Наследственность и изменчивость вирусов доклад

Обновлено: 04.07.2024

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ГЕНОМА ВИРУСА

Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 10 6 раз меньше массы генома эукариотической клетки. Организация генетического аппарата у ряда вирусов, например у SV40, настолько сходна с таковой генов эукариотичес­кой клетки, что получила название минихромосомы. Минихромосома широко используется для изучения орга­низации и репликации ДНК.

Число генов у вирусов значительно варьирует: от 3—4 генов у просто устроенных вирусов (парвовирусы) до 150 генов и больше у сложно устроенных (вирус оспы). Геном вирусов животных является гаплоидным, за ис­ключением ретровирусов, которые имеют диплоидный геном, представленный двумя идентичными молекула­ми РНК. У вирусов с фрагментарным геномом (вирусы гриппа, реовирусы) каждый фрагмент обычно представ­ляет собой один ген.

В составе генов ДНК-содержащих вирусов есть регуляторные участки, в том числе промотор, контролирую­щие функцию структурных генов. Сильными промоторами являются концы многих вирусных ДНК, представляющие собой длинные концевые повторы, сильный промотор име­ют гены тимидинкиназы вирусов оспы и герпеса. Эти промоторы используются в генной инженерии для усиле­ния транскрипции изучаемого гена.

СПОСОБЫ УВЕЛИЧЕНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ВИРУСНОГО ГЕНОМА

У многих вирусов молекулярная масса синтезирую­щихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механиз­мов, позволяющих получить развернутую генетическую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.

Способами увеличения генетической информации яв­ляются: 1) двукратное считывание одной и той же иРНК, но с другого инициирующего кодона; 2) сдвиг рамки трансляции; 3) сплайсинг; 4) транскрипция с перекрываю­щихся областей ДНК и др.

Трансляция может происходить без сдвига рамки и со сдвигом рамки. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет, или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изме­нился, то при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представ­ляющие собой укороченную копию первого полипептида (трансляция без сдвига рамки).

В том случае, если произошел сдвиг на один или два нуклеотида, образуются новые триплеты (кодоны) и появ­ляется новый генетический код. В этом случае одна мо­лекула иРНК может транслироваться с образованием двух уникальных белков, т. е. таких белков, у которых нет идентичных аминокислотных последовательностей.

Одним из способов экономии генетического материала является нарезание полипептида-предшественника на участки разной длины, в результате чего образуются раз­ные полипептиды с перекрывающимися аминокислотными последовательностями. Подобный механизм нарезания имеет место у аденоассоциированных вирусов и у SV40.

Таким образом, число реальных генов превосходит молекулярную массу генома. Основанный на длине генома расчет числа генов неизменно приведет к ошибочным ре­зультатам. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

ОСНОВНЫЕ ПРОЦЕССЫ, КОНТРОЛИРУЮЩИЕ НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ ВИРУСОВ

Модификации. Модификациями называются не насле­дуемые (фенотипические) изменения у вирусов, обуслов­ленные клеткой-хозяином. Эти изменения лежат в основе адаптации вируса к новому хозяину и преодоления зави­симого от хозяина ограничения. Модификации нуклеино­вых кислот вирусов осуществляют клеточные ферменты, ответственные за ограничение (рестрикцию) репродукции вируса.

Мутации. В основе изменчивости вирусов лежат му­тации, т. е. изменения состава и последовательностей нуклеотидов вирусного генома. Мутации происходят у всех вирусов, независимо от того, является ли их ге­нетическим аппаратом ДНК или РНК. В результате мутаций отдельные вирионы могут приобретать новые свой­ства. Дальнейшая судьба таких вирусов зависит от естественного отбора, сохраняющего популяцию, наиболее приспособленную к условиям существования.

Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических прояв­лений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покры­тием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

В других случаях мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

В некоторых случаях мутации являются условно ле­тальными, так как вирусспецифический белок сохраняет свои функции в определенных, оптимальных для него, условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные (tempe­rature sensitive) — ts-мутации, при которых вирус теряет способность размножения при повышенных температурах (39—42° С), сохраняя эту способность при обычных температурах выращивания (36—37° С).

По своему механизму мутации могут быть тоже раз­ными. В одних случаях происходит делеция, т. е. выпа­дение одного или нескольких нуклеотидов, в других слу­чаях происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях — замена одного нуклеотида другим.

Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные мутации — ревер­сии — его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит в месте первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия) или в другом гене (экстрагенная супрессия). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэто­му при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с воз­можной их реверсией к дикому типу.

Мутации носят случайный характер и объясняются статистическими законами.

В качестве физических мутагенов наиболее часто при­меняется ультрафиолетовое облучение, так как его энергия сопоставима с энергией химических связей. Реже приме­няются более жесткие виды облучения — рентгеновское и γ-облучение, а также обработка вирусных суспензий нейтронами, протонами, электронами и ядрами гелия, так как они вызывают сильные разрушения вирусных геномов и их инактивацию.

В качестве химических мутагенов применяют аналоги оснований (бромурацил, бромдезоксиуридин, 2-аминопурин, нитрозогуанидин и пр.), алкилирующие и флуорес­цирующие соединения (профлавин), интеркалирующие агенты (актиномицин, этидий бромид), азотистую кислоту, гидроксиламин и многие другие.

ГЕНЕТИЧЕСКИЕ И НЕГЕНЕТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ МЕЖДУ ВИРУСАМИ

Как в естественных, так и в экспериментальных усло­виях одна клетка может быть заражена не одним, а несколькими вирусами. В процессе такой смешанной инфекции могут иметь место различные формы взаимо­действия как между вирусными геномами, так и между продуктами генов. При взаимодействии геномов могут наблюдаться такие формы генетических взаимодействий, как множественная реактивация, рекомбинация, пересортировка генов, кросс-реактивация, гетерозиготность. При взаимодействии на уровне продуктов генов могут иметь место негенетические взаимодействия: комплементация, интерференция, фенотипическое смешивание и др.

Множественная реактивация. Вирусная инфекция мо­жет возникнуть при заражении клетки несколькими ви-рионами с поврежденными геномами вследствие того, что функцию поврежденного гена может выполнять вирус, у которого этот ген не поврежден. Этот феномен был вна­чале обнаружен на бактериофагах и получил название множественной реактивации. В основе множественной реактивации лежит кооперативный процесс, при котором вирионы с поражением разных генов дополняют друг друга путем генетической рекомбинации, в результате чего репродуцируется исходный неповрежденный вирус. Эффективность множественности реактивации зависит от многих причин: степени повреждения генома вирионов, числа проникших в клетку вирионов, концентраций их в определенных участках клетки, аутоинтерференции поврежденных вирионов. Для множественной реактивации важное значение имеет расстояние между вирионами с поврежденными геномами внутри клетки. Обработка ви­рионов двухвалентными ионами металлов, ведущая к их агрегации, усиливает множественную реактива­цию.

Рекомбинация. Генетической рекомбинацией называют обмен генетическим материалом, происходящий между родительскими вирусами. Возможен обмен полными ге­нами (межгенная рекомбинация), так и участками одного и того же гена (внутригенная рекомбинация). Образую­щийся вирус-рекомбинант обладает свойствами, унаследо­ванными от разных родителей.

Обычно рекомбинируемые штаммы обладают харак­терными признаками, которые обозначаются как маркеры. Например, были получены рекомбинанты между вирусами полиомиелита, обладающие повышенной устойчивостью и повышенной чувствительностью к гуанидину, разной нейровирулентностью, разной устойчивостью к повышенной температуре, разной чувствительностью к ингибиторам сы­вороток лошадей и коров и т. п. Для получения рекомбинантов используют штаммы, содержащие два или боль­шее число маркеров.

Тест рекомбинации применяют для генетических иссле­дований вирусов. С его помощью возможно построение генетических карт вирусов, в которых определяется, в ка­ких участках генома произошли мутации, а также в услов­ных единицах измеряется расстояние между разными мутациями.

Пересортировка генов. Вариантом рекомбинации явля­ется феномен, получивший название пересортировки генов. Она наблюдается при генетических взаимодействиях меж­ду вирусами, имеющими сегментированный геном. Обра­зующиеся при этом гибридные формы вирусов называют реассортантами. Реассортанты вирусов гриппа получают при совместном культивировании вирусов с разными гена­ми гемагглютинина и нейраминидазы. В этом случае из общего потомства путем нейтрализации соответствующих антигенов можно выделить интересующие исследователя варианты.

Существуют определенные группировки (констелляции или созвездия) генов, которые в данной системе клеток более стойки и делают вирус более жизнеспособным.

Сходные процессы пересортировки генов имеют место у вирусов гриппа типов А, В и С и у других вирусов с фрагментарным геном — у буньявирусов, аренавирусов (однонитчатые РНК) и реовирусов (ротавирусов) (двунитчатая РНК). Однако эти процессы не столь интенсивны и доступны изучению, как у вирусов гриппа.

Гетерозиготность. При совместном культивировании двух штаммов вируса может происходить формирование вирионов, содержащих в своем составе два разных генома или по крайней мере один полный геном и часть второго генома. Это явление названо гетерозиготностью.

Комплементация. Комплементация (дополнение) явля­ется таким видом негенетического взаимодействия при смешанной инфекции двумя вирусами, которое стимули­рует репродукцию обоих партнеров или одного из них, но не изменяет генотипы вирусов. Принцип комплементации заключается в том, что вирус снабжает партнера недоста­ющими компонентами, обычно белками, структурными или неструктурными.

Комплементация широко распространена среди вирусов и встречается как между родственными, так и неродствен­ными вирусами. Феномен тесно связан с проблемой де­фектности вирусов.

Поскольку в вирусной популяции помимо стандартных обычно присутствуют дефектные неинфекционные вирус­ные особи, в частности дефектные частицы, утратившие часть генетического материала, комплементация имеет место в инфекционном цикле многих вирусов и заключа­ется в том, что члены популяции снабжают друг друга продуктами генов, которые дефектны у партнеров. Отличие комплементации от генетической рекомбинации заключается в отсутствии обмена генетическим материалом.

Комплементация встречается и у неродственных ви­русов, принадлежащих к разным семействам. Одним из семейств, вирусы которого наиболее часто участвуют в комплементации, является семейство аденовирусов. В од­них системах аденовирусы могут действовать как дефект­ные вирусы, в других — как помощники. Например, в культуре клеток почек макак резусов аденовирусы могут репродуцироваться только в присутствии SV40, который является в данном случае вирусом-помощником. В других системах сами аденовирусы действуют как вирусы-по­мощники, а вирусом-сателлитом является аденоассоци-ированный вирус, относящийся к семейству парвовирусов. Репродукция этого вируса полностью зависит от комплементирующего действия аденовирусов. Вирус гепатита В является помощником для дельта-агента, который по­крывается его наружным белком — HBs-антигеном. Соче­тание обоих вирусов обнаружено при наиболее тяжелых формах гепатита.

Возможна не только межцистронная, но и внутрицистронная комплементация в том случае, когда один ген кодирует несколько белков.

Фенотипическое смешивание. При совместном культиви­ровании двух вирусов может наблюдаться феномен фенотипического смешивания, когда геном одного вируса бывает заключен в капсид, состоящий частично или пол­ностью из белков другого вируса.

Фенотипическое смешивание наблюдается при смешан­ной инфекции,многими вирусами, причем эти вирусы мо­гут быть как близкими друг другу (например, вирусы гриппа А и В или разные серологические подтипы вируса гриппа А), так и весьма далекими (онковирусы и рабдовирусы).

РЕСТРИКТАЗЫ И ФИЗИЧЕСКИЕ КАРТЫ ВИРУСОВ

Подлинную революцию в физическом картировании ге­номов вирусов произвело применение рестриктаз и секвенирование вирусных геномов. Рестриктазы имеют иск­лючительное значение в молекулярной генетике вообще и генетической инженерии в частности. Их открытие (1968—1970 гг.) впервые дало возможность специфически расщеплять ДНК на строго определенные фрагменты, дос­тупные для препаративного выделения и анализа.

Рестриктазы или эндодезоксирибонуклеазы — это прос­то организованные белки, являющиеся ферментами, ши­роко распространенными среди прокариотов и участву­ющими в генетических процессах. В отличие от экзонук-леаз, отщепляющих концевые нуклеотиды или свободные остатки фосфорной кислоты, эндонуклеазы расщепляют молекулу ДНК изнутри, обычно — в местах, где преобла­дают пиримидиновые основания. Рестриктазы характери­зуются высоковыраженной специфичностью, распознавая строго определенные последовательности нуклеотидов в двунитчатой ДНК.

Число новых рестриктаз стремительно нарастает и со временем, по-видимому, будут обнаружены рестриктазы, узнающие любую последовательность нуклеотидов.

Использование разных рестриктаз позволяет получать фрагменты разной величины, которые затем разделяются и анализируются путем электрофореза в агарозных или полиакриламидных гелях. Сочетание рестрикционного ана­лиза с другими методами позволяет составить физические карты геномов вирусов. Физические карты вирусных геномов обозначают взаимное расположение генов, их границы, локализацию начала репликации, промоторов, лидеров, экзонов и интронов, сигнальных последователь­ностей и других генетических элементов.

Генетический код для синтеза белков вируса SV-40 записан не на одной, а на обеих нитях ДНК, а транскрипция разных генов идет в разных направлениях.

В настоящее время полностью расшифрованы нуклеотидные последовательности отдельных генов и целых ге­номов методом секвенирования (от англ. sequence — последовательность). Если речь идет о РНК-содержащих вирусах, то предварительным условием для дальнейшего их анализа является переписка РНК на ДНК с помощью РНК-зависимой ДНК-полимеразы (обратной транскриптазы), после чего генетический материал может быть под­вергнут рестрикционному анализу.

Проектное задание к модулю

В качестве проектного задания студентам предлагается написание рефератов по следующим темам:

1. Природа дефектных вирусных геномов. Вирусы-сателлиты.

2. Вирусная интерференция

3. Необычные свойства ретровирусов

4. Трансформация клетки опухолеродными ДНК-вирусами

5. Классификация и основные свойства вирусов гриппа

6. Индукция специфического иммунного ответа на вирусы

7. Особенности репродукции пикорнавирусов

8. Семейство тогавирусов. Особенность репродукции и инфекционного процесса.

9. Вирус клещевого энцефалита.

10. Вирус бешенства

11. Вирусная персистенция

12. Основные свойства парамиксовирусов

13. Вирус кори. Биология возбудителя. Особенности патогенеза

14. Аденовирусы, их репликация и связь с другими вирусами

16. Пути распространения вирусных болезней растений.

17. Прионы. Возбудители или провокаторы или….

18. Вироиды как вирусоподобные инфекционные агенты.

19. Вирусы, вызывающие респираторные инфекции. Сравнительная характеристика

20. Место вирусов в биосфере.

21. Бактериофаги. Их морфологическое многообразие и взаимодействие с бактериями.

22. Атипичная пневмония и возможность происхождения новых вирусов

23. Роль вирусов в возникновении злокачественных опухолей

24. Особенности транскрипции РНК- содержащих вирусов.

25. Морфогенез вирусов или морфологические превращения в процессе репродукции.

Тест рубежного контроля

Вирусам, как и всем живым организмам, свойственны наследственность и изменчивость. Основной особенностью вирусного генома является то, что наследственная информация у вирусов может быть записана как на ДНК, так и на РНК. Геном ДНК-содержащих вирусов двухнитевой (исключение составляют парвовирусы, имеющие однонитевую ДНК), несегментированный и проявляет инфекционные свойства. У вирусов, принадлежащих к родам Poxvirus и Hepadnavirus геном представлен двумя цепочками ДНК разной длины. Геном большинства РНК-содержащих вирусов однонитевой (исключение составляют реовирусы и ретровирусы, обладающие двунитевыми геномами) и может быть сегментированным (представители родов Retrovirus , Orthomyxovirus , Arenavirus и Reovirus ) или несегментированным.

Вирусные РНК в зависимости от выполняемых функций подразделяются на две группы. К первой группе относятся РНК, способные непосредственно транслировать генетическую информацию на рибосомы чувствительной клетки, т.е выполнять функции иРНК и мРНК. Их называют плюс-нити РНК и обозначают как +РНК (позитивный геном). Они имеют характерные окончания (`шапочки') для специфического распознавания рибосом.

У другой группы вирусов РНК не способна транслировать генетическую информацию непосредственно на рибосомы и функционировать как иРНК. Такие РНК служат матрицей для образования иРНК, т.е. при репликации первоначально синтезируется матрица (+РНК) для синтеза -РНК. Такой тип РНК определяют как минус-нить и обозначают -РНК (негативный геном). У вирусов этой группы репликация РНК отличается от транскрипции по длине образующихся молекул: при репликации длина РНК соответствует материнской нити, а при транскрипции образуются укороченные молекулы иРНК. Молекулы +РНК проявляют инфекционность, а -РНК не проявляют инфекционные свойства и для воспроизведения должны транскрибироваться в +РНК.

Исключение составляют ретровирусы, которые содержат однонитевую +РНК, служащую матрицей для вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). При помощи этого фермента информация переписывается с РНК на ДНК, в результате чего образуется ДНК-провирус, интегрирующий в клеточный геном.

Так же как и у прочих форм жизни нуклеиновые кислоты вирусов подвержены мутациям. Фенотипически мутации вирусного генома проявляются изменениями в антигенной структуре, неспособности вызывать продуктивную инфекцию в чувствительной клетке, термостабильностью, изменением размера и формы бляшек, образуемых под агаровым покрытием. Большинству мутаций присущи реверсии к дикому типу, причем каждая мутация имеет характерную частоту реверсий, которую можно точно измерить. У вирусов выделяют спонтанные и индуцированные мутации.

Скорость спонтанного мутагенеза в ДНК-геномах значительно ниже (10 -8 - 10 -11 на каждый включенный нуклеотид), чем у РНК-геномных (10 -3 - 10 -4 на каждый включенный нуклеотид). Более высокая частота спонтанных мутаций связана с низкой точностью репликации РНК-геномов, которая вероятно связана с отсутствием у РНК-репликаз корректирующей активности, свойственной ферментам, реплицирующим ДНК. Наиболее часто спонтанные мутации наблюдаются у ретровирусов, что связано с более высокой частотой сбоев в обратной транскрипции, не способных к самокоррекции.

Индуцированные мутации у вирусов получают при действии различных химических и физических мутагенов, которые подразделяют на действующие in vivo и in vitro .

Вирусные мутации классифицируют по изменениям фенотипа и генотипа. По фенотипическим проявлениям мутации вирусов разделяют на четыре группы:

Мутации, не имеющие фенотипического проявления.

Летальные мутации, т.е. полностью нарушающие синтез или функцию жизненно важных белков и приводящие к утрате способности к репродукции.

Условно летальные мутации, т.е. мутации с потерей способности синтезировать определенный белок или с нарушением его функции только в определенных условиях.

Мутации, имеющие фенотипическое проявление, например изменение размеров бляшек под агаровым покрытием или термостабильности.

По изменению генотипа мутации подразделяют на точечные (локализующиеся в индивидуальных генах) и генные (затрагивающие более обширные участки генома).

Заражение вирусами чувствительных клеток носит множественный характер, т.е. в клетку проникает сразу несколько вирионов. При этом вирусные геномы в процессе репликации могут кооперироваться или интерферировать. Кооперативные взаимодействия между вирусами представлены генетическими рекомбинациями, генетической реактивацией, комплементацией и фенотипическим смешиванием.

Генетическая рекомбинация чаще встречается у ДНК-содержащих вирусов или РНК-содержащих вирусов с фрагментированным геномом (вирус гриппа). При генетической рекомбинации происходит обмен между гомологичными участками вирусных геномов.

Генетическая реактивация наблюдается между геномами родственных вирусов с мутациями в разных генах. При перераспределении генетического материала формируется полноценный геном.

Комплементация происходит когда один из вирусов, инфицирующих клетку, в результате мутации синтезирует нефункциональный белок. Немутантный вирус, синтезируя полноценный белок, восполняет отсутствие его у мутантного вируса.

Вирусам, как и всем живым организмам, свойственны наследственность и изменчивость. Основной особенностью вирусного генома является то, что наследственная информация у вирусов может быть записана как на ДНК, так и на РНК. Геном ДНК-содержащих вирусов двухнитевой (исключение составляют парвовирусы, имеющие однонитевую ДНК), несегментированный и проявляет инфекционные свойства. У вирусов, принадлежащих к родам Poxvirus и Hepadnavirus геном представлен двумя цепочками ДНК разной длины. Геном большинства РНК-содержащих вирусов однонитевой (исключение составляют реовирусы и ретровирусы, обладающие двунитевыми геномами) и может быть сегментированным (представители родов Retrovirus, Orthomyxovirus, Arenavirus и Reovirus) или несегментированным.

Вирусные РНК в зависимости от выполняемых функций подразделяются на две группы:

- К первой группе относятся РНК, способные непосредственно транслировать генетическую информацию на рибосомы чувствительной клетки, т.е выполнять функции иРНК и мРНК. Их называют плюс-нити РНК и обозначают как +РНК (позитивный геном). Они имеют характерные окончания (`шапочки') для специфического распознавания рибосом.

- У другой группы вирусов РНК не способна транслировать генетическую информацию непосредственно на рибосомы и функционировать как иРНК. Такие РНК служат матрицей для образования иРНК, т.е. при репликации первоначально синтезируется матрица (+РНК) для синтеза -РНК. Такой тип РНК определяют как минус-нить и обозначают -РНК (негативный геном). У вирусов этой группы репликация РНК отличается от транскрипции по длине образующихся молекул: при репликации длина РНК соответствует материнской нити, а при транскрипции образуются укороченные молекулы иРНК. Молекулы +РНК проявляют инфекционность, а -РНК не проявляют инфекционные свойства и для воспроизведения должны транскрибироваться в +РНК. Исключение составляют ретровирусы, которые содержат однонитевую +РНК, служащую матрицей для вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). При помощи этого фермента информация переписывается с РНК на ДНК, в результате чего образуется ДНК-провирус, интегрирующий в клеточный геном.

Так же, как и у прочих форм жизни, нуклеиновые кислоты вирусов подвержены мутациям. Фенотипически мутации вирусного генома проявляются изменениями в антигенной структуре, неспособности вызывать продуктивную инфекцию в чувствительной клетке, термостабильностью, изменением размера и формы бляшек, образуемых под агаровым покрытием. Большинству мутаций присущи реверсии к дикому типу, причем каждая мутация имеет характерную частоту реверсий, которую можно точно измерить. У вирусов выделяют спонтанные и индуцированные мутации.

Скорость спонтанного мутагенеза в ДНК-геномах значительно ниже (10 -8 - 10 -11 на каждый включенный нуклеотид), чем у РНК-геномных (10 -3 - 10 -4 на каждый включенный нуклеотид). Более высокая частота спонтанных мутаций связана с низкой точностью репликации РНК-геномов, которая вероятно связана с отсутствием у РНК-репликаз корректирующей активности, свойственной ферментам, реплицирующим ДНК. Наиболее часто спонтанные мутации наблюдаются у ретровирусов, что связано с более высокой частотой сбоев в обратной транскрипции, не способных к самокоррекции.

Индуцированные мутации у вирусов получают при действии различных химических и физических мутагенов, которые подразделяют на действующие in vivo и in vitro .

Вирусные мутации классифицируют по изменениям фенотипа и генотипа. По фенотипическим проявлениям мутации вирусов разделяют на четыре группы:

● Мутации, не имеющие фенотипического проявления.

● Летальные мутации, т.е. полностью нарушающие синтез или функцию жизненно важных белков и приводящие к утрате способности к репродукции.

● Условно летальные мутации, т.е. мутации с потерей способности синтезировать определенный белок или с нарушением его функции только в определенных условиях.

● Мутации, имеющие фенотипическое проявление, например изменение размеров бляшек под агаровым покрытием или термостабильности.

По изменению генотипа мутации подразделяют на:

- точечные (локализующиеся в индивидуальных генах);

- генные (затрагивающие более обширные участки генома).

Заражение вирусами чувствительных клеток носит множественный характер, т.е. в клетку проникает сразу несколько вирионов. При этом вирусные геномы в процессе репликации могут кооперироваться или интерферировать. Кооперативные взаимодействия между вирусами представлены генетическими рекомбинациями, генетической реактивацией, комплементацией и фенотипическим смешиванием.

Генетическая рекомбинация чаще встречается у ДНК-содержащих вирусов или РНК-содержащих вирусов с фрагментированным геномом (вирус гриппа). При генетической рекомбинации происходит обмен между гомологичными участками вирусных геномов.

Генетическая реактивация наблюдается между геномами родственных вирусов с мутациями в разных генах. При перераспределении генетического материала формируется полноценный геном.

Комплементация происходит, когда один из вирусов, инфицирующих клетку, в результате мутации синтезирует нефункциональный белок. Немутантный вирус, синтезируя полноценный белок, восполняет отсутствие его у мутантного вируса.

Фенотипическое смешивание происходит при смешанном заражении чувствительной клетки двумя вирусами, когда часть потомства приобретает фенотипические признаки, присущие двум вирусам, при неизменном генотипе.

При множественном инфицировании чувствительной клетки между вирусами могут возникать интерферирующие взаимодействия. Интерференцией вирусов называют состояние невосприимчивости к вторичному заражению клетки, уже инфицированной вирусом. При гетерологической интерференции инфицирование одним вирусом полностью блокирует возможность репликации второго вируса в пределах одной клетки. Механизмы гетерологической интерференции связаны с угнетением адсорбции другого вируса путем блокирования или разрушения специфических рецепторов, а так же с ингибированием трансляции мРНК любой гетерологичной мРНК в инфицированной клетке. Кроме того, первичное заражение может индуцировать образование интерферона, ингибирующего репликацию второго вируса.

Гомологическая интерференция, т.е. интерференция между гомологичными вирусами, характерна для многих вирусов, особенно при повторных пассажах in vitro и при высокой множественности инфицирования. В таких условиях образуется много дефектных вирусных частиц, обычно не способных к репродукции. Однако размножение дефектных вирусов возможно при совместном заражении с полноценным вирусом (вирус-помощник). При этом дефектный вирус может вмешиваться в репликативный цикл вируса-помощника и образовывать дочерние дефектные интерферирующие (ДИ) вирусные частицы. ДИ -частицам присущи три основных свойства: дефектность (повреждение в важных генах), способность к интерференции (ДИ - частицы препятствуют репликации полноценного вируса или других гомологичных вирусов) и способность к самообогащению за счет стандартного вируса. Циркуляция ДИ-частиц и коинфекция с полноценным вирусом вызывают вялотекущие, длительные формы инфекции.

Кроме взаимодействий, происходящих между вирусами, при смешанной инфекции происходят также взаимодействие между вирусом и клеткой-хозяином. При взаимодействии клеток с ДНК-содержащими вирусами может происходить вирусная трансформация клетки. В результате трансформации у клеток изменяются морфологические, биохимические и ростовые характеристики, может появляться способность к опухолевому росту. Представляет интерес трансформация клеток под действием РНК-геномных ретровирусов. У ретровирусов трансформация и репликация не являются взаимоисключающими, поскольку трансформированные клетки способны реплицировать вирус. Геномы трансформирующих вирусов обычно интегрируют с геномом трансформируемой клетки.

Вирус (лат. virus - яд) - неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.

Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.

Вирус гепатита C

В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.

Ивановский Д.И.

  • Наличие наследственности и изменчивости
  • Способность к репродукции (воспроизведению себе подобных)

    Неживое (инертное) состояние

Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы - облигатные внутриклеточные паразиты.

У вирусов отсутствует обмен веществ с внешней средой (метаболизм).

Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.

У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.

Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни - безудержное размножение.

Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент - его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов - полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.

Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.

Строение вируса

Взаимодействие вируса с клеткой

Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.

Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код - она принимает его как свой собственный, а в результате синтезирует вирусные белки.

Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.

Вирус в клетке

Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.

Бактериофаги ("бактерия" + греч. phag(os) — пожирающий)

Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом - ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.

Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.

Строение бактериофага

Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.

Вирусные инфекции

Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.

Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.

Клетки вырабатывают защитный белок - интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).

Повышение температуры тела

Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах - клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.

Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.

Строение ВИЧ

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Патогенные для человека вирусы обладают двумя основными свойствами — наследственностью и изменчивостью, изучение которых составляет предмет особой научной дисциплины — генетики вирусов.

Характеристика вирусных популяций. Генофонд вирусных популяций

Популяционную структуру вирусов и характер протекающих в них процессов определяют следующие факторы.

Высокая численность популяции, что увеличивает вероятность мутаций, которые могут быть подхвачены естественным отбором при изменении условий существования вирусов.

Быстрая смена поколений позволяет изучать изменчивость вирусов не только в эксперименте, по и наблюдать их естественную эволюцию в природе.

Гаплоидностъ и бесполый способ размножения определяют: генетическую чистоту популяции (отсутствие гибридов); невозможность сохранения запасов изменчивости за счёт диплоидности; немедленное попадание мутантов под контроль отбора.

Генетика вирусов. Характеристика вирусных популяций. Генофонд вирусных популяций.

Таблица 5-1. Факторы пополнения генофонда вирусных популяций

Малая ёмкость генома и отсутствие повторяющихся генов. Для реализации инфекционного цикла необходима функциональная целостность всех генов.

Незначительное изменение одного из них может вызвать летальный или условно-летальный эффект для вируса.

Непрерывность в динамике эпидемического процесса, так как обязательное условие сохранения в природе — передача новым чувствительным хозяевам.

Вирусные популяции хорошо адаптированы к внешним условиям и не претерпевают существенных изменений в течение продолжительного времени.

При изменении условий для выживания популяции становится необходимой перестройка наследственной структуры, обеспечивающая адаптацию к новой среде. Подобная перестройка возможна лишь при наличии в общем генофонде популяции изменённых генов.

Генофонд вирусных популяций создаётся и пополняется из четырёх основных источников (табл. 5-1).

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: