Нано био информационные когнитивные технологии доклад

Обновлено: 05.07.2024

"Согласно теории технологических укладов, наиболее
передовые страны мира сейчас переживают их шестую волну.
Основными направлениями развития там являются био- и
нанотехнологии, лазерная техника, энергосбережение
и робототехника" [20]

"Понимание разума и мозга позволит создание новых видов
интеллектуальных систем машины, которые могут генерировать
экономического богатства в масштабах, до сих пор невообразимое.
Это возможность для искоренения нищеты и вступления всего
человечества в золотой век" [21]

21. Converging Technologies for Improving Human Performance
NANOTECHNOLOGY, BIOTECHNOLOGY,INFORMATION TECHNOLOGY AND COGNITIVE SCIENCE
Понимание разума и мозга позволит создание новых видов интеллектуальных систем машины, которые могут генерировать экономического богатства в масштабах, до сих пор невообразимое. В течение полвека, интеллектуальные машины могли бы создать богатство, необходимые для обеспечения питанием, одеждой, жильем , образованием, медицинским обслуживанием, чистой окружающей средой, и физическую и финансовую безопасность для всего населения мира. Интеллектуальные машины могут в конечном счете создать производственные мощности для поддержки всеобщего процветания и финансовой безопасности для всех человеческих существ. Таким образом, инженерные ума гораздо больше, чем погоня за научной любознательностью. Это даже больше, чем монументальная технологическая задача.Это возможность для искоренения нищеты и вступления всего
человечества в золотой век.

22. Converging Technologies for Improving Human Performance en. WIKI

1. Нейробиология (Нейронаука) (Neurobiology)
2. Нейропсихология (Neuro psychology)
3. Нейропсихотерапия (Neuropsychotherapy)
4. Нейрокоучинг (Neurocoaching)-
5. Нейропедагогика (Neuropedagogy)
6. Нейроменеджмент (Neuromanagement)
7. Нейромаркетинг (Neuromarketing)
8. Нейроэкономика (Neuroeconomics)
9. Нейросоциология (Neurosociology)
10. Нейрофилософия (Neurophilosophy)
11. Нейродемократия (Neurodemocracy)
12. Нейроэстетика (Neuroaesthetics)
13. Нейрокино (Neurofilm)
14. Нейрокомпьютинг (Neural computing)
15. Когнитивная нейробиология (Cognitive neuroscience)
16. Нейрокультура (Neuroculture)
17. Нейроэтика (Neuroethics)en.
18. Нейротеология (Neurotheology)en.
19. Нейрополитика (Neuropolitics)
20. Нейроправо(Neurolaw)
21. Нейромедицина (Neuromedicine)
22. Нейрофилософия (Neurophilosophy)


Кое-кто уже называет работу Вентера по созданию новых искусственных бактерий “4-D печатью”. Напомню, что 2-D печать – это самый обычный процесс печати, который начинается после нажатия на клавиатуре клавиши “Print”, в результате чего самый обыкновенный принтер выдает вам распечатанную статью и т.п. Однако промышленные компании, дизайнерские бюро и другие потребители уже переходят на 3-D печать – в этом случае сигнал подается к устройствам, содержащим всякие материалы типа пластмассы, графита и даже продукты питания, а на выходе мы получаем трехмерные продукты. В случае 4-D печати добавляются две важные операции: самосборка и самовоспроизведение. Сначала идея формализуется и попадает в компьютер, затем отправляется на 3-D принтер, и на выходе мы получаем конечный продукт, способный себя копировать и трансформировать. Вентер и еще несколько сотен специалистов в области синтетической биологии утверждают, что 4D-печать особенно хорошо подходит для конструирования живых объектов с помощью кирпичиков, из которых состоят сами живые объекты, то есть из ДНК.
Синтетическая геномика в сочетании с другим прорывным направлением в биологии – так называемыми исследованиями неоморфных мутаций (или как их еще называют мутациями приобретения функции или GOF-исследованиями) – не только открывает огромное количество новых перспектив, но вместе с этим задает множество трудных вопросов и создает угрозы для национальной безопасности.
Теперь биолог стал инженером, который программирует новые формы жизни как ему вздумается. Биологи теперь все больше способны управлять эволюцией, т.е. мы являемся свидетелями “конца дарвинизма”. Как только информационные макромолекулы получат возможность наследовать полезные мутации путем самоподдерживающейся дарвиновской эволюции, они могут начать порождать новые формы жизни”.
Синтетическая биология в ближайшем будущем породит экономический и технологический бум, как в самом начале нынешнего века это сделали Интернет и социальные медиатехнологии.
Генная инженерия существующих в природе форм жизни и создающая новые – это передний край биологии.

Начало XXI века ознаменовано поистине беспрецедентным количеством научно-технических открытий и достижений. Каждый день мы можем слышать о результатах все новых научных исследований, разработке и внедрении инновационных технологий и связанных с этим прорывах в самых различных областях научного знания, которые впоследствии приводят к качественным изменениям в жизни как отдельных людей, так и всего общества. Например, недавно стало известно о новом, чрезвычайно важном достижении в области медицинских исследований французских ученых, которые, как передает Euronews, не только сумели изготовить эритроциты - кровяные клетки, но использовать их для переливания крови, что, скорее всего, позволит в скором времени решить острую на данный момент проблему донорства. А ученые из Дании нашли способ изготавливать биоэтанол – топливо, получаемое в процессе соответствующей переработки соломы и способное заменить бензин для автомобилей.

Но существует важное различие не только в темпах современного научно-технологического развития сравнительно с предшествующими историческими эпохами, но и в самой его структуре, качестве. Так, эффективность научных исследований подразумевает теперь не только наличие достижений в каждой отдельной области знания, специализации, но в большей степени взаимодействие между науками. Разумеется, нельзя утверждать, что ранее научные сферы, будь то математика, физика или медицина, были абсолютно обособлены и не имели влияния друг на друга. Но на данном этапе развития научно-технической базы необходимость их взаимодействия стала особенно очевидной, поскольку для достижения актуальных целей ограничиться лишь собственными ресурсами многие науки уже не в состоянии. Поэтому ученым необходимо искать пути решения за рамками узкой специализации, основываясь на результатах, полученных в ходе исследований в других областях, активно применяя их технологии, используя методы в большей или меньшей степени смежных наук.

Для иллюстрации данной тенденции можно воспользоваться двумя примерами из работы М. Роко и У. Бейнбриджа [1]. Так, когнитивная нейронаука продвинулась далеко вперед, раскрыв секреты человеческого мозга при помощи такой компьютеризированной технологии, как функциональная магнитно-резонансная томография. Однако, применяемые методы уже задействуют ту максимальную силу магнитного поля, которая считается безопасной для человека. Наименьшие структуры в мозге, которые могут быть отображены на экране с помощью МРТ, по размеру составляют около одного кубического миллиметра, но в этом объеме могут содержаться десятки тысяч нейронов. Таким образом, ученые лишены возможности видеть множество крайне важных структур, приближающихся к клеточному уровню. Чтобы повысить разрешение, необходимо создать либо новую компьютерную технологию, помогающую извлекать больше информации из данных МРТ, либо воспользоваться неким принципиально новым методом изучения структур и функций головного мозга. И, вероятнее всего, новый подход будет основан на слиянии биологии и нанотехнологий.

Другой пример связан с информационными технологиями. Несмотря на имеющийся невероятный успех в данной области, все же изначально присущие ей методы приближаются к тому, чтобы исчерпать лимит своих возможностей. Конвергенция же с другими науками, наоборот, увеличивает шансы информационных технологий выйти на качественно новый этап развития. Так, нанотехнологии позволят создать гораздо более мощные вычислительные устройства посредством размещения на плате большего количества транзисторов; биотехнологии, в частности, генетика, приблизят ученых к созданию биокомпьютера, работающего на основе молекул ДНК; когнитивные науки помогут в разработке программного обеспечения, основанного на принципах работы нейронный структур и используемых человеческим мозгом алгоритмах.

Продолжая ссылаться на вышеприведенную работу [1], можно выделить несколько основных аспектов и проблем, в направлении которых запланировано развитие исследований NBIC:

Расширение познавательных способностей и коммуникации. Речь идет о стремлении понять структуру и функции человеческого разума, а также оценить потенциал расширения его возможностей. Кроме того, во внимании находятся аспекты персональных чувственных механизмов, процессов познания и совершенствование инструментов для развития креативности.

Улучшение здоровья и совершенствование физических возможностей человека. Здесь – разработка нано-био процессоров для исследования и изготовления лекарств; имплантаты на основе нанотехнологий и регенеративные биосистемы в качестве замены человеческим органам или для контроля над психологическим состоянием; нанооборудование и инструменты для медицинского вмешательства.

Расширение возможностей социальной коммуникации. Подразумевает уничтожение коммуникационных барьеров, вызванных ограниченными физическими возможностями, языковыми различиями, географическими расстояниями, а также культурными и интеллектуальными различиями между людьми. Это должно привести к повышению эффективности взаимодействия в учебных заведениях, корпорациях, государственных организациях( в том числе, при условии этих взаимодействий на международном уровне). Также, ключевым приоритетом является создание революционно новых продуктов и сервисов, основанных на интеграции четырех наук.

Национальная безопасность. Технологическая конвергенция предлагает несколько возможностей укрепления национальной безопасности в условиях изменившейся природы конфликтов: установление связи между данными и предвосхищение угрозы; роботизированные военно-транспортные средства; реагирование на химические, биологические, радиологические угрозы.

Таким образом, очевидно, что NBIC-конвергенция представляет собой необычайно актуальное явление. Технологии и исследования NBIC как нельзя лучше отвечают проблемам и требованиям современной науки и общества, следующих концепции глобализации. Объединение наук и, следовательно, их взаимообогащение приведут и уже приводят не только к кардинальным изменениям относительно появления инновационных технологий, продуктов и услуг, но и в изменении образа мышления людей, их самосознания. С уверенностью можно говорить о том, что NBIC открывает качественно новый этап человеческого развития.

Тренды, достижения и проекты NBIC

Другой важный вид наноматериалов – нанотрубки (цилиндрические аналоги фуллерена). Возможными зонами их применения становятся полевые эмиссионные дисплеи (тончайшие мониторы с высоким качеством разрешения, потребляющие минимум энергии), тепловой менеджмент, упрочнение композитных материалов. Предположительно, материалы на основе нанотрубок будут от 50 до 100 раз прочнее стали.

Нейромоторное протезирование. По данным, приведенным в работе [6], ученые нашли способ заменить или частично восстановить утраченные двигательные способности у людей. Современные вспомогательные технологии опираются на устройства, на которые сохранившаяся функция посылает сигнал, заменяющий отсутствующее действие. Например, камеры могут отслеживать движения глаз, воспринимаемые как движения компьютерного курсора. НМП представляет собой тип нейро-компьютерного интерфейса, способного направлять движение посредством усиления существующей нейронной субстрата действия. Совершенные НТП должны проводить безопасный, незаметный и надежный сигнал от лишенных моторной функции частей тела, восстанавливая, таким образом, утраченную функцию. Нейроны в первичной двигательной коре головного мозга способны представлять информацию о каком-либо намеренном движении (например, руки), но такие сигналы управления сработают в полной мере лишь при условии, что будут постоянными и произвольными (намеренными) со стороны парализованного человека.

Биокомпьютинг. Согласно авторам источника [10], биокомпьютинг представляет собой сочетание информационных, молекулярных технологий и биохимии и является новейшей альтернативой полупроводниковым технологиям. Биокомпьютинг позволяет решать сложнейшие вычислительные задачи при помощи клеток, вирусов, биомолекул, живых тканей. Но основную перспективу ученые видят в биокомпьютерах, в которых в качестве процессоров выступают молекулы ДНК.

Можно сказать, что активная разработка биокомпьютера началась в середине 1990-х годов, когда американскому ученому Л. Адлеману удалось в лабораторных условиях создать совершенно новую молекулу ДНК, до того не существовавшую в природе.[1] Следующим шагом было решение задачи Гамильтова графа (Hamiltonian Path Problem), являющейся случаем NP-полной задачи. Для этого Адлеман смешал в пробирке молекулу ДНК с закодированной в ней информацией и специальные ферменты. В результате реакции структура молекулы ДНК изменилась, и в ней был представлен ответ на задачу в закодированном виде.

Представленный механизм может использоваться для решения самых различных задач. И хотя скорость обработки ДНК на уровне отдельных молекул происходит во много раз медленнее, чем в кремниевых процессорах, здесь возможен массовый параллелизм.[2] Так, в одной пробирке одновременно может происходить до триллиона процессов, и при потреблении несравнимо меньшей мощности в единицы нановатт может выполняться миллиард операций в секунду.

В 2002 году компания Olympus Optical выпустила ДНК-компьютер, предназначенный для совершения генетического анализа. Этот компьютер имеет две основные составляющие: электронную и молекулярную, первая из которых осуществляет химические реакции между молекулами ДНК, проводит поиск вычислений, а вторая отвечает за обработку информации и анализ полученных результатов.

Нужно сказать, что биологические компьютеры могут использоваться не только для вычислений, но и для фармакологических и медицинских целей. В геном микроорганизмов компьютера можно включить некоторую логическую схему, которая будет активизироваться при контакте с определенным веществом, другими клетками. Поместив, например, такое запрограммированное наноустройство в клетку человека, можно влиять затем на ее состояние, излечивая от различных болезней.

Итак, сравнительно с кремниевыми процессорами, процессоры на основе ДНК имеют ряд бесспорных преимуществ. Во-первых, для них характерна более простая технология изготовления, которая не требует столь жестких условий (например, стерильная атмосфера), как при производстве полупроводников. Во-вторых, используется не бинарный, а тернарный код (тройки нуклеотидов), что при меньшем количестве шагов позволит перебрать большее число вариантов при анализе. В-третьих, биокомпьютеры отличает сверхвысокая производительность (до 1014 операций в секунду). Также, данные могут храниться с плотностью, в триллионы раз превышающей возможности оптических дисков. И, наконец, энергопотребление ДНК-компьютеров является исключительно низким.

Blue Brain Project. Одним из самых крупных и значительных проектов NBIC является “Blue Brain Project”. Он был запущен в 2005 году Институтом мозга и мышления, входящим в состав Федеральной политехнической школы Лозанны (EPFL), и компанией IBM с целью воспроизвести с предельной точностью мозг млекопитающего и изучить стадии возникновения биологического интеллекта. Разумеется, главной задачей ученых является моделирование и изучение именно человеческого мозга.

Опираясь на работу [4] и выступление [7] Г. Маркрама, ведущего специалиста проекта Blue Brain, можно сказать следующее.


Также был обнаружен тот факт, что, в то время как не существует ни одного похожего на другой нейрона, равно как и одинаковых кортикальных колонок (цепей) у разных людей, все же общая, глобальная структура, схема кортекса остается неизменной, единой для всех.

Маркрам пишет [4], что детальное, биологически точное моделирование мозга позволит получить ответы на многие основополагающие вопросы о работе мозга, которые не в состоянии дать другие современные экспериментальные или теоретические подходы. Так, среди проблем, решаемых в рамках проекта Blue Brain:

Получение целостной картины о структуре и функционировании мозга как сложной системы

Получение более точного определения для основных элементов (рецепторы, нейроны, ионные каналы) с тем чтобы установить степень их влияния на возникновение поведения человека

Отслеживание процессов возникновения интеллекта

Моделирование заболеваний и исследование методов их лечения

Список литературы

Roco M., Bainbridge W. Converging Technologies for Improving Human Performance. Kluwer Academic Publishers (currently Springer), 2003.

Schummer J. From Nano-Convergence to NBIC-Convergence. Springer, 2008.

[1] Сам Адлеман описывает этот случай в работе “Computing with DNA”.

[2] Характеризуется тем, что каждый нейрон в сети обрабатывает поступающую к нему информацию независимо от общего хода вычислений, таким образом, нейроны функционируют параллельно, увеличивая количество совершаемых вычислений в единицу времени.

[3] Моделирование происходит с помощью суперкомпьютера Blue Gene/L, разработанного компанией IBM

На данный момент научно-технический прогресс резко ускорился и мы в состоянии наблюдать целые волны открытий, которые накладываются друг на друга во времени. С 80-х началась научно-техническая революция в области информационных технологий и коммуникаций, за ней последовал взрыв открытий в области биотехнологий, а в последнее время все говорят о начале революции в сфере нанотехнологий. В последнем десятилетии также активно развивалась когнитивная наука.

Крайний интерес вызывает взаимное влияние всех этих наук друг на друга. Такое явление получило собственное название - NBIC-конвергенция (по первым буквам областей: N -нано; B -био; I -инфо; C -когно). Ввели в обращение его Уильям Бенбридж и Михаил Роко, которые написали очень значительный отчет ConvergingTechnologiesforImprovingHumanPerformance в 2002 году. В отчете указывалась важность и особенность NBIC-конвергенции, ее значение в развитии цивилизации и формировании современной культуры.
Из четырех описываемых областей (нано-, био-, инфо-, когно-) наиболее развитая (информационно-коммуникационные технологии), которая используется во всех других областях. В частности, для моделирования различных процессов. Биотехнология широко применяется в нанотехнологиях и когнитивной науке, и развитии компьютерных технологий.

Взаимодействие нано- и биотехнологий является двусторонним. Биологические системы дали ряд инструментов для строительства наноструктур (например, созданы особые последовательности ДНК, которые заставляют синтезированную молекулу ДНК сворачиваться в двумерные и трехмерные структуры любой конфигурации).

Нанотехнологии приведут к возникновению и развитию новой отрасли, наномедицины: комплекса технологий, позволяющих управлять биологическими процессами на молекулярном уровне.

В целом же взаимосвязь нано- и био- областей науки и технологии носит фундаментальный характер. При рассмотрении живых (биологических) структур на молекулярном уровне становится очевидной их химическая природа, и можно сказать, что на микроуровне различие между живым и неживым не очевидно.

Нанотехнологии и когнитивная наука наиболее далеко отстоят друг от друга, поскольку на данном этапе развития науки возможности для взаимодействия между ними ограничены, кроме того, эти области начали активно развиваться позже других. Но из просматриваемых сейчас перспектив, прежде всего, следует выделить использование наноинструментов для изучения мозга, а также — его компьютерного моделирования. Существующие внешние методы сканирования мозга не обеспечивают достаточной глубины и разрешения. Безусловно, существует огромный потенциал для улучшения их характеристик, но разрабатываемые во многих ведущих лабораториях роботы размером до 100 нм (нанороботы) представляются наиболее технически простым путем изучения деятельности отдельных нейронов и даже их внутриклеточных структур.
Когнитивная наука станет базой для усовершенствования мыслительной деятельности мозга, причем для этого будут применяться нанотехнология, биотехнология, инфотехнологии. Особое значение сыграют нанотехнологии. Манипулирование атомами позволит произвести нанореволюцию как в производстве, так и в обществе.

Принимая во внимание взаимосвязи, а также в целом междисциплинарный характер современной науки, можно даже говорить об ожидаемом в перспективе слиянии NBIC областей в единую научно-технологическую область знания.

В целом, можно говорить о том, что развивающийся на наших глазах феномен NBIC -конвергенции представляет собой радикально новый этап научно-технического прогресса. По своим возможным последствиям NBIC -конвергенция является важнейшим эволюционно-определяющим фактором и знаменует собой начало трансгуманистических преобразований, когда сама по себе эволюция человека, надо полагать, перейдет под его собственный разумный контроль.
Особенностями NBIC-конвергенции являются:
1) интенсивное взаимодействие между научными и технологическими областями;
2) широта рассмотрения и влияния — от атомарного уровня материи до разумных систем;
3) технологическая перспектива роста возможностей развития человека.

4) – значительный синергетический эффект;

В результате конвергенции уже возникли новые направления: наномедицина, нанолекарства, нанобиология, нанообщество. Возникла также когнитивная наука (или когнитология) — это новая наука о разуме человека. Она объединяет в себе достижения когнитивной психологии, педагогики, исследований в сфере искусственного интеллекта, нейробиологии,нейропсихологии, нейрофизиологии, лингвистики, математической логики, неврологии, философии, и других наук. Следует подчеркнуть, что когнитология сейчас конвергирует, подобно инфотехнологии, во многие другие науки

Своему возникновению он обязан тому пути, по которому пошло научно-техническое развитие в последние десятилетия. Веками научные знания тяготели к специализации: по мере своего развития отдельные разделы научной дисциплины становились самостоятельными науками, такими как гидродинамика, ядерная физика, нефтехимия, цитология и т.п. А вот технологии, наоборот, часто возникали взаимосвязано и способствовали развитию друг друга, яркий пример – открытие электричества, которое послужило толчком к развитию сразу нескольких отраслей, от энергетики и машиностроения до транспорта и строительства.

Надо отметить, что сегодня не все элементы NBIC-конвергенции равнозначны. Наиболее развитая часть – информационно-коммуникационные технологии. Именно сфера ИТ-технологий обеспечивает другие составляющие конвергенции большей частью необходимого инструментария. В частности, это возможность компьютерного моделирования различных процессов и работы с большими массивами данных (например, при секвенировании генома).

Нанотехнологии, в свою очередь, способствуют появлению, наномедицины: комплекса технологий, позволяющих управлять биологическими процессами на молекулярном уровне.

Генри Маркрэм (Henry Markram), лидер проекта Blue Brain – одного из первых шагов к компьютерному моделированию мозга

В целом же взаимосвязь нано- и биотехнологии носит фундаментальный характер. При рассмотрении живых (биологических) структур на молекулярном уровне становится очевидной их химическая природа, и можно сказать, что на микроуровне различие между живым и неживым не очевидно. Разрабатываемые же в настоящее время гибридные системы (микроробот со жгутиком бактерии в качестве двигателя) не отличаются принципиально от естественных (вирус) или искусственных систем.

Взаимодействие между нанотехнологиями и информационными технологиями носит двусторонний характер. Информационные технологии используются для компьютерной симуляции наноустройств. И в то же время, нанотехнологии применяют для создания более мощных вычислительных и коммуникационных устройств.

Но самым важным в этом взаимодействии является его синергетичиский характер, когда взаимодействие в одной из плоскостей ускоряет развитие остальных. Созданные с помощью наноматериалов более мощные компьютеры делают возможным более сложное моделирование, ведущее к созданию новых био- и нанотехнологий и т.д.

В результате все более тесного взаимодействия этих составляющих, уже к середине века можно ожидать их полного слияния в единую научно-технологическую область знания. Она будет включать в предмет своего изучения почти все уровни организации материи: от молекулярной природы вещества (нано), до природы жизни (био), природы разума (когно) и процессов информационного обмена (инфо).

Но помимо фундаментальных технологических сдвигов NBIC-конвергенция несет человечеству ряд значительных изменений мировоззренческого характера, и нашей цивилизации предстоит еще найти ответы на эти вызовы.

Прежде всего, это вопрос о различии между живым и неживым. На самом деле, эта проблема стала формироваться относительно давно, когда потребовалось определить природу вирусов. После открытия прионов – сложных органических молекул, способных к размножению, – граница между живым и неживым стала еще более размытой. Развитие био- и нанотехнологий грозит полностью стереть эту грань.

Также постепенно стирается различие между мыслящей системой, обладающей разумом и свободой воли, и жестко запрограммированной. Нейрофизиологи уже рассматривают человеческий мозг как биологическую машину: гибкую, но программируемую. Уже показано, что человеческие способности (такие, как распознавание лиц, постановка целей и т.п.) носят локализованный характер и могут быть включены или выключены вследствие органических повреждений определенных участков мозга или ввода в организм определенных веществ.

Читайте также: