Расшифровка и применение геномов доклад

Обновлено: 17.05.2024

Расшифровка ДНК человеческого генома. Основа строения и функции всего живого. Химические вещества, которые образуют главную молекулу генетической памяти организма. Распознавание психических расстройств генетической природы. Наука об улучшении потомства.

Рубрика Медицина
Вид статья
Язык русский
Дата добавления 21.04.2014
Размер файла 13,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Расшифровка генома человека

человеческий геном молекула психический

Благодаря генетике человека мы стали много знать о генетических болезнях. Знать так много, что фактор естественного отбора по наследственности стал ничтожно мал. Знать так мало, что до сих пор рак, генетически обусловленный, ежедневно уносит в США жизни 2000 человек. Поэтому наши надежды по излечению рака так сильно связываются с этим открытием.

Лидеры мировой фармацевтической индустрии (Pfizer, Immunex Corp.) уже эффективно используют открытие в поисках новых лекарств, прекращающих работу опасных генов до развития болезни. Наступает новая эра, когда лекарство можно проектировать на компьютере, а не изобретать эмпирически, как это было до сих пор.

С новым открытием может случиться, что при приёме на работу в будущем нам смогут отказать на основании наших генетических особенностей, а страховые компании перестанут страховать нас от болезней, вероятность которых будет видна в наших генах.

Поэтому Конгрессом США был недавно принят закон, пресекающий саму возможность дискриминации человека по генетическим признакам.

Любая гуманная инициатива, бесспорно, должна находить поддержку и в нашем обществе.

Подобные документы

Геномика и медицина. Структура вирусного генома. Другие геномы. Структура генома прокариот. Ориентация генов (направление транскрипции). Гомологичные гены и копийность генов. Изменение функции гена в процессе эволюции. Исследования генома человека.

курсовая работа [2,2 M], добавлен 04.01.2008

Поддержание генетической однородности организма. Фиксация антител на чужеродных антигенных детерминантах бактерий. Распознавание измененной генетической информации в клетках-мутантах и запуск иммунологических реакций направленных на их уничтожение.

презентация [209,9 K], добавлен 16.03.2014

Взаимодействие лекарственного вещества и живого организма. Вещества, обладающие аффинитетом и внутренней активностью. Этапы создания и внедрения новых лекарств. Биохимические эффекты и физиологические действия лекарств на тело человека, микроорганизмы.

презентация [236,3 K], добавлен 23.10.2013

Иммунитет — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.

презентация [1,1 M], добавлен 05.03.2013

Динамическая оценка психопатологических проявлений невротического уровня для постановки диагноза больному. Предрасполагающие личностно-типологические особенности человека. Клинические особенности основных форм пограничных психических расстройств.

В последние годы ученые постоянно объявляют о расшифровке геномов тех или иных видов. ITMO.NEWS и ученый Международного научного центра SCAMT Алексей Комиссаров в карточках объясняют: что такое ДНК, как с ее помощью изучают историю животных и в чем отличие ДНК-теста от геномного исследования.


Иллюстрации: Дмитрий Лисовский, ITMO.NEWS


Каждый более или менее знает, что есть белки, жиры и углеводы. Но еще у нас в каждой клетке есть ДНК, дезоксирибонуклеиновые кислоты, которые отвечают за хранение информации. Для геномного биоинформатика ДНК ― это прежде всего один из главных языков биологии, который состоит всего лишь из четырех букв: A, T, G и C. Эти буквы являются сокращениями имен четырех азотистых оснований, из которых состоит ДНК: аденин (А), цитозин (C), гуанин (G) и тимин (Т). ДНК можно сравнить с компьютерной программой, очень сложной, запутанной, со множеством ошибок и костылей, но, тем не менее, она работает.


ДНК содержится почти во всех клетках организма, исключение — эритроциты, которые в зрелом состоянии теряют ядро, чтобы было легче переносить кислород. Поэтому биологический материал для выделения ДНК может быть разнообразен. Процесс выделения ДНК состоит из четырех этапов: разрушение мембраны клеток для высвобождения ДНК; очистка от связанных с ДНК белков; очистка от разного рода примесей; растворение ДНК для хранения. ДНК можно выделить и в домашних условиях, но тогда ДНК будет не очень чистой и ее будет сложно использовать для каких-либо научных исследований. От качества этих процедур будет зависеть и полученная из нее информация. Поэтому необходима лабораторная точность работы специалистов, молекулярных биологов. Проще всего ДНК выделять из крови, потому что это легкий для получения биоматериал. Хотя в эритроцитах ДНК нет, в крови плавает огромное количество других клеток — белых кровяных телец, так что и ДНК из них получается много. Из слюны или кусочков эпителия во рту ― уже меньше, из волос ― еще меньше. Например, чтобы прочитать весь геном достаточно точно, необходима кровь, а не слюна. А для того, чтобы сделать какой-нибудь ДНК-тест, где точность не очень важна ― достаточно и слюны.


ДНК — это название молекулы, которая хранит наследственную информацию. Геном ― это совокупность всей ДНК организма со всеми записанными в ней особенностями конкретного вида или даже индивида. Поэтому можно говорить о геноме человека вообще, а можно — о геноме конкретных Васи или Кати. На физическом уровне геном разделен на хромосомы, в случае человека — 23 пары хромосом, 23 от мамы, и 23 от папы, всего 46. Когда организм начинает расти после оплодотворения, в каждой клетке копируется этот набор, но иногда это происходит с небольшими ошибками. Это называется соматическими мутациями. Иногда эти ошибки могут быть весьма критическими и приводить к разным заболеваниям.


Его никто не зашифровывал, но это слово хорошо передает ощущения от работы с геномными данными. Если продолжать аналогию с геномом как с очень сложной программой, можно сказать, что она не только очень сложная, но и очень плохо написана. И кроме собственно четырех букв A, C, G и Т, он содержит много дополнительных уровней кодирования информации, которые не обязательно будут наследоваться и могут меняться в процессе жизни организма. Это часто называют эпигеномом, который изучает эпигенетика. Вся эта неимоверная сложность и создает ощущение расшифровки. Помимо этого, злую шутку здесь сыграл не очень корректный перевод с английского, где использовали слово decoding и encoding, декодировали и закодировали. Код — это просто система условных обозначений, не предполагающая никакого секрета, никакой защиты от взлома. Любой человеческий язык — это код, система дорожных знаков — это код. Шифр — это код, намеренно защищенный от взлома. Но, конечно, в английских терминах меньше романтики, чем в слове расшифровали.


Под ДНК-тестом часто имеют в виду анализ только некоторых небольших участков генома, вариации в которых имеют какой-то известный эффект. В геномных исследованиях ученые работают с гораздо большим количеством ДНК, в идеале со всей доступной информацией. Это называется полногеномными исследованиями. Но даже генетических тестов, направленных на выяснения значения только некоторых фрагментов генома, часто достаточно для того, чтобы проследить генетическую историю или оценить степень родства между двумя людьми. Это возможно, во-первых, благодаря тому, что у нас в геноме есть фрагменты, которые очень вариабельны и отличаются у разных людей, и, во-вторых, благодаря математике.


Есть очень сложные математические алгоритмы, которые позволяют по генетическим данным найти наиболее вероятный сценария развития событий: когда происходили мутации отдельных фрагментов, которые привели к образованию того генома, который мы видим сейчас. Своего рода, математическая машина времени. Ученые ИТМО недавно опубликовали программу, направленную как раз на решение проблемы — как наиболее точно заглянуть в прошлое генома. Одним из самых захватывающих расширений этого подхода является добавление еще и географических точек. Тогда мы можем не только смоделировать, как происходили изменения в геноме, ни и посмотреть, как отдельные популяции с этими геномными вариациями перемещались из одной точки в другую.


Мы стараемся получить модель, которая наиболее правдоподобно описывает сценарий развития событий в прошлом. Чтобы сделать модель более точной, одного образца часто недостаточно, и чем больше образцов у нас есть, тем более точной становится наша модель. У каждого из нас очень много редких генетических вариантов, бывают и варианты, которые присущи только нам. И если у нас есть уже несколько образов, то такие индивидуальные варианты ученые отфильтровывают именно затем, чтобы они не мешали анализу. Так как единицей эволюции является популяция, а не отдельный индивид.


Хорошие модели обладают предсказательной способностью. Проверить проще всего новыми данными, которые не должны противоречить модели, но случается, что они противоречат, и тогда модель приходится пересчитывать. Сейчас мы наблюдаем очень красивую иллюстрацию мутаций, эволюции и вот этого всего на примере геномов коронавируса SARS-CoV-2. Настолько подробных данных об эволюции отдельного вида в реальном времени у человечества еще никогда не было. И появляется все больше данных и для остальных геномов. Со временем модели будут все лучше и лучше, а чем больше данных ― тем лучше модели.


Кроме того, что это захватывающе любопытно, это имеет множество практических применений во всех сферах деятельности человека. Если продолжать рассуждать об исследовании истории предков, то есть математический аппарат для поиска так называемых событий бутылочного горлышка, когда размер популяции по каким-то причинам резко сократился. Поиск таких событий, своего рода, геномная археология, может дать нам подсказки, как таких событий избежать. Это важно особенно сейчас, когда многие виды животных бесследно исчезают с лица земли.


Обзор

Около трёх миллиардов пар нуклеотидных остатков составляют наш геном — совокупность всех молекул ДНК в клетке человека

Авторы
Редакторы

Это было семь лет назад — 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп — International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics — объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества — постгеномная эра.

  • 2010 год — генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год — на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год — определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год — Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Финал был красивым — конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека [4], [5]. Произошло это, как мы уже писали — 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Широкая известность и масштабное финансирование — палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты — между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies) настаивал, что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Автоматы для секвенирования

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в Сэнгеровском институте, заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном — не просто прочитать, этого далеко не достаточно, — нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки — зависит от нас.

Генетический телескоп

Хотя чисто техническая возможность секвенировать геном была показана еще в 70-х годах, когда был расшифрован первый геном вируса, о человеке задумались не сразу. По легенде, эта идея оформилась благодаря биологу Роберту Синшеймеру из Калифорнийского университета в Санта-Крус. Его коллеги-астрономы работали над созданием самого большого (на тот момент) наземного телескопа, и Синшеймер раздумывал над проектом подобного масштаба в биологии.


Шкаф с фрагментом человеческого генома, который стоит в лондонском музее Wellcome Collection. Полностью расшифровка занимает сотни томов, в каждом из которых около тысячи страниц

Russ London / Wikimedia commons


Разворот одного из томов с расшифровкой человеческого генома из лондонского музея Wellcome Collection

Adam Nieman / flickr / CC BY-SA 2.0

В обсуждении участвовал Уолтер Гилберт, который за 10 лет до того предложил свой метод секвенирования ДНК (известный как метод Максама-Гилберта или метод химической деградации ДНК), практически одновременно с Фредериком Сэнгером. Он загорелся идеей создания геномного института и увлек ей первооткрывателя структуры ДНК Джеймса Уотсона и Чарльза Делиси, который возглавлял подразделение здоровья и окружающей среды в Министерстве энергетики США. Последнему геномный проект виделся логичным продолжением исследований влияния радиации на человека. В 1986 году они уже подсчитывали затраты на расшифровку последовательности генома человека.


Одна из автоматизированных линий для подготовки образцов в Институте Уайтхеда в Центре геномных исследований, где секвенировали геном человека

International Human Genome Sequencing Consortium / Nature, 2001

Несмотря на критику и ценник, им удалось продавить как Министерство энергетики, так и Национальные институты здоровья США (NIH). В 1990 году проект стартовал. Панель экспертов настоятельно порекомендовала кроме генома человека заняться также исследованием геномов модельных организмов: кишечной палочки, дрожжей, круглых червей и мыши — чтобы в случае успеха гены человека было с чем сравнивать.

В авторах статьи 2001 года были члены International Human Genome Sequencing Consortium из 20 научных групп США, Великобритании, Германии, Франции, Японии и Китая.


Обложка журнала Time, вышедшего в 26 июня 2000 года. Слева — Крейг Вентер, справа Фрэнсис Коллинз

Почти одновременно со стартом проекта в США, советский академик Александр Баев смог убедить Горбачева выделить значительное финансирование на оборудование лабораторий и создание научных групп, которые могли бы участвовать в международном консорциуме по расшифровке генома человека. По воспоминаниям академика Льва Киселева, который в то время был председателем научного совета российской части программы, отечественный проект начинался очень активно — на его развитие было выделено около 20 миллионов долларов. Однако в 90-х годах государство уже не могло финансировать столь дорогостоящие фундаментальные исследования, и участие в консорциуме, хотя и не закрылось окончательно, было сокращено до минимума.


Фрагмент физической карты 19-й хромосомы, которую читали в Ливерморской национальной лаборатории при участии ИБХ РАН


Обложки журналов Science и Nature, в которых вышли статьи HPG и Celera Genetics

Science, 2001; Nature, 2001

Предпосылки и последствия

В 80-е годы у генетиков уже были инструменты, позволяющие исследовать размер хромосом и расположение на них генов — в основном, при помощи ферментативного расщепления ДНК рестриктазами, разделения фрагментов в геле и гибридизации с радиоактивно меченой последовательностью. Взглянуть на ДНК более пристально удалось благодаря изобретению производительного метода секвенирования англичанином Фредериком Сэнгером, который до того уже придумал способ чтения аминокислотной последовательности белковых молекул.

Определение последовательности ДНК по Сэнгеру, в свою очередь, стало возможным благодаря открытию ДНК-полимеразы — фермента, который в клетке обеспечивает удвоение молекул ДНК за счет комплементарного достраивания цепи на одноцепочечной матрице.


Фрагмент расшифрованной последовательности в геле


Источник: Jennifer Commins et al. / Biological Procedures Online, 2009


Порядок действий при использовании метода секвенирования, который применяли в Celera Genomics

Источник: Jennifer Commins et al. / Biological Procedures Online, 2009

Неудивительно, что многим ведущим генетикам эта задача казалась нерешаемой. Однако по ходу выполнения проекта развитие технологий облегчило ученым работу. Среди технических достижений можно отметить появление автоматического капиллярного секвенатора, где фрагменты разделялись в тонких трубочках, а не в геле. Такие приборы, помимо того, что позволяли увеличить количество образцов, после появления флуоресцентно меченых нуклеотидов, перешли на автоматическую детекцию сигнала. Кроме того, развитие компьютерных технологий: от сетей, которые позволили ученым получать доступ к данным из любой точки, до программ для сравнения и обработки последовательностей.

Накопление последовательностей послужило толчком для развития целой науки — биоинформатики, которая занимается сборкой, обработкой и анализом геномов с использованием математических методов.

Первые итоги и дальнейшее развитие

Так к 2000 году удалось получить представление о последовательности ДНК человека в составе эухроматина — участков, с которых активно идет транскрипция, то есть считывание данных РНК-полимеразой.

Одной только сырой последовательностью букв результат проекта, конечно не ограничивается. После расшифровки число генов в геноме человека пришлось сократить со 100 тысяч до 30 тысяч — это число всего в два раза больше, чем у мухи или червя, написали авторы исторической публикации в Nature.


Как менялись оценки числа генов в геноме человека с 1964 по 2009 годы

Mihaela Pertea and Steven L Salzberg / Genome Biology, 2010

Также ученые узнали, что геном человека содержит очень много повторов и мобильных элементов, подавляющее большинство из которых уже не работает. Кроме того, геном человека очень разнообразен — генетики оценили, что количество однонуклеотидных полиморфизмов в нем (участков, в которых у разных людей может стоять тот или иной нуклеотид) достигает 1,5 миллионов. Это стало ясно в том числе благодаря тому, что в проекте была использована ДНК от большого количества добровольцев, а не от одного человека.

Геном для медицины

За двадцать лет с момента завершения сборки черновой версии генома технологии секвенирования и анализа последовательностей развились настолько, что сегодня узнать последовательность кодирующих участков генома (экзома) обойдется вам уже не в три миллиарда долларов, а лишь несколько сотен.


Изменение стоимости секвенирования генома человека после сентября 2001 года

Генотипирование, то есть определение однонуклеотидных полиморфизмов конкретного человека, уже во многом стало рутиной — в базе данных UK Biobank хранятся данные полногеномного типирования 500 тысяч человек. Кроме генетических данных, записи участников содержат информацию о показателях здоровья, привычках, семейных историях болезни и т.п. Такие наборы данных позволяют исследователям проводить так называемые полногеномные анализы ассоциаций (GWAS — Genome-Wide Association Study), которые позволяют выявить, например, генетическую предрасположенность к определенному заболеванию.

20 лет спустя

Читайте также: