Методы биомеханических исследований и контроля в физическом воспитании и спорте доклад

Обновлено: 02.07.2024

1. Методы биомеханических исследований и контроля в физическом воспитании и спорте.

2. Шкалы измерений и единицы измерений.

3. Биомеханические характеристики.

4. Количественная оценка технико-тактического мастерства. Точность измерений.

5. Тестирование и педагогическое оценивание.

6. Автоматизация биомеханического контроля. Датчики биомеханических характеристик. Телеметрия и методы регистрации биомеханических характеристик.

1. Двигательное мастерство человека, его умение в любых условиях двигаться быстро, точно и красиво, зависит от уровня физической, технической, тактической, психологической и теоретической подготовленности.

Для совершенствования двигательного мастерства и даже для сохранения его на прежнем уровне необходим контроль за каждым из названных факторов.

Объектом биомеханического контроля служит моторика человека, то есть двигательные (физические) качества и их проявления. Это означает, что в итоге биомеханического контроля мы получаем сведения:

- о технике двигательных действий и тактике двигательной деятельности;

- о выносливости, силе, быстроте, ловкости и гибкости, должный уровень которых является необходимым условием высокого технико-тактического мастерства.

Процедура биомеханического контроля соответствует следуещей схеме:

Контроль = тестирование + оценивание результатов

2. Шкалой измерения называется последовательность величин, позволяющая установить соответствие между характеристиками изучаемых объектов и числами. При биомеханическом контроле чаще всего используют шкалы наименований, отношений и порядка.

Шкала наименований – самая простая из всех. В этой шкале числа, буквы, слова и другие условные обозначения выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов.

Шкала порядка возникает, когда составляющие шкалу числа упорядочены по рангам, но интервалы между рангами нельзя точно измерить.

Шкала отношений самая точная. В ней числа не только упорядочены по рангам, но иразделены равными интервалами – единицами измерения.

3. Биомеханическими характеристиками называются показатели, используемые для количественного описания и анализа двигательной деятельности. Все биомеханические характеристики делятся на кинематические, динамические и энергетические.

Биомеханические характеристики описывают поступательные и вращательные движения.

Кинематические – перемещение, длительность, скорость, ускорение.

Динамические – масса, сила, импульс силы, количество движения, момент инерции, момент силы, импульс момента силы, кинетический момент.

Энергетические – работа, энергия, мощность, экономичность, энергетическая стоимость.

4. Технико-тактическое мастерство человека предопределяют:

- объём техники и тактики;

- разносторонность техники и тактики;

- эффективность и рациональность техники и тактики;

- освоенность техники и тактики.

Объёмом техники называется совокупность технических приёмов, которыми владеет человек.

Объём тактики – совокупность тактических вариантов, которыми владеет спортсмен или спортивный коллектив.

Для контроля за объёмом техники и тактики служат шкалы наименований.

Техника называется разносторонней, если в объёме техники в равной мере представлены технические приёмы из различных групп. И тактика является разносторонней только в том случае, если в объём тактики входят тактические варианты из разных групп.

Эффективность техники двигательных действий и эффективность тактики двигательной деятельности – это степень соответствия техники и тактики конкретного человека избранному критерию оптимальности.

Рациональным называется тот вариант техники или тактики, который является наилучшим для большинства людей в той или иной возрастной или квалификационной группе.

Результат измерений всегда содержит погрешность, величина которой тем меньше, чем точнее метод измерений и измерительный прибор.

Различают абсолютную и относительную погрешности измерения.

Погрешности измерения бывают систематическими и случайными.

5. В биомеханике тестированием называется контрольное испытание человека, осуществляемое для определения его технической и тактической подготовленности.

Качество теста зависит от его информативности и надёжности.

Информативность показывает, в какой мере тест пригоден для оценки интересующего нас явления.

Различают информативность содержательную и эмпирическую.

Коэффициент информативности – это коэффициент корреляции между результатами тестирования и результатами измерения критерия информативности.

Надёжность теста – это степень совпадения результатов многократного тестирования одних и тех же людей в одних и тех же условиях.

Педагогическое оценивание – завершающий этап процедуры тестирования.

При педагогическом оценивании используют перцентильные шкалы.

6. Датчик – первое звено измерительной системы.

Для регистрации биомеханических характеристик создано множество средств регистрации отдельных параметров движений. Среди них – самые разнообразные датчики: механические, ёмкостные, электроконтактные, магнитоэлектрические, потенциометрические, биоэлектрические устройства, сейсмодатчики, тензодатчики, пьезодатчики, акселерометрические датчики и др. Передача сигналов может осуществляться механическим путём, электропроводной системой, сейсмографически, акустически, фотографически и радиотелеметрически.

Так же разнообразны регистрирующие приборы – начиная от секундомера и измерительной линейки и кончая электронным осциллографом. Всё чем располагает современная техника и радиоэлектроника, может быть использовано в роли средств срочной информации о параметрах спортивных движений.

Для того чтобы использовать информацию от биомеханических датчиков, её нужно передавать по телеметрическому каналу и зарегистрировать.

Выделяют: проводную телеметрию, радиотелеметрию.

1. Методы биомеханических исследований и контроля в физическом воспитании и спорте.

2. Шкалы измерений и единицы измерений.

3. Биомеханические характеристики.

4. Количественная оценка технико-тактического мастерства. Точность измерений.

5. Тестирование и педагогическое оценивание.

6. Автоматизация биомеханического контроля. Датчики биомеханических характеристик. Телеметрия и методы регистрации биомеханических характеристик.

1. Двигательное мастерство человека, его умение в любых условиях двигаться быстро, точно и красиво, зависит от уровня физической, технической, тактической, психологической и теоретической подготовленности.

Для совершенствования двигательного мастерства и даже для сохранения его на прежнем уровне необходим контроль за каждым из названных факторов.

Объектом биомеханического контроля служит моторика человека, то есть двигательные (физические) качества и их проявления. Это означает, что в итоге биомеханического контроля мы получаем сведения:

- о технике двигательных действий и тактике двигательной деятельности;

- о выносливости, силе, быстроте, ловкости и гибкости, должный уровень которых является необходимым условием высокого технико-тактического мастерства.

Процедура биомеханического контроля соответствует следуещей схеме:

Контроль = тестирование + оценивание результатов

2. Шкалой измерения называется последовательность величин, позволяющая установить соответствие между характеристиками изучаемых объектов и числами. При биомеханическом контроле чаще всего используют шкалы наименований, отношений и порядка.

Шкала наименований – самая простая из всех. В этой шкале числа, буквы, слова и другие условные обозначения выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов.

Шкала порядка возникает, когда составляющие шкалу числа упорядочены по рангам, но интервалы между рангами нельзя точно измерить.

Шкала отношений самая точная. В ней числа не только упорядочены по рангам, но иразделены равными интервалами – единицами измерения.

3. Биомеханическими характеристиками называются показатели, используемые для количественного описания и анализа двигательной деятельности. Все биомеханические характеристики делятся на кинематические, динамические и энергетические.

Биомеханические характеристики описывают поступательные и вращательные движения.

Кинематические – перемещение, длительность, скорость, ускорение.

Динамические – масса, сила, импульс силы, количество движения, момент инерции, момент силы, импульс момента силы, кинетический момент.

Энергетические – работа, энергия, мощность, экономичность, энергетическая стоимость.

4. Технико-тактическое мастерство человека предопределяют:

- объём техники и тактики;

- разносторонность техники и тактики;

- эффективность и рациональность техники и тактики;

- освоенность техники и тактики.

Объёмом техники называется совокупность технических приёмов, которыми владеет человек.

Объём тактики – совокупность тактических вариантов, которыми владеет спортсмен или спортивный коллектив.

Для контроля за объёмом техники и тактики служат шкалы наименований.

Техника называется разносторонней, если в объёме техники в равной мере представлены технические приёмы из различных групп. И тактика является разносторонней только в том случае, если в объём тактики входят тактические варианты из разных групп.

Эффективность техники двигательных действий и эффективность тактики двигательной деятельности – это степень соответствия техники и тактики конкретного человека избранному критерию оптимальности.

Рациональным называется тот вариант техники или тактики, который является наилучшим для большинства людей в той или иной возрастной или квалификационной группе.

Результат измерений всегда содержит погрешность, величина которой тем меньше, чем точнее метод измерений и измерительный прибор.

Различают абсолютную и относительную погрешности измерения.

Погрешности измерения бывают систематическими и случайными.

5. В биомеханике тестированием называется контрольное испытание человека, осуществляемое для определения его технической и тактической подготовленности.

Качество теста зависит от его информативности и надёжности.

Информативность показывает, в какой мере тест пригоден для оценки интересующего нас явления.

Различают информативность содержательную и эмпирическую.

Коэффициент информативности – это коэффициент корреляции между результатами тестирования и результатами измерения критерия информативности.

Надёжность теста – это степень совпадения результатов многократного тестирования одних и тех же людей в одних и тех же условиях.

Педагогическое оценивание – завершающий этап процедуры тестирования.

При педагогическом оценивании используют перцентильные шкалы.

6. Датчик – первое звено измерительной системы.

Для регистрации биомеханических характеристик создано множество средств регистрации отдельных параметров движений. Среди них – самые разнообразные датчики: механические, ёмкостные, электроконтактные, магнитоэлектрические, потенциометрические, биоэлектрические устройства, сейсмодатчики, тензодатчики, пьезодатчики, акселерометрические датчики и др. Передача сигналов может осуществляться механическим путём, электропроводной системой, сейсмографически, акустически, фотографически и радиотелеметрически.

Так же разнообразны регистрирующие приборы – начиная от секундомера и измерительной линейки и кончая электронным осциллографом. Всё чем располагает современная техника и радиоэлектроника, может быть использовано в роли средств срочной информации о параметрах спортивных движений.

Для того чтобы использовать информацию от биомеханических датчиков, её нужно передавать по телеметрическому каналу и зарегистрировать.

Выделяют: проводную телеметрию, радиотелеметрию.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Реферат на тему:

Методы исследования в биомеханике

ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ. 4

1.1. Понятие метода исследования. 4

1.2. Этапы измерений. 4

1.3. Состав измерительной системы. 5

ГЛАВА 2. ОПТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ. 7

2.1. Киносъемка. 7

2.2. Видеосъемка. 7

2.3. Оптоэлектронная циклография. 8

2.4. Динамометрия. 8

2.5. Акселерометрия. 10

2.6. Электромиография. 11

ГЛАВА 3.МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА. 14

СПИСОК использованных источников. 17

Биомеханика является сложной дисциплиной, она объединяет знания из разных областей науки. Поэтому методы биомеханики можно рассматривать с разных позиций: медицинской и механической. Исходя из медицинской точки зрения, методы биомеханики - это, в первую очередь, методы диагностики, которые включают в себя клинические тесты, нахождение механических свойств изучаемого объекта, визуализацию внутренних органов, инвазивные процедуры. Клинические тесты применяются медицинскими сотрудниками при первичном осмотре. К методам визуализации относятся магнитно-резонансная томография, рентгенография, видеорентгенография и т.д. Инвазивный метод диагностики - это процедура, при которой происходит проникновение через кожный покров с целью поставить диагноз. Наиболее часто этот метод применяют для электрофизиологического исследования сердца, двигательной функции позвоночника и генетической проверки эмбриона.

А с позиции механики - это моделирование и численные методы. Моделирование - это процесс создания модели для конкретной задачи. Он включает в себя выявление качественных особенностей изучаемого объекта, а также количественные характеристики, полученные из экспериментов.

ГЛАВА 1. МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ

1.1. Понятие метода исследованиЯ

Метод (греч. methodos – путь к чему-либо) – в самом общем значении – способ достижения цели, определенным образом упорядоченная деятельность.

Метод исследования выбирают исходя из условий проведения и задач исследования. К методу исследования и обеспечивающей его аппаратуре предъявляют следующие требования:

Метод и аппаратура должны обеспечивать получение достоверного результата, то есть степень точности измерений должна соответствовать цели исследования;

Метод и аппаратура не должны влиять на исследуемый процесс, то есть искажать результаты и мешать испытуемому;

Метод и аппаратура должны обеспечивать оперативность получения результата.

Пример. Тренер и спортсмен поставили цель улучшить результат в беге на 100 м на 0,1 с. Спринтер пробегает дистанцию 100 м за 50 шагов, следовательно, время каждого шага должно в среднем быть уменьшено на 0,002 с. Очевидно, для получения достоверного результата, погрешность измерения длительности шага не должна превышать 0.0001 с.

1.2. Этапы измерений

В исследовании какого-либо явления существуют три этапа:

Измерение механических характеристик.

Измерение механических характеристик осуществляется на основе описываемых в этой лекции методов.

Обработка результатов исследования.

В настоящее время для обработки результатов используют специальные компьютерные программы. Так. Например, компьютерная программа Video Motion, предназначенная для атлетизма, позволяет на основе данных видеосъемки рассчитать траекторию, скорость и ускорение движения любой точки тела спортсмена, в том числе и грифа штанги.

Биомеханический анализ и синтез.

На заключительном этапе измерений на основе полученных механических характеристик оценивается техника двигательных действий спортсмена и даются рекомендации по ее совершенствованию.

1.3. Состав измерительной системы

Измерительная система включает в себя:

Устройство для вывода данных.

Датчик – элемент измерительной системы, который непосредственно измеряет (воспринимает) определенную биомеханическую характеристику движения спортсмена. Датчики могут крепиться на спортсмене, спортивном инвентаре и оборудовании, а также опорных поверхностях.

Линия связи служит для передачи информации от датчика к регистрирующему устройству. Линия связи может быть проводной и телеметрической. Проводная связь представляет собой передачу информации через многожильный кабель. Ее достоинством является простота и надежность, недостатком – помехи движениям спортсмена. Телеметрическая связь – передача данных через радиоканал. В этом случае на спортсмене чаще всего расположена передающая антенна, а у регистрирующего устройства есть приемная антенна, посредством которой сигнал воспринимается.

Регистрирующее устройство – прибор, в котором происходит процесс регистрации биомеханических характеристик движений спортсмена.

Долгое время существовала аналоговая форма записи сигнала. Например, аналоговая запись сигнала в видеокамерах на магнитную ленту. В настоящее время широко распространена цифровая форма записи сигнала (в виде последовательности цифр на определенный цифровой носитель, например, DVD-диск).

АЦП – аналого-цифровой преобразователь – устройство, преобразующее аналоговый сигнал в цифровую форму.

ПК – персональный компьютер, в котором происходит обработка поступающего сигнала посредством определенной компьютерной программы. После этого информация о биомеханических характеристиках спортсмена выводится на принтер или монитор.

В настоящее время в области атлетизма (тяжелая атлетика, пауэрлифтинг, бодибилдинг) нашли широкое применение следующие методики исследования:

Оптические методы (кино- и видеосъемка с последующим анализом, оптоэлектронная циклография);

Именно об этих методах мы поговорим подробнее.

ГЛАВА 2. ОПТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Киносъемка – оптический метод исследования. Этот метод относится к бесконтактным средствам измерения. Это особенно важно, поскольку система не мешает спортсмену при выполнении двигательных действий. Основным техническим средством является кинокамера. Для проведения биомеханических исследований чаще всего применяется кинокамеры с высокой частотой съемки (от 100 кадров в секунду и выше). Недостаток киносъемки является необходимость специальной обработки кинопленки. Поэтому в настоящее время в биомеханических исследованиях чаще всего применяются два других оптических метода: видеосъемка и оптоэлектронная циклография.

Видеосъемка – оптический метод исследования, позволяющий фиксировать двигательное действие на видеопленке или электронной матрице видеокамеры. В настоящее время для биомеханических исследований применяют высокоскоростные видеокамеры, позволяющие выполнять съемку до 1000 кадров в секунду и выше.

Примером такой камеры может служить цифровая фотокамера CASIO EXILIM PRO EX-F1 (рис.4.1), позволяющая выполнять скоростную съемку с частотой до 1200 кадр/с. Разрешение матрицы фотокамеры составляет 6,6 Мегапикселов[1]. Для регистрации выполнения спортсменом силовых упражнений данной камерой может использоваться видеосъемка, которую нужно производить с разрешением 1920×1080 пикселей с частотой кадров 60 кадр/с.

2.3. Оптоэлектронная циклография

Оптоэлектронная циклография – оптический метод исследования, состоящий в том, что на суставах спортсмена крепятся активные маркеры – миниатюрные излучатели, работающие в инфракрасном диапазоне спектра электромагнитных волн. Инфракрасный сигнал от датчиков поступает в телевизионную камеру, матрица которой преобразует поступающие сигналы в цифровой вид и передает в компьютер. Посредством оптоэлектронной циклографии в настоящее время двигательные действия спортсменов изучаются не в плоскости, а в трехмерном пространстве. С этой целью вокруг спортсмена устанавливают несколько регистрирующих камер.

Динамометрия – метод, применяемый для оценки силовых способностей спортсмена. Информативным показателем силовых способностей является сила, развиваемая определенной мышечной группой. Для измерения силы мышц используются динамометры, которые делятся на механические и электронные.

Важнейшей деталью механических динамометров является пружина, которая должна работать в области линейной деформации. Это означает, что измеряемая сила прямо пропорциональна удлинению пружины. При измерениях в спорте очень часто применяются кистевые и становые (рис. 4.2) динамометры. Так, например, для измерения силы тяги в пауэрлифтинге используется становой динамометр. Диапазон измерений составляет от 100 Н до1800 Н с погрешностью +/-2 % по всей шкале. Вес 1.8 кг, размер 25,4х6,35 см. Ручка из прочного алюминия с удобным местом для захвата.

Недостатком механических динамометров является оценка одного, чаще всего максимального значения силы. В связи с этим, если необходимо изучить изменение усилия, развиваемого мышечной группой или спортсменом, применяются электронные динамометры. В этом случае датчиком является не пружина, а тензодатчик, а сама методика называется тензодинамометрия.

Метод тензодинамометрии позволяет зарегистрировать усилия, развиваемые спортсменом при выполнении различных физических упражнений.

В процессе выполнения спортивных движений спортсмен оказывает механическое воздействие на самые разнообразные предметы: спортивный снаряд, пол, дорожку, которые в результате этого деформируются. Для того, чтобы измерить значения развиваемых спортсменом усилий, используют специальные тензодатчики, преобразующие механическую деформацию в электрический сигнал. В основе работы тензодатчиков лежит тензоэффект. Суть тензоэффекта – изменение сопротивления проводника при его удлинении.

Тензодатчик представляет собой заклеенную между двумя полосками бумаги проволоку диаметром 0.02-0,05 мм. Он наклеивается на упругий элемент, воспринимающий усилие, задаваемое спортсменом.

В 1938 году были разработаны первые тензодатчики, которые работали на основе тензоэффекта. В 1947 году тензометрия впервые стала применяться в физических исследованиях

В спорте впервые в 1954 году М.П. Михайлюк закрепил тензодатчик на грифе штанги, П.И. Никифоров (1957) разработал тензоплатформу для записи усилий при отталкивании в прыжках в высоту. В 1963 году В.К. Бальсевич использовал тензодинамометрические стельки для анализа бега спринтеров различной квалификации. Им было установлено несколько типов отталкивания.

Методика тензодинамометрии активно применяется в тяжелой атлетике. Одна из ключевых задач тренера заключается в предоставлении информации об ошибках, то есть обратная связь от тренера к спортсмену. Обратная связь является важным элементом обучения. Спортсмен должен получать на регулярной основе информацию, которая позволяет сравнить собственную деятельность с идеалом или моделью. В результате такого сравнения, спортсмен получит знания о своей деятельности и имеет возможность работать на исправление своих ошибок.

Такая методика разработана А.Н. Фураевым (1988) и модернизирована И.П. Кожекиным (1998). Автоматизированный стенд включает в себя тензодинамометрическую платформу, АЦП (аналого-цифровой преобразователь) и компьютер. В экспертной системе компьютера заложены образцы, характеризующие правильное и неправильное выполнение двигательного действия (рывка, прыжка вверх и прыжка в глубину. Сопоставляя полученные результаты, экспертная система, построенная на анализе тензодинамограммы, позволяет спортсмену в реальном масштабе времени получить информацию об ошибках в технике двигательного действия и ввести корректировки чтобы их устранить.

Акселерометрия – биомеханический метод регистрации ускорений движения тела спортсмена, или его отдельных частей, а также ускорений спортивных снарядов. Например, в тяжелой атлетике информативным показателем техники движений спортсмена является ускорение центра масс штанги.

В качестве датчиков используются специальные акселерометры. Принцип действия датчика-акселерометра следующий. К исследуемому объекту прикрепляется масса при помощи связи, обладающей определенной жесткостью. Затем на основе известной массы и жесткости связи определяется ускорение. Основными характеристиками акселерометров являются диапазон и предельная частота изменения измеряемых ускорений.

Если используется трехкомпонентный акселерометр, можно зарегистрировать три составляющих ускорения. Выполняя дифференцирование полученного сигнала, можно рассчитать скорость и перемещение спортивного снаряда, например, грифа штанги.

Электромиография – способ регистрации и анализа биоэлектрической активности мышц.

Суть явления заключается в регистрации электрических потенциалов мышц, которые появляются при возбуждении мышцы. Таким образом, электромиография, является надежным методом регистрации активности мышц.

Чаще всего регистрируются следующие параметры ЭМГ (электромиограммы); длительность электрической активности мышц, частота биопотенциалов, амплитуда биопотенциалов и суммарная электрическая активность мышц.

Длительность электрической активности мышц характеризует время, в течение которого мышца была возбуждена.

Частота и амплитуда биопотенциалов мышцы характеризует степень возбуждения мышцы и характер активности различных ДЕ. Суммарная электрическая активность дает представление об общем уровне напряжения и силы развиваемой мышцей. Чем больше суммарная электрическая активность, тем больше степень напряжения, развиваемая мышцей.

Датчиками, используемыми для регистрации электрической активности, служат серебряные электроды, выполненные в виде небольших кружков (чашечек). Их диаметр составляет не более 10 мм. Внутри этих чашечек для лучшей электропроводности помещается специальная электропроводящая паста. В настоящее время регистрирующим прибором является персональный компьютер.

Одной из первых работ, в которой электромиографическая методика применялась в исследовании двигательных действий штангиста, следует признать диссертационную работу А.С. Степанова (1957). В этом исследовании А.С. Степанов (1957) подверг детальному электромиографическому анализу основные соревновательные упражнения штангистов: толчок, рывок и жим.

В исследовании С.С. Лапенкова (1985) был проведен биомеханический анализ тяжелоатлетических и вспомогательных упражнений с использованием методики электромиографии. При сравнительном анализе движений использовались следующие характеристики ЭМГ: время электрической активности, которое характеризует длительность приложения усилий, развиваемых мышцами, средняя амплитуда ЭМГ, которая взаимосвязана с уровнем развития мышечных усилий. Использование ЭМГ методики и структурного метода распознавания образов позволило оценить эффективность вспомогательных упражнений.

За рубежом серьезные исследования силовых упражнений с применением электромиографической методики были предприняты R.F. Escamilla et al. (2001). Подробному электромиографическому и биомеханическому анализу были подвергнуты присед со штангой на плечах и жим ногами лежа.

Было установлено, что при выполнении приседания активность четырехглавой мышцы бедра и мышц задней поверхности бедра выше, чем при выполнении жима ногами. При этом присед, выполняемый с узкой расстановкой стоп, вызывает большую электрическую активность икроножной мышцы по сравнению с широкой расстановкой стоп.

Был проведен также анализ работы мышц при выполнении силовых упражнений: приседа со штангой на плечах (Н.Б. Кичайкина, А.В. Самсонова, Г.А. Самсонов, 2011). Установлено, что в нижней точке (НТ) электрическая активность большой ягодичной мышцы и мышц-разгибателей бедра (двуглавой бедра и полусухожильной) минимальна.

Положительной особенностью электромиографии являлось то, что она позволяла в разных движениях оценить степень активности скелетных мышц. С этой целью чаще всего применяется изучение суммарной электрической активности мышцы. Кроме того, появилась возможность оценить последовательность активности мышц при выполнении двигательного действия.

ГЛАВА 3.МЕТОДЫ ИССЛЕДОВАНИЯ В БИОМЕХАНИКЕ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

В настоящее время биомеханика опорно-двигательного аппарата обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих опорно-двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометричские: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.

Основные направления биомеханики - науки о законах механического движения в живых системах. Биомеханика физических упражнений как самостоятельная научная дисциплина, ее физиологическое и системно-структурное направление. Тестирование двигательных качеств.

Рубрика Спорт и туризм
Вид реферат
Язык русский
Дата добавления 11.01.2015
Размер файла 1,8 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Движение лежит в основе жизнедеятельности человека. Разнообразные химические и физические процессы в клетках тела, работа сердца и течение крови, дыхание, пищеварение и выделение; перемещение тела в пространстве и частей тела относительно друг друга; сложнейшая нервная деятельность, являющаяся физиологическим механизмом психики, восприятие и анализ внешнего и внутреннего мира - все это различные формы движения материи.

Основным условием жизни вообще является взаимодействие живого организма с окружающей средой. В этом взаимодействии существенную роль играет двигательная деятельность. Только передвигаясь, животное может находить себе пищу, защищать свою жизнь, производить потомство и обеспечивать его существование. Только при помощи разнообразных и сложных движений человек совершает трудовую деятельность, общается с другими людьми, говорит, пишет и пр. Определенным образом организованная двигательная деятельность является основой физического воспитания и основным содержанием спорта.

Наиболее элементарной формой движения материи является механическое движение, т.е. перемещение тела в пространстве. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения.

Вскрывая и описывая условия, необходимые для осуществления того или иного механического движения, механика является важной теоретической основой техники, в особенности техники построения разнообразных механизмов. Механическая точка зрения может быть использована и при изучении механических движений человека.

Двигательная деятельность человека практически осуществляется при участии всех органов тела. Однако непосредственным исполнителем функции движения является двигательный аппарат, состоящий из костей, скелета, связок и мышц с их иннервацией и кровеносными сосудами. С механической точки зрения, двигательный аппарат совмещает в себе рабочую машину и машину-двигатель.

Устройство двигательного аппарата является предметом изучения анатомии. Изучение двигательного аппарата как машины-двигателя производится, главным образом, биохимией и физиологией. Изучение его как рабочей машины является задачей особой научной дисциплины - биомеханики.

Основные направления биомеханики

Биомеханика - наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Специальных законов механики, особых для живых систем не существует.

Как самостоятельная научная дисциплина биомеханика физических упражнений должна обогащать теорию физического воспитания, исследуя одну из сторон физических упражнений - технику. Вместе с тем, биомеханика физических упражнений непосредственно служит и практике физического воспитания. Сюда относится, например, следующее:

1) оценка физических упражнений с точки зрения их эффективности в решении определенных задач физического воспитания (ФВ);

2) изучение техники ФУ как предмета обучения с выявлением главного и ведущего в движениях, обеспечивающего высокий результат;

3) оценка качества выполнения ФУ, выявление ошибок, их причин, последствий и путей для устранения;

4) совершенствование спортивной техники с обобщением передового опыта и ее теоретическое обоснование;

5) изучение особенностей лучших образцов спортивной техники как общих для всех, так и тех, которые зависят от индивидуальных особенностей физического развития;

6) изучение функциональных показателей физического развития с целью уточнения путей повышения функциональных возможностей организма спортсмена.

Объект познания биомеханики - двигательные действия человека как системы взаимно связанных активных движений и положений его тела.

Биомеханика возникла и развивается как наука о движениях животных организмов, в частности человека.

Область изучения биомеханики - механические и биологические причины возникновения движений, особенности их выполнения в различных условиях.

Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи.

Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение (А.А. Ухтомский). Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Частные задачи биомеханики состоят в изучении и объяснении: а) самих движений человека в той или иной области его двигательной деятельности; б) движений физических объектов, перемещаемых человеком, в) результатов решения двигательной задачи; г) условий, в которых они осуществляются; д) развития движений человека (с учетом названных сторон) в результате обучения и тренировки.

1. На основе кинематики описывают движения (пространственную форму и характер движений), изучая динамику движений, влияние сил на их изменение, дают объяснение, находят причины особенностей движения.

2. Таким же образом описывают и объясняют движения снарядов, зависящие от движений человека.

3. Необходимо сопоставлять разные варианты исполнения, сложившиеся в практике, разную степень совершенства, зависящую от квалификации исполнения и др.

4. Движения часто исполняются в переменных условиях, характер изменения последних также влияет на движения. Учитывая условия внешние (все факторы внешнего окружения) и внутренние (уровень подготовленности, возрастные особенности и др.), с одной стороны выявляют, какие условия благоприятствуют эффективности, иначе говоря, какие нужно создавать условия. С другой стороны, определяют, как лучше приспособиться к заданным условиям, как их использовать.

5. На основе описания и объяснения движений необходимо указать путь их совершенствования: не только изучать действительность, но и преобразовывать ее.

Биомеханика, как наука экспериментальная, эмпирическая, опирается на опытное изучение движений. При помощи приборов регистрируются количественные характеристики, например траектории скорости, ускорения и др., позволяющие различать движения, сравнивать их между собой. Рассматривая характеристики, мысленно расчленяют систему движений на составные части - устанавливают ее состав. В этом проявляется системный анализ.

Изучению механических характеристик движений были посвящены исследования В. Брауне, О. Фишера, Г. Хохмута, А. Новака и др.

Применение законов механики в биомеханике совершенно необходимо, но оно недостаточно. Как биомеханическая система тело человека существенно отличается от абсолютно твердого тела или материальной точки, которые рассматриваются в классической механике. Внутренние силы, которые при решении задач в механике твердого тела стараются исключить, имеют определяющее значение для движений человека. Безразличие к источнику силы в механике сменяется крайним интересом к этому вопросу в биомеханике.

Функционально-анатомическое направление. Функционально-анатомический подход характеризуется преимущественно описательным анализом движений в суставах, определением участия мышц при сохранении положений тела и в его движениях.

Изучая форму и строение органов опоры, а также движения человека в тесной связи с их функцией, анатомы исследовали преимущественно двигательный аппарат. Аналитическое изучение тела человека преобладало в работах О. Фишера, Р. Фикка, Г. Брауса, С. Моллье и других зарубежных анатомов.

Физиологическое направление. Физиологическое направление в биомеханике утвердило представление о рефлекторной природе движений, кольцевом характере управления движениями и об обусловленной этим чрезвычайной сложности движений человека.

На развитие биомеханики оказали существенное влияние физиология нервно-мышечного аппарата, учение о высшей нервной деятельности и нейрофизиология. Признание рефлекторной природы двигательных действий и механизмов нервной регуляции при взаимодействии организма и среды в работах И.М. Сеченова, И.П. Павлова, Н.Е. Введенского, А.А. Ухтомского, П.К. Анохина, Н.А. Бернштейна и других ученых составляет физиологическую основу изучения движений чело­века. Системно-структурный подход. Системно-структурный подход в биомеханике характеризуется изучением состава и структуры систем как в двигательном аппарате, так и в его функциях. Этот подход в известной мере объединяет механическое, функционально-анатомическое и физио­логическое направления в развитии теории биомеханики.

По современным представлениям, опорно-двигательный аппарат рассматривается как сложная биомеханическая система; движения человека также изучаются как сложная целостная система.

Системно-структурный подход требует изучения системы как единого целого, потому что ее свойства не сводятся к свойствам отдельных элементов. Важно изучать не только состав, но и структуру системы, рассматривать во взаимосвязи строение и функцию.

Идеи о системности внес в изучение двигательной деятельности также Н.А. Бернштейн. Кибернетический, по сути дела, подход к движениям был им осуществлен более чем за 10 лет до оформления кибернетики как самостоятельной науки.

Современный системно-структурный подход не только не отрицает значения в биомеханике всех направлений, а как бы объединяет их; при этом каждое направление сохраняет в биомеханике свое значение.

Тестирование двигательных качеств

Описание методов тестирования, применяемых для биомеханического контроля в физическом воспитании и спорте, начнем с тестов, позволяющих оценить уровень развития двигательных качеств. Биомеханические тесты выносливости позволяют установить, какой объем работы человек может выполнить и как долго может работать без снижения эффективности двигательной деятельности. Например, при беге с постоянной скоростью наступает момент, когда человек не может поддержать исходную длину шага (компенсированное утомление), а спустя еще некоторое время он вынужден снизить скорость (декомпенсированное утомление) (рис.1). Чем выносливее человек, тем дольше не наступает утомление.

Согласно правилу обратимости двигательных заданий все три разновидности теста на выносливость эквивалентны (табл.1), т.е. при тестировании группы людей наиболее выносливые в одном из этих трех тестов будут наиболее выносливыми и в двух других.

Рис 1. Измерение скорости, длины шаг и частоты шагов (темпа) у человека, выполняющего тест на выносливость: 1. Компенсированное утомление. 2. Декомпенсированное утомление.

Тестирование силовых качеств осуществляется либо в упражнениях статического характера, либо в таких общеразвивающих упражнениях, где выполняется локальная или регионарная мышечная работа. В первом случае мерой силовых возможностей служит величина проявляемой силы (Fo) и продолжительность ее удержания. Во втором случае определяется, сколько раз подряд человек может сжать или растянуть пружину динамометра, подтянуться, отжаться и т.п.

Проявляемая человеком сила зависит от позы, от углов в суставах. Влияние суставного угла на проявляемую силу иллюстрирует рис.28. Изображенный на нем график показывает, что, например, оптимальный угол в локтевом суставе близок к 80°. В этом случае угол между направлением тяги двуглавой мышцы плеча и костями предплечья близок к 90°.

Вообще говоря, измерение силы можно проводить при любой величине суставного угла. Важно лишь, чтобы он всегда был одним и тем же.

Рис 2. Сила тяги мышцы, необходимая для удержания груза в зависимости от величины суставного угла.

Рис 3. Шкала для оценивания силовой подготовленности по результатам сгибания и разгибания рук в упоре лежа у людей разного возраста (слева - свыше 30 лет, справа - до 30 лет).

При выполнении многих физических упражнений приходится преодолевать силу тяжести своего тела. В этих случаях наиболее информативный показатель скоростно-силовых качеств - не скоростно-силовой индекс, а коэффициент реактивности. Коэффициент реактивности равен скоростно-силовому индексу, деленному на вес тела.

Тестирование гибкости чаще всего связано с измерением углов между звеньями тела (рис.4). Делается это гониометрами (угломерами). Существуют и другие методы контроля за гибкостью (рис.5).

Рис 4. Тестирование гибкости: измеряется угол между бедрами.

Рис 5. Тестирование гибкости: измеряется расстояние между руками и ногами.

Гибкость оценивается расстоянием от кончиков пальцев руки до опоры.1 см на линейке соответствует одному очку. Нормальной считается гибкость, оцениваемая в ноль очков; в этом случае испытуемый достает кончиками пальцев до опоры.

В настоящее время характерными чертами современного спорта является значительное его омоложение и неуклонный рост спортивного достижения.

Посвящая себя исследовательской работе, на первый взгляд кажется, что современная наука не оставила нерешённых проблем. В тоже время для практики, как бы совершенна она не была, всегда характерно стремление добиться результата быстрее и с меньшей затратой сил и средств. То есть повысить качество, производительность и эффективность общественного труда. В связи с этим возникает проблемная ситуация, связанная с необходимостью создания новых методов, технологии, приёмов производства, обучения.

Повышение функциональных возможностей организма учащихся является одной из основных задач школьного физического воспитания. Однако в последние годы стало появляться множество научных данных о низком уровне физической подготовленности большой части школьников нашей страны

Процесс совершенствования методических подходов к повышению функциональных возможностей организма школьников стимулирует поиск новых, более рациональных путей решения данной проблемы. Одним из основных направлений в этом является дифференцированный подход к учащимся, подразумевающий тщательное изучение индивидуальных особенностей каждого из них, с последующим распределением школьников по сходным типологическим признакам на определенные группы с учетом задач учебного процесса.

биомеханика спорт тестирование двигательный

Ашмарин Б.А., Виноградов Ю.А., Вяткина З.Н., и др. Теория и методика физического воспитания: учеб. Для студентов фак. культ. пед. Ин-тов по спец.03.03. - М.: просвещение, 1990. - 287с.

Н.А. Бернштейн Биомеханика и физиология движений. М.: МОДЭК, МПСИ. - 2004 г. . - 688 стр.

Основные направления научных исследований в области биомеханики спорта за рубежом (1980-1986): Обзор. информ. / ВНИИ физ. культуры; Подгот. М.П. Дементьевой 33 с.20 см М. Отд. исслед. и разраб. НТИ "Спорт" 1986 1987

Федорова В.Н., Дубровский Владимир, Дубровский В.И. Федорова В.Н. Биомеханика. Владос гуманитарный издательский центр, 2003 г. - 672 с.

Подобные документы

Предмет и задачи биомеханики как науки о законах механического движения в живых системах; основные направления дисциплины - механическое, функционально-анатомическое и физиологическое. Тестирование скоростно-силовых качеств, а также гибкости подростков.

реферат [882,4 K], добавлен 28.04.2014

Сущность биомеханики, предмет и методы ее изучения, место среди наук о физическом воспитании и спорте. Двигательные действия в спортивной гимнастике и применение в ней законов биомеханики. Принципы управления вращениями в гимнастической постановке.

доклад [16,1 K], добавлен 27.05.2009

Предмет и методы исследования биомеханики, связь с другими науками. Задачи биомеханики спорта. Свойства инертности тел. Звенья тела как рычаги и маятники. Геометрия масс тела. Степени свободы в биомеханических цепях. Строение тела и моторика человека.

шпаргалка [33,1 K], добавлен 10.01.2011

Роль гимнастики для развития двигательных качеств школьников, в частности силы и гибкости. Влияние физических упражнений на организм человека. Анатомо-физиологические особенности подростка. Разработка комплексов упражнений для развития гибкости и силы.

курсовая работа [39,4 K], добавлен 24.11.2010

Возрастные особенности развития двигательных качеств. Изучение морфофункциональных особенностей детей и подростков. Исследование развития двигательных качеств, в группах начальной подготовки по легкой атлетике. Тестирование физической подготовленности.

В.Л.Уткин "Биомеханика физических упражнений"

ГЛАВА 3. ОСНОВЫ БИОМЕХАНИЧЕСКОГО КОНТРОЛЯ (ч.3 - посл.)

АВТОМАТИЗАЦИЯ БИОМЕХАНИЧЕСКОГО КОНТРОЛЯ

Биомеханический контроль можно осуществлять по-разному Самое простое — наблюдать и записывать результаты наблюдений. Но при этом многое будет упущено и никто не сможет поручиться за точность полученных результатов.

Все измерительные системы в биомеханике включают в себя датчики биомеханических характеристик с усилителями и преобразователями, канал связи и регистрирующее устройство. В последние годы все чаще используют запоминающие и вычислительные устройства, значительно расширяющие возможности педагога. Для повышения точности биомеханического контроля привлекаются все новинки инженерной мысли: радиотелеметрия, лазеры, ультразвук, инфракрасное излучение, радиоактивность, телевидение, видеомагнитофоны, вычислительная техника.




Датчики биомеханических характеристик

Датчик — первое звено измерительной системы. Датчики непосредственно воспринимают изменения измеряемого показателя и закрепляются либо на теле человека, либо вне его.

Датчик, закрепляемый на человеке, должен иметь минимальный вес и габариты, высокую механическую прочность, удобство крепления и вместе с тем не должен стеснять движений и создавать какого-либо дискомфорта. На теле человека размещаются: маркеры суставов (рис. 35, 36), электромиографические электроды (см. рис. 3), датчики суставного угла ( Их чаще называют гониометрическими (от слов gonios — угол, metreo — измеряю); кроме измерения суставных углов, гониометрические датчики применяются для измерения угловых перемещений в спортивном инвентаре, например угла поворота весла в уключине ) и ускорения (рис. 37).

Но уже давно замечено, что точность биомеханического контроля выше, если движения человека ничем не стеснены. Поэтому биомеханические датчики стараются размещать на спортивном инвентаре, чтобы условия, в которых осуществляется контроль, не отличались от естественных условий тренировок и соревнований.

Популярными стали динамографические платформы. Они устанавливаются скрытно в секторе для прыжков или метаний, под покрытием беговой дорожки, гимнастического помоста, игровой площадки и т. п. Наиболее совершенные динамоплатформы позволяют измерить все три составляющие силы (вертикальную и две горизонтальные) и, кроме того, скручивающий момент в точке приложения силы, причем результат измерения не зависит от того, к какой точке приложена сила.

Чувствительными элементами в динамографической платформе служат пьезоэлектрические датчики (похожие на тот, что находится в звукоснимателе электропроигрывателя) или менее хрупкие датчики силы — тензометрические (тензодатчики) ( Об устройстве биомеханических датчиков и о физических явлениях, лежащих в основе их конструкции, можно прочитать в кн.: Утки н В. Л. Измерения в спорте (введение в спортивную метрологию).— М., 1978.—-С. 103—120; Миненков Б. В. Техника и методика тензометрических исследований в биологии и медицине.— М., 1976 ).


Тензодатчики применяются для измерения силы во многих видах спорта. В гимнастике их наклеивают на перекладину, брусья, кольца, ручки коня и т. д. В тяжелой атлетике — на гриф штанги. В стрелковом спорте и биатлоне — на спусковой крючок, ложе и приклад. В гребле — на конус уключины или весло (между рукояткой и уключиной), на подножку и на банку. В велосипедном, конькобежном и лыжном спорте для измерения силы немного видоизменяют конструкцию педали, конька, лыжи и лыжной палки, причем эти изменения никак не сказываются на естественной технике движений. В легкой атлетике применяют тензостельки, которые вкладывают в спортивную обувь. Интересно, что появились кроссовки с тензостельками и миниатюрным компьютером, который автоматически подсчитывает темп и силу отталкивания и сигнализирует тренирующемуся человеку, если сила отталкивания и частота шагов выше или ниже оптимальной.

Тензодатчики используют не только для измерения силы, но и для измерения ускорения, а также для регистрации колебаний тела (рис. 38). В этом случае Тензодатчики наклеивают на вертикальный стержень, соединяющий центры нижней и верхней площадки стабилографической платформы. Стабилограмма показывает, сколь велика способность человека сохранять устойчивость тела, которая служит важным фактором достижений в гимнастике, акробатике, гребле, фигурном катании и т. д. Кроме того, стабилография полезна при лечении людей с нарушенной способностью сохранять равновесие, при тестировании состояния нервной системы (например, перед соревнованиями).

Подобно тензодатчикам, не искажают естественных движений и фотоэлектрические датчики, в которых электрический ток возникает под действием света. Они используются для измерения скорости ходьбы и бега. Бегун (а также конькобежец, лыжник и др.) во время движения прерывает световые лучи, падающие на фотоэлементы (рис. 39). Поскольку каждая оптронная пара (источник света — фотоэлемент) находится на определенном расстоянии (S) от следующей, а время ( D t) преодоления этого расстояния измеряется, легко вычислить среднюю скорость на этом отрезке дистанции:




Если источник света (например, лазер) дает узконаправленный луч, то можно измерить длительность и длину каждого шага. Эта информация полезна при подготовке спринтеров, прыгунов и барьеристов.

Телеметрия и методы регистрации биомеханических характеристик

Для того чтобы использовать информацию от биомеханических датчиков, ее нужно передать по телеметрическому каналу и зарегистрировать.

Проводная телеметрия проста и устойчива при помехах. Ее основной недостаток—невозможность передавать по проводам сигналы с датчиков, размещенных на теле человека, находящегося в движении. Поэтому проводную телеметрию следует использовать в сочетании с динамографической платформой или стационарно установленным спортивным инвентарем, оснащенным датчиками биомеханических характеристик.

Приведем пример. Для регистрации динамограммы воднолыжника (рис. 40) нужно приклеить тензодатчики к установленной на корме катера вертикальной стойке. К верхней части стойки прикрепляется конец фала, за другой конец которого держится воднолыжник. В этом случае электрический сигнал от тензодатчиков к регистрирующему прибору (который также размещен на катере) целесообразно передать по проводам.

Радиотелеметрия — это отрасль радиотехники, обеспечивающая передачу по радио информации о результатах измерений.

Радиотелеметрия дает возможность контролировать технико-тактическое мастерство человека в естественных условиях двигательной деятельности. Для этого он должен нести на себе биомеханические датчики и миниатюрное передающее устройство радиотелеметрической системы. Пример радиотелеметрической записи биомеханической информации представлен на рис. 41. Изображенные на нем электромиограммы получены в легкоатлетическом манеже, под беговой дорожкой которого уложена приемная антенна радиотелеметрической системы.



Рис. 41. Радиотелеметрическая запись электромиограмм у бегущего человека:

1 — большая ягодичная м.; 2 — прямая м. бедра; 3 — латеральная широкая м. бедра? 4 — двуглавая м. бедра; 5 — передняя большеберцовая м.; 6 — икроножная м.; 7 — камбаловидная м.; одинарная косая штриховка — уступающая работа; двойная косая штриховка — преодолевающая работа (по И. М. Козлову)

Вопрос для самоконтроля знаний

Какие варианты телеметрии могут быть использованы для регистрации силы отталкивания от опоры:

а) в лыжных гонках;

б) в прыжках в длину;

в) в художественной гимнастике?

Самописцы помогают узнать, как один или сразу несколько измеряемых показателей изменяются во времени (см. рис. 40, 41). Но есть и двухкоординатные самописцы, вычерчивающие график зависимости одного показателя от другого. Они дают педагогу дополнительные возможности. Так, на рис. 42 помещены автоматически вычерченные зависимости силы, прикладываемой к веслу, от горизонталь-; ного перемещения весла. Площадь, ограниченная такой • кривой, пропорциональна величине внешней механической работы.

Задание для самоконтроля и закрепления знаний Подвергните последнее утверждение критическому анализу и докажите его справедливость или ошибочность.

Спортивные соревнования — увлекательное зрелище. В таких видах спорта, как гимнастика и фигурное катание, успех спортсмена прямо зависит от красоты и выразительности движений. В других видах спорта внешняя картина движений имеет хотя и второстепенное, но тоже очень важное значение, поскольку от нее зависит сила, быстрота и точность двигательных действий. Да и в повседневной жизни важно умение красиво двигаться.


Рис. 42. Графическая регистрация (самописцем) или индикация (на электронно-лучевом индикаторе) зависимости между силой, прикладываемой к рукоятке весла, и горизонтальным перемещением весла в двух циклах гребли; внизу — лодка, оборудованная измерительной аппаратурой:

1 — вычислительное устройство и электронно-лучевой индикатор; 2 — датчик углового перемещения весла; 3 — тензодатчик (по А. П. Ткачуку)

По мере совершенствования измерительной аппаратуры были освоены стереосъемка, позволяющая получать трехмерное изображение, и высокоскоростная съемка, дающая возможность регистрировать быстропротекающие процессы (рис. 44).

Многообразие способов оптических измерений наглядно иллюстрирует рис. 45. Из слов, написанных на рисунке, могут быть составлены названия большинства известных способов регистрации внешней картины движений. Например, низкоскоростная плоскостная видеоциклосъемка — это съемка маркеров на теле человека одной видеокамерой с обычной частотой кадров.



Рис. 44. Кинограмма отскока теннисного мяча от площадки; при высокоскоростной съемке (4000 кадров в секунду) видно, как меняется форма мяча (по Hay)

Биомеханический контроль и ЭВМ

Биомеханический контроль — необходимая, но очень трудоемкая работа. И это главная причина, почему он не применяется в каждой школе и спортивной команде.

На рис. 46 схематически изображены 10 поз бегущего человека, масса тела которого 70 кг. Эти графики получены в результате плоскостной циклосъемки. Вертикальные и горизонтальные координаты шести суставов, центра масс головы и кончика стопы помещены в таблицу 9.

Приведенных данных достаточно для того, чтобы вычислить скорости и ускорения основных сегментов тела, определить координаты общего центра масс в каждой позе, построить кинематические графики ( Кинематическими графиками принято называть графики, показывающие, как изменяются во времени координаты, скорости и ускорения частей тела) .



Рис. 46. Киноциклограмма бега человека (по Д. Д. Донскому, Л. С. Зайцевой)

Задание для самостоятельной работы

Выполнить все перечисленные расчеты и построения.

Выполнив это задание, вы убедились в том, что трудоемкость биомеханического контроля действительно очень велика. Но немало времени ушло и на составление таблицы 9. А теперь представьте себе, что всю необходимую информацию вы получили не затрачивая труда, сразу после того, как исследуемый человек закончил выполнять упражнение. Не правда ли, это уже из области научной фантастики? Тем не менее сегодня такая фантастическая возможность стала реальной, и случилось это благодаря достижениям электронно-вычислительной техники.

С созданием ЭВМ, значение которых академик Н. Н. Моисеев сравнивает с покорением огня, связан важнейший этап научно-технической революции XX в. «Совершенствуя в течение тысячелетий свои рабочие органы и органы чувств, человек до середины XX в. сохранял за своим мозгом функцию промежуточного звена между ними.


Примечание. В числителе горизонтальные, в знаменателе вертикальные координаты маркеров, см.

Как известно, ЭВМ делятся на универсальные и специализированные. Универсальные ЭВМ (в том числе персональные компьютеры) дают возможность решать многие задачи биомеханического контроля. В том числе:

— вычисления и графические работы, подобные тем, что вы сделали, выполняя задание на с. 75 и более сложные;


— тестирование двигательных качеств;

— выявление оптимальных вариантов техники и тактики путем их математического и имитационного моделирования на ЭВМ (см. рис. 23, 24);

— контроль за эффективностью техники и тактики.

Последнее проиллюстрируем представленными на рис. 47 результатами динамографического контроля за симметричностью позы при стоянии человека. Такой контроль не только позволяет дать полезные для здоровья рекомендации, но и необходим при индивидуальном пошиве спортивной обуви. Рисунок показывает, что два пальца левой ноги не взаимодействуют с опорой. Следовательно, под эти пальцы следует положить супинатор.

Даже эти немногие примеры дают представление о том, насколько применение вычислительной техники в биомеханическом контроле расширяет возможности педагога. Недаром умение пользоваться ЭВМ называют второй грамотностью.

Контрольные вопросы

1. Какие существуют шкалы измерений? Расскажите об особенностях каждой шкалы.

2. Перечислите биомеханические характеристики. Расскажите о назначении каждой из них.

3. Перечислите показатели спортивно-технического мастерства.

4. Что вам известно о погрешностях измерения?

5. От каких показателей зависит качество теста? Расскажите о них.

6. Как форма шкалы педагогических оценок может повлиять на рост спортивных достижений?

7. Приведите примеры тестов, позволяющих оценить уровень развития двигательных качеств в вашем виде спорта.

8. Какие датчики биомеханических характеристик используются при биомеханическом контроле?

9. Как используются ЭВМ при проведении биомеханического контроля?

10. Решите кроссворд (рис. 48).


Рис. 48. Кроссворд.

По горизонтали: 1. Наука о двигательных возможностях и двигательной деятельности человека и животных. 2. Биомеханическая характеристика. 3. Работа за единицу времени. 4. Проба, испытание. 5. Соотношение длительностей фаз двигательного действия. 6. Объект биомеханического контроля. 7. Датчик для измерения силы. 8. Кинематическая характеристика.

По вертикали: 1. Единица измерения силы. 2. Показатель, характеризующий технико-тактическое мастерство. 3. Разновидность надежности теста. 4. Раздел биомеханики, изучающий внешнюю картину движений. 5. Измерение на расстоянии. 6. Двигательное качество, для тестирования которого используют гониометрические датчики. 7. Энергетическая характеристика движения. 8. Число движений в единицу времени.

Читайте также: