.

Значение фотосинтеза

Значение велико для целостной биосферы и отдельно взятого организма. Большую часть кислорода вырабатывают фитопланктоны, обитающие в Мировом океане.

В растении, которое согрели своим теплом лучи, в определенном порядке совершаются окислительно-восстановительные процессы.

Стадии фотосинтеза:

Сначала энергия тепла поглощается и передается другим молекулам разного класса. Затем происходит поглощение солнечной энергии, ее передача остальным структурам. На второй стадии световые кванты делятся на заряды, в результате электроны передаются дальше.

Значение фотосинтеза

Части реакции:

  • Солнечный свет.
  • Хлоропласты.
  • Н2О.
  • СО2.
  • Температурный режим.

В результате поглощения света энергия накапливается и используется для выработки кислорода. На третьем этапе осуществляются другие биохимические реакции, в результате которых из углекислого газа вырабатываются глюкоза, сахар, крахмал.

Особенный процесс синтезирования происходит только в растительных клетках и у некоторых бактерий. Фотосинтез возникает при участии зеленого красящего вещества — хлорофилла.

Прочие свойства

Фотосинтез обеспечивает устойчивое содержание углекислого газа в атмосфере, накапливает кислород. Без перечисленных свойств и реакций не будет жизни на Земле.

Постоянство содержания веществ

В воздухе содержится 0,03% УГ. Эта величина сохраняется многие тысячелетия, несмотря на то, что живые организмы в процессе дыхания выделяют углекислый газ.

Процесс выработки УГ:

Каково значение фотосинтеза в природе

  • Гниение.
  • Разложение мертвых тел.
  • Извержение вулканической породы.
  • Пожар.
  • Сжигание бензина, газа.

Когда растение впитало углекислоту, питательные вещества синтезируются. Под влиянием солнца процесс происходит в зеленых пигментах (хлорофиллах).

Зеленые растения являются промежуточными организмами между планетой и Солнцем. Они схватывают энергию светила и обеспечивают существование жизни на земном шаре.

Огромное количество УГ поглощают зеленые насаждения планеты в процессе фотосинтеза, сохраняя постоянное количество газа в атмосфере.

Благодаря реакции, происходящей в зеленых листьях, энергия лучей не растворяется в пространстве. Она становится химической энергией, ее смысл заключается и состоит из вновь сформированных органических компонентов.

Роль фотосинтеза

В древние времена на планете не было растительности и кислорода. Безвоздушное пространство не позволяло образоваться новым организмам. Нынешний газовый состав образовался благодаря синтезированию. Благодаря этому организмы на планете — бактерии, грибы, животные, человек и растения — дышат и осуществляют жизнедеятельность.

Из кислорода над Землей под воздействием радиационного облучения Солнца образуется озон. Он задерживает долю ультрафиолетовых лучей, которая неблагоприятно влияет на живые организмы. Озоновый слой, окружающий планету, создает возможность для организмов.

В листике любого растения происходит три значимых действия: фотосинтез, обмен газообразными компонентами и испарение жидкости. Реакции, происходящие в стебле в светлое время суток, позволяют зеленым листьям выводить двуокись углерода и О2. Ночью выделяется только первое вещество.

Вещества органического происхождения, сформированные зелеными растениями, потребляются живыми существами. Результаты процессов жизнедеятельности организмов, продукты гниения и разложения, попадая в верхний слой земной поверхности, тлеют там и участвуют в формировании почвы.

Почвогрунт образуется и вырабатывается на поверхности Земли под влиянием элементов живой и неживой природы. Без органических элементов это образование не формируется.

Важность процессов

Благодаря важной роли фотосинтеза количество энергии увеличивается в атмосфере — ежегодно образуется миллиард тонн органического вещества. Растения выделяют в окружающую среду свыше 200 миллионов тонн кислорода. Эта реакция важна не только для флоры, но и для всего человечества.

В чем состоит значение фотосинтеза

Происходящий в растениях биологический процесс ограничивает количество газа, не позволяя ему накапливаться в повышенных дозах. Благодаря зеленым насаждениям не образуется парниковый эффект. Флора защищает планету от перегрева.

Важна роль для лесного хозяйства и аграрного сектора. Растительный мир является питательной средой и основой для гетеротрофных организмов. Деревья, кустарники, цветы, трава преобразовывают азотсодержащие и серные соединения в вещества. Процесс синтезирования реализуется благодаря получению ионов нитратов. Эти вещества преобладают в почвенной воде, а в растение попадают через корни.

Благодаря фотосинтезу образуются составляющие жиров, являющиеся важными резервными элементами. В работе сельхозпредприятий применяются итоги изучения главных особенностей развития и роста флоры. В основу формирования урожая и его результатов заложен фотосинтез. Его интенсивность зависит от водного баланса и минерального наполнения.

Каково значение фотосинтеза в природе

Урожайность и всхожесть зависит от габаритов зеленых листьев, интенсивности и продолжительности сопутствующих процессов. Рост плотности посевов приводит к затенению листвы, к ним не может попасть свет, и из-за плохой циркуляции воздушных масс в небольших объемах поступает углекислый газ.

Людям, населяющим планету, экологические продукты фотосинтеза необходимы не только для пищевой значимости, но и для осуществления хозяйственной деятельности.

Фотосинтез — важнейший процесс превращения энергии Солнца в энергию органических соединений, необходимых для существования всех живых организмов, населяющих нашу планету.

Известный русский учёный К. А. Тимирязев утверждал, что растения выполняют на Земле космическую роль . Он писал:

Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического.

Все живые организмы на Земле живут за счёт той солнечной энергии, которая получена растениями и законсервирована в процессе фотосинтеза в углеводах и других органических веществах. Углеводы — важный продукт фотосинтеза.

У многих растений углеводы запасаются в органах в виде крахмала: в корнях, видоизменённых побегах (луковицах, клубнях, корневищах), в семенах, а также в виде сахаров (в ягодах, сочных плодах, корнеплодах сахарной свёклы, стеблях сахарного тростника). Именно углеводы используются клетками всех живых организмов в качестве основного источника энергии для жизни.

Часть поглощённой растениями энергии не расходуется и накапливается в органических веществах, входящих в состав древесины, торфа, нефти, угля, природного газа. Поэтому органические вещества — отличный энергоноситель. Люди используют их для получения тепла, которое выделяется при сгорании топлива.

В воздухе углекислого газа содержится около \(0,03\) % по объёму. Эта величина не изменяется много тысячелетий, хотя огромное количество живых существ постоянно выделяет углекислый газ при дыхании. Очень много этого газа образуется при гниении органических остатков, а также при сжигании топлива для обогрева помещений и в двигателях автомобилей. В воздух попадает углекислый газ при лесных пожарах и извержениях вулканов.

Углекислый газ поглощают и используют в фотосинтезе зелёные растения, поддерживая его содержание в воздухе на постоянном уровне.

Пока на Земле не было растений, в её атмосфере отсутствовал кислород. Современный газовый состав атмосферы сформировался благодаря процессу фотосинтеза. Сейчас в воздухе содержится \(21\) % кислорода и все живые организмы имеют возможность дышать им.

Из кислорода на высоте около \(20\) км над Землёй под влиянием солнечных лучей образуется газ озон . Слой озона окружает Землю и создаёт озоновый экран , который поглощает ультрафиолетовые лучи, опасные для всех живых организмов. Озоновый экран создаёт условия для жизни на поверхности суши.

озоновый экран_ozona ekrāns_ozone screen.jpg

Созданные растениями органические вещества используются другими живыми организмами (животными, грибами, бактериями). Продукты их жизнедеятельности, а также остатки этих организмов попадают в верхний слой земли, разлагаются там бактериями и создают очень важное природное образование — почву.

Почва — это продукт взаимодействия живых организмов с объектами неживой природы. Для образования почвы необходимы органические вещества, источником которых могут быть только живые организмы.

Фотосинтез — важнейший процесс на нашей планете. Он выполняет космическую функцию, запасая в зелёных растениях огромное количество энергии и поставляя в атмосферу кислород.

Читайте также: