Поляризация света доклад по физике 11 класс

Обновлено: 13.05.2024



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Поляризация света"

«Природу нельзя застигнуть неряшливой и

В прошлых темах говорилось о двух явлениях, которые явно доказывают, что свет обладает волновыми свойствами — это интерференция и дифракция света.

Интерференция света — это явление сложения двух и более когерентных волн, приводящее к образованию в пространстве устойчивой картины чередующихся максимумов и минимумов интенсивности света.

Дифракция — совокупность оптических явлений, обусловленных волновой природой света и наблюдающихся при его распространении в среде с резко выраженными неоднородностями. В результате происходит огибание волнами препятствий, размеры которых соизмеримы с длиной волны.

В данной теме будет рассмотрено еще одно важное свойство света, которое состоит в том, что свет может быть поляризован.

Возникнет вопрос: а что значит поляризован и вообще, что такое поляризация? В рамках данной темы будут даны ответы на эти вопросы.

Под поляризацией понимают характеристику поперечных волн, описывающую поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Рассмотрим данное явление на примерах механических моделей.

Поплавок на поверхности воды качается вверх вниз, но при этом не перемещается вместе с волнами. Значит, вдоль направления распространения волн перемещаются не сами частицы вещества, а создаваемые ими возмущения. Напомним, что в 9 классе такие волны назвались поперечными.


Рассмотрим еще пример. Возьмем веревку, один конец которой закрепим к стене, и будем рукой создавать в ней колебания. Как можно видеть, колебания веревки происходят с разными амплитудами и в разных направлениях. Однако если такую веревку пропустить через узкую щель, то такая щель будет выделять из неполяризованной волны единственное направление колебаний, параллельное щели.



Теперь поставим на пути волны второй поляризатор с такой же щелью. Волна, выйдя из первой щели, свободно проходит через вторую, когда они параллельны.


Если же повернуть вторую щель, перпендикулярно первой, то волна полностью гасится.


Таким образом, в поляризованной волне существует выделенное направление колебаний.

Такую волну называют плоско поляризованной. Т.е. поперечная волна называется плоско поляризованной, если колебания во всех ее точках происходят только в одной плоскости.

Прибор, превращающий неполяризованную волну в поляризованную, называют поляризатором. А прибор, позволяющий установить, поляризована или нет проходящая через него волна — анализатором.

Известно, что явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Однако долгое время ученые не моги определить, каких именно волн — продольных или поперечных?

Основатели волновой оптики Томас Юнг и Огюстен Жан Френель считали световые волны продольными, т.е. они, подобны звуковым волнам, для распространения которых необходимо наличие среды. В связи с этим, ученые и считали, что свет распространяется в некой упругой среде, названной ими светоносным эфиром. Однако подобная теория не могла объяснить, каким же образом тела могут двигаться в твердом эфире, не встречая при этом никакого сопротивления. Т.е., например, как тогда движется Земля вокруг Солнца?

Но постепенно накапливалось все больше и больше экспериментальных фактов, которые никак не удавалось объяснить на основании продольности световых волн.

Например, еще в конце 17 века было обнаружено интересное явление: если пропустить луч света через кристалл исландского шпата (химическая формула CaCO3), то на выходе из кристалла обнаруживалось 2 луча. При этом, если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие через кристалл. Это явление получило название двойного лучепреломления.


Немного позже, а точнее в 1809 году, французский инженер Этьен Луи Малюс поставил опыт, позже ставший классическим опытом по поляризации света, с кристаллами турмалина. Турмалин, как и исландский шпат, относится к числу одноосных кристаллов.


Из кристалла турмалина Малюс вырезал прямоугольную пластину так, чтобы одна из его граней была параллельна оси кристалла. После чего, перпендикулярно пластине направлялся пучок света. Если вращать пластину вокруг такого пучка, то никакого изменения интенсивности света не будет наблюдаться. Изначально Малюс решил, что свет только частично поглотился в турмалине и приобрел слегка зеленоватую окраску, а больше ничего, кажется, и не произошло.


Однако это было не так — теперь свет приобрел свои новые свойства. И эти свойства можно обнаружить, если заставить пучок света пройти через еще одну, точно такую же прямоугольную пластинку турмалина, параллельную первой.


Малюс заметил, что если оси кристаллов будут одинаково направлены, то опять никаких существенных изменений в световой волне не наблюдается. Но стоит начать поворачивать второй кристалл, как тут же обнаруживается удивительное явление — происходит гашение света. При этом, чем больше будет угол между осями кристаллов, тем меньше будет интенсивность проходящего света. В конце концов, когда оси двух кристаллов окажутся перпендикулярны друг другу, свет не проходит совсем.



Из проделанного опыта, Малюс сделал два вывода.

Во-первых, световая волна, идущая от источника света, полностью симметрична относительно направления распространения (вспомните, в первой части опыта интенсивность света не менялась, при вращении кристалла вокруг луча); а во-вторых, волна, вышедшая из первого кристалла, не обладает осевой симметрией (это свидетельство из второй части опыта, когда интенсивность прошедшего света менялась).

Объяснить опыт с вращением второй пластины, считая световую волну продольной, не представляется возможным, т.к. продольные волны обладают полной симметрией по отношению к направлению распространения.

Таким образом, можно сделать вывод о том, что свет является поперечной волной. Позже это показал и Максвелл, дополнив это утверждение тем, что свет является не только поперечной, но еще и электромагнитной волной.

Свет, излучаемый каким-либо источником, представляет собой суммарное электромагнитное излучение множества атомов. Атомы, в свою очередь, излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятностными направлениями колебаний светового вектора напряженности (т.к во всех процессах взаимодействия света с веществом основную роль играет именно он, поэтому его еще называют световым вектором).

Свет со всевозможными равновероятными ориентациями вектора напряженности относительно оси распространения называется естественным или неполяризованным светом.

Свет, в котором наблюдается преимущественное направление колебаний вектора напряженности (но не исключительное!) называют частично поляризованным.

А вот свет, в котором вектор напряженности колеблется в определенной плоскости, называется плоско- или линейно поляризованным.


Можно, также заставить вектор напряженности при колебаниях описывать окружность или эллипс. Тогда в первом случае свет называется поляризованным по кругу, а во втором — эллиптически поляризованным.

В настоящее время известно, что не только кристаллы турмалина способны поляризовать свет. Таким же свойством, например, обладают так называемые поляроиды.

Поляроид представляет собой тонкую (около 0,1 мм) поляризационную плёнку, например кристаллов гепатита, нанесенную на целлулоид или стеклянную пластинку, которая заклеена между двумя прозрачными плёнками для защиты от влаги и механических повреждений.


Преимущество поляроидов состоит в том, что можно создавать большие поверхности, поляризующие свет.

К недостаткам можно отнести то, что поляроиды придают фиолетовый оттенок белому свету.

В настоящее время, явление поляризации электромагнитных волн находит огромное применение как в науке и технике, так и в повседневной жизни человека. Например, в трехмерном кинематографе оно используется для разделения изображения для левого и правого глаза.


В обычной видео- и фотоаппаратуре поляризационные фильтры используются для улучшения качества изображения.

Также на качественные солнечные очки наносится поляризационная пленка, для того чтобы избавиться от бликов, которые получаются при отражении света. Современные жидкокристаллические экраны телевизоров, мониторов и мобильных телефонов также покрыты поляризационными пленками. В машиностроении и строительной индустрии явление поляризации используют для исследования напряжений, возникающих в узлах машин и строительных конструкций.

Многие насекомые в отличие от человека видят поляризацию света. Пчелы и муравьи пользуются этой своей способностью для ориентировки в тех случаях, когда Солнце закрыто облаками.

Любопытные поляризационные эффекты наблюдаются и при редких небесных оптических явлениях, таких, как радуга и гало — светящихся кругов или дуг, появляющихся иногда вокруг Солнца и Луны.

Наконец, следует отметить, что поляризован и свет некоторых астрономических объектов. Наиболее известный пример — Крабовидная туманность в созвездии Тельца.

Основные выводы:

– Поляризацией света называется совокупность явлений, в которых проявляется свойство поперечности световых волн.

– Прибор, превращающий неполяризованную волну в поляризованную, называется поляризатором.

– Прибор, позволяющий установить, поляризована или нет проходящая через него волна, называется анализатором.

– Явление поляризации электромагнитных волн в настоящее время находит огромное применение как в науке и технике, так и в повседневной жизни человека.


Свет является поперечной электромагнитной волной. А поперечные волны обладают способностью к поляризации. Кратко рассмотрим сущность этого явления.

Опыт с турмалином

Долгое время в физике видимый свет считался продольными колебаниями мирового эфира, аналогичным звуковой волне. Однако к началу XIX в. стало накапливаться все больше данных, противоречащих этому утверждению. Больше всего продольности световых колебаний противоречили опыты с прозрачными кристаллами некоторых веществ, встречающихся в природе.

Например, если взять пластинку минерала турмалина, то она пропускает свет приблизительно так же, как это делает стекло и другие прозрачные материалы. Но, если пропустить свет через две стеклянные пластинки, он проходит сквозь них почти без изменений. При пропускании же света через две пластинки из турмалина вторая пластинка может резко увеличить поглощение света.

Это свойство турмалина зависит от взаимного положения пластинок. Можно найти такое положение, когда свет поглощается второй пластинкой очень слабо. Но если эту пластинку повернуть на 90⁰, то пластинка полностью поглотит весь свет, прошедший сквозь первую пластинку. При этом внешний свет по-прежнему будет проходить сквозь нее.


Рис. 1. Опыт с турмалином.

Объяснить опыт с турмалином возможно только если допустить, что свет является поперечной волной.

Продольная волна полностью симметрична относительно вектора распространения. И поэтому препятствия, сквозь которые она проходит, могут лишь ослаблять ее, независимо от их ориентации.

Поперечная же волна — несимметрична. И если первая пластинка турмалина пропускает в горизонтальном положении поперечную волну, вектор которой изменяется вертикально, то вторая пластинка пропустит ее, только если она также пропускает волну с вертикально изменяющимся вектором. При повороте этой пластинки она не сможет пропустить такую волну.

Поляризация света

Свойство поперечной волны менять амплитуду только в одной плоскости называется поляризацией.

Механический аналог опыта с турмалином можно провести, если взять длинный гибкий шнур и две плоских рамки, в которых шнур может колебаться только в одной из плоскостей.

Поляризация механических волн

Рис. 2. Поляризация механических волн.

Поляризация электромагнитной волны (в том числе световой) имеет ту же природу. Вектор напряженности поля у неполяризованной волны меняется в обеих плоскостях, поперечных вектору распространения. А для поляризованной волны колебания вектора происходят только в одной плоскости.

Условия поляризации света при отражении были установлены Д. Брюстером. Закон Брюстера гласит: когда свет, проходящий по среде с показателем преломления $n_1$, отражается от границы со средой, имеющей показатель преломления $n_2$, отраженный свет будет полностью поляризован, если угол $\theta$, под которым происходит падение на границу сред, будет отвечать условию:

Полностью теория поляризации со строгими формулами была создана в первой половине XIX в. О. Френелем.

Применение поляризованного света

Возможность гасить свет с разной поляризацией находит достаточно широкое применение.

В первую очередь можно упомянуть кристаллографию. Исследования плоскости поляризации света, прошедшего сквозь кристалл, позволяют выяснить его структуру с помощью специальных приборов.

Еще одной часто используемой возможностью являются поляризационные фильтры в фотографии и видео. Отраженный свет очень часто становится поляризованным, и его можно отсечь с помощью специальных светофильтров, избавляясь от нежелательных бликов на фотографиях. Это также позволяет увеличить контраст изображения.

Наконец, следует вспомнить системы стереокино. Свет от экрана имеет две плоскости поляризации, которые разделяются в светофильтрах очков.

Применение поляризации

Рис. 3. Применение поляризации.

Что мы узнали?

Поляризация поперечных волн — это способность изменять вектор амплитуды колебаний только в одной плоскости. Теория поляризации была разработана О. Френелем в первой половине XIX в. Сейчас явление поляризации света используется в кристаллографии, в фото- и видеотехнике для увеличения контраста, гашения бликов и отраженного света.

Свет – электромагнитное излучение, воспринимаемое человеческим глазом.

Естественный свет – световой поток, в котором колебания векторов и происходят по всем направлениям, перпендикулярным направлению распространения волн.


Плоскополяризованный свет – свет, в котором колебания вектора происходят только в одной определённой плоскости.

Поляроид – тонкая (0,1 мм) плёнка кристаллов герапатита, нанесённая на целлулоид или стеклянную пластинку.

Корпускулярная теория света – свет представляет собой поток частиц (корпускул), испускаемых светящимися телами во все стороны.

Волновая теория света – свет имеет волновую природу, то есть ведёт себя как электромагнитная волна, от длины которой зависит цвет видимого нами света.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 225 – 228.

2.Рымкевич А. П. Сборник задач по физике. 10-11 класс - М.:Дрофа,2009. – С. 149.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 367 - 373.

Основное содержание урока

Свет – электромагнитное излучение, воспринимаемое человеческим глазом.

В соответствии с двумя способами передачи энергии от источника тока к приёмнику возникли и начали развиваться две совершенно разные теории, объясняющие, что такое свет, какова его природа. Эти теории возникли почти одновременно в XVII веке.

Одна из этих теорий связана с именем Ньютона, другая – с именем Гюйгенса.

Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет – это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представления Гюйгенса свет – это волны, распространяющиеся в особой гипотетической среде – эфире, заполняющем всё пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно.

На основе корпускулярной теории трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые пучки должны сталкиваться и рассеиваться. Волновая же теория это легко объясняла.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить на основе волновой теории. По корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

В начале XIX века впервые были изучены явления дифракции и интерференции света. Эти явления присущи исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную победу.

Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века доказал, что свет – это частный случай электромагнитных волн.

Работами Максвелла были заложены основы электромагнитной теории.

После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведёт себя как волна, не осталось. Нет их и сейчас.

Однако в начале XX века представления о природе света начали тем не менее коренным образом меняться. Оказалось, что при излучении и поглощении свет ведёт себя подобно потоку частиц. Были обнаружены прерывистые, или, как говорят, квантовые свойства света.

Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно было объяснить, если считать свет волной, а явления излучения и поглощения – если считать свет потоком частиц. Такую двойственность поведения света называют корпускулярно-волновым дуализмом.

Опыт с турмалином

Если мы заставим пучок света пройти через второй точно такой же кристалл турмалина, параллельный первому, то при одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок ещё более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным, то обнаружится гашение света. И когда оси перпендикулярны друг другу, свет не проходит совсем. Он целиком поглощается вторым кристаллом.


Выводы из опыта:

  1. свет – поперечная волна;
  2. кристалл турмалина обладает способностью пропускать световые волны с колебаниями, происходящими в одной определённой плоскости.

Кристалл турмалина преобразует естественный свет в плоскополяризованный.

Естественный свет – световой поток, в котором колебания векторов и происходят по всем направлениям, перпендикулярным направлению распространения волн.


Плоскополяризованный свет – свет, в котором колебания вектора происходят только в одной определённой плоскости.

Поляроид – тонкая (0,1 мм) плёнка кристаллов герапатита, нанесённая на целлулоид или стеклянную пластинку.

Поляризация света широко применяется в светотехнике, астрофизике, спектроскопии, медицине, геологии, минералогии, кристаллографии и т.д.

Разбор тренировочного задания

1. Свет, отраженный от поверхности воды, является частично поляризованным. Как убедиться в этом, имея поляроид?

Чтобы убедиться в этом, нужно смотреть на воду через поляроид, поворачивая его, пока изображение не исчезнет.

2. Если смотреть на спокойную поверхность неглубокого водоёма через поляроид и постепенно поворачивать его, то при некотором положении поляроида дно водоёма будет лучше видно. Объясните явление.


В нашем блоге уже можно найти статьи про преломление, дисперсию и дифракцию света. Теперь пришло время поговорить о том, в чем заключается сущность поляризации света.

В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.

Что такое поляризация света

Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?

Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?

Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н. Кстати, интересные факты о природе света можно узнать из нашей статьи.

Согласно теории Максвелла, световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.

Поляризация наблюдается только на поперечных волнах.

Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E.

Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.

Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.

Если же вектор E колеблется в разных плоскостях с одинаковой вероятностью, то такой свет называется естественным.


Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Откуда берется поляризованный свет?

Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.


Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.

В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света - турмалин.

Еще один способ получения поляризованного света - отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный. При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.


Связь между углом падения и степенью поляризации света выражается законом Брюстера.

Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.

Линейно поляризованный свет - свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.

Практическое применение явления поляризации света

Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.

Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.


Поляризация - не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.

Чтобы не терять время и преодолеть трудности максимально быстро, обратитесь за советом и помощью к нашим авторам. Мы поможем выполнить реферат, лабораторную работу, решить контрольные задания на тему "поляризация света".

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Читайте также: