Микроконтроллеры в повседневной жизни доклад кратко

Обновлено: 18.05.2024

Практически в любой современной электронной технике можно найти микроконтроллеры. Столь широкое применение этих микросхем обусловлено чрезвычайно удачным сочетанием низкой стоимости, миниатюрных габаритов, высокой надёжности и огромным набором выполняемых функций. Что в сочетании с возможностью адаптации микроконтроллеров к работе в конкретном устройстве определило их повсеместное распространение в любой технике.

Микроконтроллер представляет собой объединение в одном чипе арифметически-логического устройства (АЛУ) с функцией запоминания и хранения данных (под данными подразумевается как набор входных данных для АЛУ, так и собственно управляющие программы), а также с набором периферийных устройств.

Микроконтроллеры применяются в самых разных областях. Например, все пылесосы karcher построены на микроконтроллерах, поэтому они, с одной стороны, реализуют сложные функции, с другой – очень просты в управлении. Пользователю достаточно установить переключатель в необходимое положение, а уж микроконтроллер сам будет управлять внутренними устройствами пылесоса в соответствии с выбранным режимом.

С тем же успехом микроконтроллеры применяются в бытовых водонагревателях. Например, в обычном проточном агрегате температура воды сильно зависит от её расхода. Применение микроконтроллеров позволило устранить этот эффект. С помощью датчиков расходомера микроконтроллер получает информацию о температуре воды на входе и об интенсивности расхода воды. В зависимости от этих данных и заданной температуры он управляет мощностью нагревания теплоэлемента (ТЭНа).
При необходимости микроконтроллер осуществляет цифровую индикацию заданной или текущей температуры воды. Кроме варьирования мощности нагревания, можно регулировать поток воды через водонагреватель и подмешивать к нему холодную воду в обход водонагревателя (через байпас). Степень открытия вентилей водонагревателя и байпаса задаётся микроконтроллером посредством электрических сервоприводов. Однако мощность водонагревателя подобного типа составляет не менее 15-20 кВ. И не в каждой квартире его возможно установить. Приняв решение купить водонагреватели проточного типа , стоит помнить об этом существенном моменте.
За счет того, что производитель способен перепрограммировать микроконтроллер, он может позволить себе не вносить никаких принципиальных изменений в устройство продукции. Достаточно, например, купить кондиционеры в магазине , чтобы получить несколько устройств, заключенных в одном корпусе (обогреватель, вентилятор, охладитель).

Использование современных микроконтроллеров позволяет шагнуть дальше и без особых затрат и изменений в конструкции кондиционера добавить ряд новых функций: осушение, очистка воздуха, поддержание выбранной температуры в помещении, управление скоростью вентилятора как в ручном, так и в автоматическом режиме. Чем больше температура в помещении отличается от заданной, тем выше скорость вращения лопастей вентилятора, что позволяет быстрее достичь заданных параметров.

Многие режимы стало возможно реализовать только с появлением микроконтроллеров, поскольку на старой элементной базе их воплощение получилось бы слишком сложным, дорогим и ненадежным. Кроме того, микроконтроллеры позволяют создавать распределенные сети устройств, связанных в одну систему. Ее функционирование как единого целого обеспечивается коммуникационными возможностями периферийных устройств микроконтроллеров.


Микроконтроллеры (старое красивое название — однокристалльные микро-ЭВМ) в настоящее время имеют невероятно много областей применения. От промышленной автоматики до бытовых приборов, от управления ядерными станциями до детских игрушек, от секретных военных систем до переключения каналов в вашем радиоприемнике. Одним словом, проще перечислить, где они не применяются.

Изобретение и дальнейшее развитие микроконтроллеров произвело настоящую революцию в цифровой электронике. Изменились не только схемотехника и элементная база, но и сами принципы построения систем. Значительные изменения претерпел цикл разработки. Появились целые классы устройств, существование которых было бы невозможно без контроллеров.

Но у всякой технологии, как бы хороша она не была, всегда есть обратная сторона. Сюда относятся незаметные на первый взгляд трудности; проблемы, порождаемые новым подходом; ограничения, с которыми приходится считаться. Новые возможности, которые предоставляет технология, могут найти самые неожиданные применения, и не всегда направленные во благо.

Эта статья имеет целью дать обзорную оценку как положительных, так и отрицательных аспектов повсеместного применения микроконтроллеров.

Упрощение схемотехники

Если сравнивать схемотехнику устройств на жесткой логике и на контроллерах, то последняя намного проще. При разработке требуется только определить, из каких функциональных блоков будет состоять устройство, какими интерфейсами их объединить, и какую элементную базу выбрать. Вместо составления схемы будущего устройства из отдельных деталей теперь применяется блочное проектирование. Микроконтроллер позволяет на одном кристалле создать законченный блок, а то и несколько.

Реализация всех алгоритмов работы — теперь задача программы контроллера, а написание программы гораздо менее трудоемко, чем синтез цифровой схемы. С ростом сложности задач это преимущество становится все более явным. Растущий размер программного кода компенсируется его структурированностью, а также введением дополнительных уровней абстракции. Широко применяются встраиваемые ОС и стандартные библиотеки, что позволяет разделить код, работающий с аппаратурой, и код, задающий поведение и алгоритмы.

Унификация


Разделение программной и аппаратной части позволило унифицировать элементную базу. Один и тот же контроллер может применяться для создания множества различных устройств. Унификация приводит к снижению стоимости производства. Экономически выгодно производить несколько десятков видов контроллеров вместо сотни разновидностей логических микросхем (и тысячи специализированных).

Несколько разных по функциональности устройств могут иметь одну и ту же схему, а различаться лишь программой. Наиболее ярким примером могут служить промышленные ПЛК (программируемые логические контроллеры). Они собираются из стандартных модулей: устройств ввода, устройств вывода, вычислительных и интерфейсных модулей. За взаимодействие модулей между собой и алгоритмы работы системы в целом отвечает программная часть. Таким образом, из небольшого набора стандартных блоков можно построить любую необходимую систему.

Простота внесения изменений


Для того, чтобы изменить алгоритм работы схемы на жесткой логике, необходимо соединить ее элементы в другом порядке, удалить часть из них или добавить новые. Часто это можно сделать только в процессе макетирования, а когда устройство уже готово, единственный способ внести изменения — выпустить новую версию.

Микроконтроллер в этом отношении дает гораздо больше гибкости. Для внесения изменений в алгоритм работы устройства достаточно загрузить новую прошивку. Большая часть современной электроники поддерживает перепрошивку в условиях сервис-центра, а зачастую даже пользователем. В наши дни вы можете легко обновить ПО своего телефона, принтера или фотоаппарата. В недалеком будущем вы сможете проделать то же самое, скажем, со стиральной машиной или кофеваркой. По мере того, как все больше устройств получают возможность доступа к сети, логично ожидать распространения механизма автообновлений, подобно тому, который применяется сегодня для компьютерных программ.

Если положительные аспекты повсеместного применения микроконтроллеров очевидны и не требуют подробного рассмотрения, то проблемы, связанные с ним, спрятаны глубже и незаметны на первый взгляд.

Снижение надежности

Чем из большего числа элементов состоит система, тем вероятнее возникновение отказа какого-нибудь из них. В этом отношениии интегральная схема контроллера, содержащая миллионы транзисторов, на первый взгляд проигрывает жесткой логике, где всего несколько сот транзисторов на кристалл. Однако уровень надежности в микроэлектронике сегодня достаточно высок. Все кристаллы, вызывающие подозрения, отбракованы еще на этапе производства. Более слабыми местами являются печатные платы, соединения микросхем между собой и пассивные элементы. Таким образом, по частоте отказов, вызванных внутренними причинами, микроконтроллерные схемы даже выигрывают.

Проигрывают они по устойчивости к сбоям. Сбои, как правило, вызываются внешними воздействиями: температурой, электромагнитными помехами, радиацией. Особенно чувствительны контроллеры к электромагнитным воздействиям, которые вызывают зависания и самопроизвольные перезагрузки. Для обеспечения помехозащищенности микроконтроллерных схем требуются специальные меры: разделение шин питания, сторожевые таймеры, дополнительные слои металлизации на плате и т.п. Подробнее — см. [1].

Часто источником сбоев становится плохо отлаженная прошивка. Или же причина ненадежной работы лежит на стыке программной и аппаратной части. Например, многократная запись в одну и ту же ячейку flash-памяти рано или поздно приводит к исчерпанию ресурса ячейки, и данные начинают повреждаться. Микроконтроллер может обеспечить уровень надежности, необходимый для большинства задач, но только при грамотном подходе к проектированию. Об этом, кстати, стоит сказать отдельно.

Кажущаяся простота разработки


Прежде чем заниматься разработкой электроники, необходимо накопить значительную сумму знаний. Схемотехника цифровых устройств — это довольно объемный институтский курс. Плюс желательно знать электротехнику, основы аналоговой схемотехники и дискретную математику. Одним словом, порог входа для разработки электронных схем достаточно высок.

Точно также низок порог входа для разработки устройств на контроллерах. Сейчас полно отличных Arduino-подобных комплектов, огромный выбор периферийных модулей к ним, осталось потратить тот самый вечер на освоение IDE (среды разработки) — и можно приступать к своему первому проекту.

Функциональная перегруженность и неудобные интерфейсы

Шутка с долей правды.

Недокументированные функции

Проанализировав схему устройства на жесткой логике, можно восстановить весь алгоритм его работы. Проделать то же самое с микроконтроллерным устройством на порядок сложнее. Прежде всего, нужно извлечь прошивку, что возможно далеко не всегда, современные контроллеры имеют неплохую защиту. Полученный файл нужно затем дизассемблировать, деобфусцировать, и только потом проводить анализ.

А вы уверены, что прямо сейчас ваша микроволновка не следит за вами? :)


В ходе чтения этой статьи, особенно второй её части, может сложиться впечатление, что я призываю отказаться от широкого использования контроллеров. Это ни в коем случае не так. Во-первых, технический прогресс невозможно повернуть вспять. Во-вторых, для многих задач контроллеры — единственная альтернатива, и заменить их нечем. И, наконец, в-третьих, описанные негативные аспекты никоим образом не перевешивают достоинств микроконтроллера.

Основной вывод, который хотелось бы сделать — а он подходит для любой технологии — необходимо умело пользоваться преимуществами, которые дает эта технология, но не забывать об их оборотной стороне. Благодарю за внимание, и да пребудет с вами Сила!

Литература

Применение микроконтроллеров

Что такое микроконтроллер

Микроконтроллер — это специальная микросхема, предназначенная для управления различными электронными устройствами. Микроконтроллеры впервые появились в том же году, что и микропроцессоры общего назначения (1971). Разработчики микроконтроллеров придумали – объединить процессор, память, ПЗУ и периферию внутри одного корпуса, внешне похожего на обычную микросхему. С тех пор производство микроконтроллеров ежегодно во много раз превышает производство процессоров, а потребность в них не снижается.

Применение микроконтроллеров

В силу того, что нынешние микроконтроллеры обладают достаточно высокими вычислительными мощностями, позволяющими лишь на одной маленькой микросхеме реализовать полнофункциональное устройство небольшого размера, притом с низким энергопотреблением, стоимость непосредственно готовых устройств становится все ниже.

По этой причине микроконтроллеры можно встретить всюду в электронных блоках совершенно разных устройств: на материнских платах компьютеров, в контроллерах DVD-приводов, жестких и твердотельных накопителей, в калькуляторах, на платах управления стиральных машин, микроволновок, телефонов, пылесосов, посудомоечных машин, внутри домашних роботов, программируемых реле, в модулях управления станками и т.д.

Применение микроконтроллеров

Применение микроконтроллеров в программируемых реле

Так или иначе, практически ни одно современное электронное устройство не может обойтись сегодня без хотя бы одного микроконтроллера внутри себя.

Вот краткий список периферии микроконтроллеров, из которого вы можете сделать выводы о возможных сферах и доступных областях применимости этих крохотных микросхем:

  • универсальные цифровые порты, настраиваемые либо на ввод, либо на вывод
  • разнообразные интерфейсы ввода-вывода: UART, SPI, I²C, CAN, IEEE 1394, USB, Ethernet
  • цифро-аналоговые и аналого-цифровые преобразователи
  • компараторы
  • широтно-импульсные модуляторы (ШИМ-контроллер)
  • таймеры
  • контроллеры бесколлекторных (и шаговых) двигателей
  • контроллеры клавиатур и дисплеев
  • радиочастотные передатчики и приемники
  • массивы интегрированной флеш-памяти
  • встроенные сторожевой таймер и тактовый генератор

Как вы уже поняли, микроконтроллером называется небольшого размера микросхема, на кристалле которой смонтирован крохотный компьютер. Это значит, что внутри небольшого чипа есть и процессор, и ПЗУ, и ОЗУ, и периферийные устройства, которые способны взаимодействовать как между собой, так и со внешними компонентами, достаточно лишь загрузить в микросхему программу.

Применение микроконтроллеров

Применение микроконтроллеров

Программа обеспечит работу микроконтроллера по назначению — он сможет по правильному алгоритму управлять окружающей его электроникой (в частности: бытовой техникой, автомобилем, ядерной электростанцией, роботом, солнечным трекером и т. д.).

Тактовая частота микроконтроллера (или скорость шины) отражает то, сколько вычислений сможет выполнить микроконтроллер за единицу времени. Так, производительность микроконтроллера и потребляемая им мощность с повышением скорости шины увеличиваются.

Измеряется производительность микроконтроллера в миллионах инструкций в секунду — MIPS (Million Instruсtions per Second). Так, популярный контроллер Atmega8, выполняя одну полноценную инструкцию за один такт, достигает производительности 1 MIPS на МГц.

Применение микроконтроллеров

Микроконтроллер Atmega8

При этом современные микроконтроллеры разных семейств настолько универсальны, что один и тот же контроллер способен, будучи перепрограммирован, управлять совершенно разнородными устройствами. Невозможно ограничиться одной областью.

Пример такого универсального контроллера — тот же Atmega8, на котором собирают: таймеры, часы, мультиметры, индикаторы домашней автоматики, драйверы шагового двигателя и т.д.

Среди популярных производителей микроконтроллеров отметим: Atmel, Hitachi, Intel, Infineon Technologies, Microchip, Motorola, Philips, Texas Instruments.

Советы по выбору микроконтроллеров

При разработке цифровой системы требуется сделать правильную модель микроконтроллера. Главной целью является подбор недорого контроллера для уменьшения общей стоимости всей системы. Однако, необходимо, чтобы он соответствовал специфике системы, требованиям надежности, производительности и условиям использования.

Основными факторами подбора микроконтроллера являются:

  1. Способность работы с прикладной системой. Возможность реализации этой системы на однокристальном микроконтроллере, или на специализированной микросхеме.
  2. Наличие в микроконтроллере необходимого количества портов, контактов, так как при их нехватке он не будет способен выполнить задачу, а если будут лишние порты, то стоимость будет завышена.
  3. Наличие необходимых устройств периферии: различных преобразователей, интерфейсов связи.
  4. Наличие других вспомогательных устройств, ненужных для работы, из-за которых повышается стоимость.
  5. Обеспечение требуемой производительности: мощность вычислений, дающую возможность обработки запросов системы на определенном прикладном языке программирования.
  6. Имеется ли в проекте бюджета достаточно финансов, чтобы применять дорогостоящий микроконтроллер. Если он не подходит по цене, то остальные вопросы не имеют смысла, и разработчик должен искать другой микроконтроллер.
  7. Надежность завода изготовителя.
  8. Информационная поддержка.
  9. Доступность. В этот фактор входят следующие пункты:
  • Выпускается ли в настоящее время.
  • Наличие поддержки разработчика.
  • Наличие языков программирования, внутрисхемных эмуляторов, средств отладки и компиляторов.

Микроконтроллеры, введение

Про микроконтроллеры для начинающих - история создания, основные виды и различия

Про микроконтроллеры для начинающих

Микроконтроллеры являются неотъемлемой частью быта современного человек. Применяются от детских игрушек до АСУТП. Благодаря использованию микроконтроллеров, инженерам получилось достигнуть большую скорость изготовления и качество продукции практических во всех сферах производства.

Данный материал является общим обзором ключевых дат в истории развития микроконтроллеров. Это не техническое пособие, многие тонкости и моменты упущены.

Предпосылки для появления микропроцессорных и микроконтроллерных систем

Чтобы разобраться с причинами появления и развития микропроцессорной техники взгляните на характеристики и особенности первых компьютеров. ENIAC – первый компьютер, 1946 год. Вес – 30 т, занимал целое помещение или 85 кубических метров объёма в пространстве. Большое тепловыделение, энергопотребление, постоянные неполадки из-за разъёмов электронных ламп. Окислы приводили к исчезновению контактов и лампы теряли связь с платой. Требовали постоянного обслуживания.

ENIAC – первый компьютер

Компьютерная техника развивалась и к концу 60-х в мире их было порядка 30 тысяч, в их числе как универсальные ЭВМ, так и мини-компьютеры. Мини – того времени были размерами со шкаф.

Кстати, в 1969 году уже был изобретен прообраз интернета - ARPANET (англ. Advanced Research Projects Agency Network).

Параллельно развивались полупроводниковые технологии - в 1907 работы по детекторам и электролюминесценции полупроводников. В 1940-е диоды и транзисторы. Это всё привело к появлению интегральных технологий. Роберт Нойс в 1959 году изобрел интегральную микросхему (дальше ИМС или МС).

Важно:

Фирма Intel – внесла огромный вклад в развитие микроконтроллеров. Основатели: Роберт Нойс, Гордон Мур и Эндрю Гроув. Основана в 1968 году.

Intel 3101

Intel 4004

Архитектура, программирование, физическая реализация

Разработчиком архитектуры первого микропроцессора стал – Тед Хофф, системы команд – Стен Мейзор. Федерико Феджин – спроектировал кристалл. Но изначально компания Intel не владела всеми правами на этот чип, и, заплатив 60 000 долларов компании Busicom, получила полные права. Вскоре, последняя обанкротилась.

Для популяризации и внедрения новых технологи Intel вела как рекламную, так и образовательную кампанию.

Впоследствии и другие производители электроники объявляли о создании подобных устройств.

Это интересно:

4004 – 4-разрядная, p-МОП микросхема.

8008

Событие:

8080

До нашего времени сохраняется противостояние семейств микропроцессоров этих производителей.

Один из первых персональных компьютеров

Микроконтроллеры

А первый патент в СССР на однокристальные микро-ЭВМ был выдан в 1971 году М. Кочрену и Г. Буну, из Texas Instruments. С этих пор на кристалле кремния кроме процессора размещали еще память, и дополнительные устройства.

Конец семидесятых – это новая волна конкуренции между Intel и Motorola. Причиной этому стали две презентации, а именно в 76 году Intel выпустила i8048, а Motorola, только в 78 – mc6801, который был совместим с раним микропроцессором mc6800.

mc6803

Спустя 4 года, к 80 году, Intel выпускает популярны и до сих пор МК i8051. Это было зарождение огромного семейства, которое живет и до сих пор. Ведущие мировые производители выпускают на этой архитектуры сильно модифицированные микроконтроллеры для широкого спектра задач.

Для своего времени он имел немыслимые 128 000 транзисторов. Это в четыре раза превосходило количество в i8086 процессоре.

МК i8051

В 2020 году, и последние десятилетие наиболее распространены следующие виды микроконтроллеров:

16-битные MSP430 фирмы TI;

32-битные микроконтроллеры, архитектуры ARM. Она продаётся разработчиками различным фирмам, на базе которой выпускается масса различных продуктов.

Микроконтроллер ARM

Различия микроконтроллеров

Микроконтроллеры можно разделить по таким критериям:

Разрядность – это длина одного слова обрабатываемого контроллером или процессором, чем она больше, тем быстрее микроконтроллер может обработать большие массивы данных, но такой подход не всегда справедлив, для каждой задачи выдвигаются индивидуальные требования, как по скорости, так и по способу обработку, например, применение 32-х разрядного ARM микропроцессор для работы в простых устройствах, оперирующих с 8 битным словами может быть не обосновано как по удобству написания программы и обработки информации, так и по себе стоимость.

Однако, по статистике на 2017 год, стоимость таких контроллеров активно снижается, и, если так будет продолжаться и далее – он будет дешевле простейших PIC контроллеров, при наличии гораздо большем наборе функций. Не понятно только одно – это маркетинговый ход и занижение цены, или реальный технологический прогресс.

Деление происходит на:

Деление по типу системы команд:

RISC-архитектура, или сокращенная система команд. Ориентирована на быстрое выполнение базовых команд за 1, реже 2 машинных цикла, а также имеет большое количество универсальных регистров, и более длинный способ доступа к постоянной памяти. Архитектурна характерна для систем под управление UNIX;

СISC-архитектура, или полная система команд, характерна прямая работа с памятью, большее число команд, малое число регистров (ориентирована на работу с памятью), длительность команд от 1 до 4 машинных циклов. Пример – процессоры Intel.

Микроконтроллер в радиолюбительском творчестве

Деление по типу памяти:

Архитектура Фон-Неймана – основная черта общая область памяти для команд и данных, при работе с такой архитектурой в результате ошибки программиста данные могут записаться в область памяти программ и дальнейшее выполнение программы станет невозможным. Пересылка данных и выборка команды не может осуществляться одновременно по тем же причинам. Разработана в 1945 году.

Гарвардская архитектура – раздельная память данных и память программ, использовалась в первые на компьютерах семейства Mark. Разработана в 1944 году.

Выводы

В результате внедрения микропроцессорных систем размеры устройств снизились, а функционал увеличился. Выбор архитектуры, разрядности, системы команд, структуры памяти – влияет на конечную стоимость устройства, поскольку при единичном производстве разница в цене может быть не значительно, но при тиражировании – более чем ощутимой.

Про микроконтроллеры для начинающих

Пошаговое обучение программированию и созданию устройств на микроконтроллерах AVR

У электронщиков, специализирующихся на проектировании микроконтроллерных устройств, существует термин "быстрый старт " . Относится он к случаю, когда надо в короткий срок опробовать микроконтроллер и заставить его выполнять простейшие задачи.

Цель состоит в том, чтобы, не углубляясь в подробности, освоить технологию программирования и быстро получить конкретный результат. Полное представление, навыки и умения появятся позже в процессе работы.

Освоить работу с микроконтроллерами в режиме "быстрый старт", научиться их программировать и создавать различные полезные умные электронные устройства можно легко с помощью обучающих видеокурсов Максима Селиванова в которых все основные моменты разложены по полочкам.

Методика быстрого изучения принципов работы с микроконтроллерами основывается на том, что достаточно освоить базовую микросхему, чтобы затем достаточно уверенно составлять программы к другим ее разновидностям. Благодаря этому первые опыты по программировании микроконтроллеров проходят без особых затруднений. Получив базовае знания можно приступать к разработке собственных конструкций.

На данный момент у Максима Селиванова есть 4 курса по созданию устройств на микроконтроллерах, построенные по принципу от простого к сложному.

Программирование микроконтроллеров на языке Си

Курс для тех, кто уже знаком с основами электроники и программирования, кто знает базовые электронные компоненты, собирает простые схемы, умеет держать паяльник и желает перейти на качественно новый уровень, но постоянно откладывает этот переход из-за сложностей в освоении нового материала.

Курс замечательно подойдет и тем, кто только недавно предпринял первые попытки изучить программирование микроконтроллеров, но уже готов все бросить от того, что у него ничего не работает или работает, но не так как ему нужно (знакомо?!).

Курс будет полезен и тем, кто уже собирает простенькие (а может и не очень) схемы на микроконтроллерах, но плохо понимает суть того как микроконтроллер работает и как взаимодействует с внешними устройствами.

Курс посвящен обучению программирования микроконтроллеров на языке Си. Отличительная особенность курса - изучение языка на очень глубоком уровне. Обучение происходит на примере микроконтроллеров AVR. Но, в принципе, подойдет и для тех, кто использует другие микроконтроллеры.

Курс рассчитан на подготовленного слушателя. То есть, в курсе не рассматриваются базовые основы информатики и электроники и микроконтроллеров. Но, что бы освоить курс понадобятся минимальные знания по программированию микроконтроллеров AVR на любом языке. Знания электроники желательны, но не обязательны.

Курс идеально подойдет тем, кто только начал изучать программирование AVR микроконтроллеров на языке С и хочет углубить свои знания. Хорошо подойдет и тем, кто немного умеет программировать микроконтроллеры на других языках. И еще подойдет обычным программистам, которые хотят углубить знания в языке Си.

Этот курс для тех, кто не хочет ограничиваться в своем развитии простыми или готовыми примерами. Курс отлично подойдет тем, кому важно создание интересных устройств с полным пониманием того, как они работают. Курс хорошо подойдет и тем, кто уже знаком с программированием микроконтроллеров на языке Си и тем, кто уже давно программирует их.

Материал курса прежде всего ориентирован на практику использования. Рассматриваются следующие темы: радиочастотная идентификация, воспроизведение звука, беспроводной обмен данными, работа с цветными TFT дисплеями, сенсорным экраном, работа с файловой системой FAT SD-карты.

Дисплеи NEXTION представляют собой программируемые дисплеи с тачскрином и UART для создания самых разных интерфейсов на экране. Для программирования используется очень удобная и простая среда разработки, которая позволяет создавать даже очень сложные интерфейсы для различной электроники буквально за пару вечеров! А все команды передаются через интерфейс UART на микроконтроллер или компьютер. Материал курса составлен по принципу от простого к сложному.

Этот курс рассчитан на тех, кто хотя бы немного имеет опыта в программировании микроконтроллеров или arduino. Курс отлично подойдет и для тех, кто уже пытался изучать дисплеи Nextion . Из курса вы узнаете много новой информации, даже если думаете, что хорошо изучили дисплей!

NEXTION

Полный курс обучения программированию микроконтроллеров со скидкой: Все 4 курса со скидкой

Читайте также: